Sunday, June 30, 2024

Supermassive Black Hole Appears to Grow Like a Baby Star

Assisted by magnetic fields, a spiraling wind helps the supermassive black hole in galaxy ESO320-G030 grow. In this illustration, the core of the galaxy is dominated by a rotating wind of dense gas leading outwards from the (hidden) supermassive black hole at the galaxy’s center. The motions of the gas, traced by light from molecules of hydrogen cyanide, have been measured with the Atacama Large Millimeter/submillimeter Array. Credit: M. D. Gorski/Aaron M. Geller, Northwestern University, CIERA, the Center for Interdisciplinary Exploration and Research in Astrophysics. Hi-Res File

How do supermassive black holes get so big? An international team of astronomers, including scientists at the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) have discovered a powerful, rotating, magnetic wind that they believe is helping a galaxy’s central supermassive black hole to grow.

Most galaxies, including our own Milky Way, have a supermassive black hole at their center. How these black holes grow remains a mystery to astronomers. A team of scientists chose to study the relatively nearby galaxy ESO320-G030, only 120 million light years away from Earth. This galaxy is very active, forming stars ten times as fast as our own Milky Way.

Astronomers measured light from molecules carried by winds from the galaxy’s core, hoping to trace their origin from the supermassive black hole. The Atacama Large Millimeter/submillimeter Array (ALMA) was used to study this light, from the wavelengths of hydrogen cyanide (HCN) molecules, hidden within thick layers of dust and gas.

ALMA was able to see details and trace movements in the gas, and discovered patterns that suggest the presence of a magnetized, rotating wind. While other winds and jets in the center of galaxies push material away from their core, astronomers believe this newly discovered wind feeds the black hole to help it grow.

This process is similar to a much smaller-scale environment in space: the swirls of gas and dust that lead to the birth of new stars and planets.“It is well-established that stars, in the first stages of their evolution, grow with the help of rotating winds – accelerated by magnetic fields, just like the wind in this galaxy. Our observations show that supermassive black holes and tiny stars can grow by similar processes, but on very different scales”, says Mark Gorski, lead author of this research, and a fellow with the Center for Interdisciplinary Exploration and Research in Astrophysics at Northwestern University, and also affiliated with the Department of Space, Earth and Environment at Chalmers University of Technology (Sweden.)

Gorski, a frequent ALMA user, studies the evolution of stars and galaxies using astrochemistry. Earlier in his astronomy career, he was also a Reber Fellow with NSF NRAO, based at the Karl G. Jansky Very Large Array.

This press release was adapted from news shared by the Chalmers University of Technology.

This news was also shared by Northwestern University.

This research was published in the journal of Astronomy & Astrophysics.




About ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science and Technology Council (NSTC) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

About NRAO

The National Radio Astronomy Observatory (NRAO) is a facility of the U.S. National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.



Saturday, June 29, 2024

NASA's Chandra Peers Into Densest and Weirdest Stars

3C 58
Credit: X-ray: NASA/CXC/ICE-CSIC/A. Marino et al.; Optical: SDSS; Image Processing: NASA/CXC/SAO/J. Major





The supernova remnant 3C 58 contains a spinning neutron star, known as PSR J0205+6449, at its center. Astronomers studied this neutron star and others like it to probe the nature of matter inside these very dense objects. A new study, made using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton, reveals that the interiors of neutron stars may contain a type of ultra-dense matter not found anywhere else in the Universe, as reported in our latest press release.

In this image of 3C 58, low-energy X-rays are colored red, medium-energy X-rays are green, and the high-energy band of X-rays is shown in blue. The X-ray data have been combined with an optical image in yellow from the Digitized Sky Survey. The Chandra data show that the rapidly rotating neutron star (also known as a “pulsar”) at the center is surrounded by a torus of X-ray emission and a jet that extends for several light-years. The optical data shows stars in the field.

The team in this new study analyzed previously released data from neutron stars to determine the so-called equation of state. This refers to the basic properties of the neutron stars including the pressures and temperatures in different parts of their interiors.

The authors used machine learning, a type of artificial intelligence, to compare the data to different equations of state. Their results imply that a significant fraction of the equations of state — the ones that do not include the capability for rapid cooling at higher masses — can be ruled out.

The researchers capitalized on some neutron stars in the study being located in supernova remnants, including 3C 58. Since astronomers have age estimates of the supernova remnants, they also have the ages of the neutron stars that were created during the explosions that created both the remnants and the neutron stars. The astronomers found that the neutron star in 3C 58 and two others were much cooler than the rest of the neutron stars in the study.

Illustration of a Neutron Star
Credit: ICE-CSIC/D. Futselaar/Marino et al.

The team thinks that part of the explanation for the rapid cooling is that these neutron stars are more massive than most of the rest. Because more massive neutron stars have more particles, special processes that cause neutron stars to cool more rapidly might be triggered.

One possibility for what is inside these neutron stars is a type of radioactive decay near their centers where neutrinos — low mass particles that easily travel through matter — carry away much of the energy and heat, causing rapid cooling.

Another possibility is that there are types of exotic matter found in the centers of these more rapidly cooling neutron stars.

The Nature Astronomy paper describing these results is available here. The authors of the paper are Alessio Marino (Institute of Space Sciences (ICE) in Barcelona, Spain), Clara Dehman (ICE), Konstantinos Kovlakas (ICE), Nanda Rea (ICE), J. A. Pons (University of Alicante in Spain), and Daniele Viganò (ICE).

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.





Visual Description:

This is an image of the leftovers from an exploded star called 3C 58, shown in X-ray and optical light. At the center of the remnant is a rapidly spinning neutron star, called a pulsar, that presents itself as a bright white object that's somewhat elongated in shape.

Loops and swirls of material, in shades of blue and purple, extend outward from the neutron star in many directions, resembling the shape of an octopus and its arms.

Surrounding the octopus-like structure is a cloud of material in shades of red that is wider horizontally than it is vertically. A ribbon of purple material extends to the left edge of the red cloud, curling upward at its conclusion. Another purple ribbon extends to the right edge of the red cloud, though it is less defined than the one on the other side. Stars of many shapes and sizes dot the entire image.



Fast Facts for 3C 58:

Scale: Image is about 12 arcmin (26 light-years) across.
Category: Neutron Stars/X-ray Binaries, Supernovas & Supernova Remnants
Coordinates (J2000): RA 02h 05m 37.0s | Dec +64° 49´ 48.0"
Constellation: Cassiopeia
Observation Dates: 4 observations from Sep 2000 to Apr 2003
Observation Time: 108 hours 52 minutes (4 days 12 hours 52 minutes)
Obs. ID: 728, 3832, 4382, 4383
Instrument: ACIS
References: Marino, A. et al., 2024, Nature Astronomy;
Color Code: X-ray: red = 0.5-1.2 keV, green = 1.2-2.0 keV, blue = 2.0-7.0 keV; Optical: yellow
Distance Estimate: About 6,500 light-years


Friday, June 28, 2024

Pillars of Creation Star in New Visualization from NASA's Hubble and Webb Telescopes

Pillars of Creation Visualization
Credits: Visualization: Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

Pillars of Creation 3D Model
Credits: 3D Model (Leah Hustak (STScI), Ralf Crawford (STScI), NASA's Universe of Learning




Made famous in 1995 by NASA's Hubble Space Telescope, the Pillars of Creation in the heart of the Eagle Nebula have captured imaginations worldwide with their arresting, ethereal beauty.

Now, NASA has released a new 3D visualization of these towering celestial structures using data from NASA's Hubble and James Webb space telescopes. This is the most comprehensive and detailed multiwavelength movie yet of these star-birthing clouds.

"By flying past and amongst the pillars, viewers experience their three-dimensional structure and see how they look different in the Hubble visible-light view versus the Webb infrared-light view," explained principal visualization scientist Frank Summers of the Space Telescope Science Institute (STScI) in Baltimore, who led the movie development team for NASA's Universe of Learning. "The contrast helps them understand why we have more than one space telescope to observe different aspects of the same object."

The four Pillars of Creation, made primarily of cool molecular hydrogen and dust, are being eroded by the fierce winds and punishing ultraviolet light of nearby hot, young stars. Finger-like structures larger than the solar system protrude from the tops of the pillars. Within these fingers can be embedded, embryonic stars. The tallest pillar stretches across three light-years, three-quarters of the distance between our Sun and the next nearest star.

The movie takes visitors into the three-dimensional structures of the pillars. Rather than an artistic interpretation, the video is based on observational data from a science paper led by Anna McLeod, an associate professor at the University of Durham in the United Kingdom. McLeod also served as a scientific advisor on the movie project.

"The Pillars of Creation were always on our minds to create in 3D. Webb data in combination with Hubble data allowed us to see the Pillars in more complete detail," said production lead Greg Bacon of STScI. "Understanding the science and how to best represent it allowed our small, talented team to meet the challenge of visualizing this iconic structure."

The new visualization helps viewers experience how two of the world's most powerful space telescopes work together to provide a more complex and holistic portrait of the pillars. Hubble sees objects that glow in visible light, at thousands of degrees. Webb's infrared vision, which is sensitive to cooler objects with temperatures of just hundreds of degrees, pierces through obscuring dust to see stars embedded in the pillars.

"When we combine observations from NASA's space telescopes across different wavelengths of light, we broaden our understanding of the universe," said Mark Clampin, Astrophysics Division director at NASA Headquarters in Washington. "The Pillars of Creation region continues to offer us new insights that hone our understanding of how stars form. Now, with this new visualization, everyone can experience this rich, captivating landscape in a new way."

Produced for NASA by STScI with partners at Caltech/IPAC, and developed by the AstroViz Project of NASA's Universe of Learning, the 3D visualization is part of a longer, narrated video that combines a direct connection to the science and scientists of NASA's Astrophysics missions with attention to the needs of an audience of youth, families, and lifelong learners. It enables viewers to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.

Several stages of star formation are highlighted in the visualization. As viewers approach the central pillar, they see at its top an embedded, infant protostar glimmering bright red in infrared light. Near the top of the left pillar is a diagonal jet of material ejected from a newborn star. Though the jet is evidence of star birth, viewers can't see the star itself. Finally, at the end of one of the left pillar's protruding "fingers" is a blazing, brand-new star.

A bonus product from this visualization is a new 3D printable model of the Pillars of Creation. The base model of the four pillars used in the visualization has been adapted to the STL file format, so that viewers can download the model file and print it out on 3D printers. Examining the structure of the pillars in this tactile and interactive way adds new perspectives and insights to the overall experience.

More visualizations and connections between the science of nebulas and learners can be explored through other products produced by NASA's Universe of Learning such as ViewSpace , a video exhibit that is currently running at almost 200 museums and planetariums across the United States. Visitors can go beyond video to explore the images produced by space telescopes with interactive tools now available for museums and planetariums.

NASA's Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Pasadena, California, Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts, and Jet Propulsion Laboratory, La Cañada Flintridge, California.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

The James Webb Space Telescope is the world's premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

NASA's Universe of Learning is part of the NASA Science Activation program, from the Science Mission Directorate at NASA Headquarters. The Science Activation program connects NASA science experts, real content and experiences, and community leaders in a way that activates minds and promotes deeper understanding of our world and beyond. Using its direct connection to the science and the experts behind the science, NASA's Universe of Learning provides resources and experiences that enable youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.




About This Release

Credits:

Media Contact:

Ann Jenkins
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Permissions:
Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents


Channelling light from starbursts

An oval-shaped galaxy, made up of many point-like stars. It is softly lit from the centre, brightest and slightly blue at the very centre and fading to darkness at the edges. Surrounding the galaxy’s core are reddish clouds of gas and dust, most around or behind the core, but a few wisps are in front of it and block some light. Some faraway galaxies and two foreground stars can be seen around the galaxyCredit: ESA/Hubble & NASA, A. Zezas, D. Calzetti

The focus of this week’s Hubble Picture of the Week is the blue compact dwarf galaxy NGC 5253, located in the constellation Centaurus around 11 million light-years from Earth. This new image combines data taken with Hubble’s Advanced Camera for Surveys (ACS), using its Wide Field Channel, and with the older Wide Field and Planetary Camera 2 (WFPC2). As a bonus for this Picture of the Week, there is also a second new image made using data from the High Resolution Channel (HRC) of ACS, a sub-instrument only operational for a few years that was optimised for detailed studies of environments dense with stars.

What has interested astronomers so much about this galaxy that three of Hubble’s instruments were used to study it in depth over ten years? It turns out to lie at the focus of a few areas of research where Hubble’s capabilities are essential. Dwarf galaxies are considered important for understanding the evolution of both stars and galaxies through time, since they resemble ancient, distant galaxies. NGC 5253 is called both a 'starburst galaxy' and a 'blue compact dwarf': these names mean it is forming clusters of bright, massive stars at an exceptional rate. This Hubble image clearly shows the dense nebula which is being consumed to birth these stars, and which makes NGC 5253 a laboratory in which to investigate stellar composition, star formation and star clusters, all at once.

A tremendously high rate of star formation is a recipe for star clusters, but NGC 5253 goes beyond that: in a small region of the core, the star formation is so intense that the galaxy contains no fewer than three 'super star clusters' (SSCs). SSCs are very bright, populous and massive open clusters which are believed to evolve into globular clusters. Globular clusters themselves offer unique insights into how stars form and evolve, but their origins are poorly understood. Astronomers were therefore eager to make use of the HRC sub-instrument, with its superb resolution, to home in on these small, very dense clusters of stars.

Links


Thursday, June 27, 2024

NGC 6822 (Irregular Galaxy)

NGC 6822/M42
Credit: NAOJ

NGC 6822 is an irregular galaxy located toward the constellation Sagittarius. It is in our galactic neighborhood; our Milky Way Galaxy and NGC 6822 are in the same group of galaxies called the Local Group. NGC 6822 is also known as Barnard’s Galaxy because E. E. Barnard, an American astronomer, discovered it.

Many red glowing spots are observable in the galaxy. These are massive star-forming regions similar to the Orion Nebula (M42) in our Milky Way. Massive newborn stars ionize surrounding hydrogen gas with their ultraviolet light, and the ionized gas emits a red glow.

This image was released in the HSC Legacy Archive (HSCLA), a brand-new science archive from Hyper Suprime-Cam (HSC) launched in 2021. Scientists worldwide can use processed, science-ready data from open-use programs through HSCLA for their research.

Distance from Earth: 160 million light-years
Instrument: Hyper Suprime-Cam (HSC)


Relevant Links

Wednesday, June 26, 2024

First-of-Its-Kind Detection Made in Striking New Webb Image

Serpens (NIRCam)
Credits: Image: NASA, ESA, CSA, STScI, Klaus Pontoppidan (NASA-JPL), Joel Green (STScI)


Serpens North – Aligned Outflows Crop (NIRCam)
Credits: Image: NASA, ESA, CSA, STScI, Klaus Pontoppidan (NASA-JPL), Joel Green (STScI)

Serpens Center Crop (NIRCam)
Credits: Image: NASA, ESA, CSA, STScI, Klaus Pontoppidan (NASA-JPL), Joel Green (STScI)




For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA’s James Webb Space Telescope’s Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area (seen at the upper left) of this young, nearby star-forming region.

Astronomers found an intriguing group of protostellar outflows, formed when jets of gas spewing from newborn stars collide with nearby gas and dust at high speeds. Typically these objects have varied orientations within one region. Here, however, they are slanted in the same direction, to the same degree, like sleet pouring down during a storm.

The discovery of these aligned objects, made possible due to Webb’s exquisite spatial resolution and sensitivity in near-infrared wavelengths, is providing information into the fundamentals of how stars are born.

“Astronomers have long assumed that as clouds collapse to form stars, the stars will tend to spin in the same direction,” said principal investigator Klaus Pontoppidan, of NASA’s Jet Propulsion Laboratory in Pasadena, California. “However, this has not been seen so directly before. These aligned, elongated structures are a historical record of the fundamental way that stars are born.”

So just how does the alignment of the stellar jets relate to the rotation of the star? As an interstellar gas cloud crashes in on itself to form a star, it spins more rapidly. The only way for the gas to continue moving inward is for some of the spin (known as angular momentum) to be removed. A disk of material forms around the young star to transport material down, like a whirlpool around a drain. The swirling magnetic fields in the inner disk launch some of the material into twin jets that shoot outward in opposite directions, perpendicular to the disk of material.

In the Webb image, these jets are signified by bright clumpy streaks that appear red, which are shockwaves from the jet hitting surrounding gas and dust. Here, the red color represents the presence of molecular hydrogen and carbon monoxide.

“This area of the Serpens Nebula – Serpens North – only comes into clear view with Webb,” said lead author Joel Green of the Space Telescope Science Institute in Baltimore. “We’re now able to catch these extremely young stars and their outflows, some of which previously appeared as just blobs or were completely invisible in optical wavelengths because of the thick dust surrounding them.”

Astronomers say there are a few forces that potentially can shift the direction of the outflows during this period of a young star’s life. One way is when binary stars spin around each other and wobble in orientation, twisting the direction of the outflows over time.

Stars of the Serpens

The Serpens Nebula, located 1,300 light-years from Earth, is only one or two million years old, which is very young in cosmic terms. It’s also home to a particularly dense cluster of newly forming stars (~100,000 years old), seen at the center of this image. Some of these stars will eventually grow to the mass of our Sun.

“Webb is a young stellar object-finding machine,” Green said. “In this field, we pick up sign posts of every single young star, down to the lowest mass stars.” “It’s a very complete picture we’re seeing now,” added Pontoppidan. 

So, throughout the region in this image, filaments and wisps of different hues represent reflected starlight from still-forming protostars within the cloud. In some areas, there is dust in front of that reflection, which appears here with an orange, diffuse shade.

This region has been home to other coincidental discoveries, including the flapping “Bat Shadow,” which earned its name when 2020 data from NASA’s Hubble Space Telescope revealed a star’s planet-forming disk to flap, or shift. This feature is visible at the center of the Webb image.

Future Studies

The new image, and serendipitous discovery of the aligned objects, is actually just the first step in this scientific program. The team will now use Webb’s NIRSpec (Near-Infrared Spectrograph) to investigate the chemical make-up of the cloud.

The astronomers are interested in determining how volatile chemicals survive star and planet formation. Volatiles are compounds that sublimate, or transition from a solid directly to a gas, at a relatively low temperature – including water and carbon monoxide. They’ll then compare their findings to amounts found in protoplanetary disks of similar-type stars.

“At the most basic form, we are all made of matter that came from these volatiles. The majority of water here on Earth originated when the Sun was an infant protostar billions of years ago,” Pontoppidan said. “Looking at the abundance of these critical compounds in protostars just before their protoplanetary disks have formed could help us understand how unique the circumstances were when our own solar system formed.”

These observations were taken as part of General Observer program 1611. The team’s initial results have been accepted for publication in the Astrophysical Journal.

The James Webb Space Telescope is the world's premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).




About This Release

Credits:

Media Contact:

Hannah Braun
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents


Tuesday, June 25, 2024

Astronomers see a massive black hole awaken in real time

PR Image eso2409a
Artist’s impression: the galaxy SDSS1335+0728 lighting up

PR Image eso2409b
Artist’s impression: the black hole at the centre of the galaxy SDSS1335+0728 awakens



Videos

Zooming into the galaxy SDSS1335+0728 and its newly awakened black hole
PR Video eso2409a
Zooming into the galaxy SDSS1335+0728 and its newly awakened black hole

Artist’s animation of the black hole at the centre of SDSS1335+0728 awakening in real time
PR Video eso2409b
Artist’s animation of the black hole at the centre of SDSS1335+0728 awakening in real time



In late 2019 the previously unremarkable galaxy SDSS1335+0728 suddenly started shining brighter than ever before. To understand why, astronomers have used data from several space and ground-based observatories, including the European Southern Observatory’s Very Large Telescope (ESO’s VLT), to track how the galaxy’s brightness has varied. In a study out today, they conclude that they are witnessing changes never seen before in a galaxy — likely the result of the sudden awakening of the massive black hole at its core.

Imagine you’ve been observing a distant galaxy for years, and it always seemed calm and inactive,” says Paula Sánchez Sáez, an astronomer at ESO in Germany and lead author of the study accepted for publication in Astronomy & Astrophysics. “Suddenly, its [core] starts showing dramatic changes in brightness, unlike any typical events we've seen before.” This is what happened to SDSS1335+0728, which is now classified as having an ‘active galactic nucleus’ (AGN) — a bright compact region powered by a massive black hole — after it brightened dramatically in December 2019 [1].

Some phenomena, like supernova explosions or tidal disruption events — when a star gets too close to a black hole and is torn apart — can make galaxies suddenly light up. But these brightness variations typically last only a few dozen or, at most, a few hundreds of days. SDSS1335+0728 is still growing brighter today, more than four years after it was first seen to ‘switch on’. Moreover, the variations detected in the galaxy, which is located 300 million light-years away in the constellation Virgo, are unlike any seen before, pointing astronomers towards a different explanation.

The team tried to understand these brightness variations using a combination of archival data and new observations from several facilities, including the X-shooter instrument on ESO’s VLT in Chile’s Atacama Desert [2]. Comparing the data taken before and after December 2019, they found that SDSS1335+0728 is now radiating much more light at ultraviolet, optical, and infrared wavelengths. The galaxy also started emitting X-rays in February 2024. “This behaviour is unprecedented,” says Sánchez Sáez, who is also affiliated with the Millennium Institute of Astrophysics (MAS) in Chile.

The most tangible option to explain this phenomenon is that we are seeing how the [core] of the galaxy is beginning to show (...) activity,” says co-author Lorena Hernández García, from MAS and the University of Valparaíso in Chile. “If so, this would be the first time that we see the activation of a massive black hole in real time.

Massive black holes — with masses over one hundred thousand times that of our Sun — exist at the centre of most galaxies, including the Milky Way. “These giant monsters usually are sleeping and not directly visible,” explains co-author Claudio Ricci, from the Diego Portales University, also in Chile. “In the case of SDSS1335+0728, we were able to observe the awakening of the massive black hole, [which] suddenly started to feast on gas available in its surroundings, becoming very bright.

[This] process (...) has never been observed before,” Hernández García says. Previous studies reported inactive galaxies becoming active after several years, but this is the first time the process itself — the awakening of the black hole — has been observed in real time. Ricci, who is also affiliated with the Kavli Institute for Astronomy and Astrophysics at Peking University, China, adds: “This is something that could happen also to our own Sgr A*, the massive black hole (...) located at the centre of our galaxy," but it is unclear how likely this is to happen.

Follow-up observations are still needed to rule out alternative explanations. Another possibility is that we are seeing an unusually slow tidal disruption event, or even a new phenomenon. If it is in fact a tidal disruption event, this would be the longest and faintest such event ever observed. “Regardless of the nature of the variations, [this galaxy] provides valuable information on how black holes grow and evolve,” Sánchez Sáez says. “We expect that instruments like [MUSE on the VLT or those on the upcoming Extremely Large Telescope (ELT)] will be key in understanding [why the galaxy is brightening].”

Source: ESO/News



Notes

[1] The SDSS1335+0728 galaxy’s unusual brightness variations were detected by the Zwicky Transient Facility (ZTF) telescope in the US. Following that, the Chilean-led Automatic Learning for the Rapid Classification of Events (ALeRCE) broker classified SDSS1335+0728 as an active galactic nucleus.

[2] The team collected archival data from NASA’s Wide-field Infrared Survey Explorer (WISE) and Galaxy Evolution Explorer (GALEX), the Two Micron All Sky Survey (2MASS), the Sloan Digital Sky Survey (SDSS), and the eROSITA instrument on IKI and DLR’s Spektr-RG space observatory. Besides ESO’s VLT, the follow-up observations were conducted with the Southern Astrophysical Research Telescope (SOAR), the W. M. Keck Observatory, and NASA’s Neil Gehrels Swift Observatory and Chandra X-ray Observatory.




More information

This research was presented in a paper entitled “SDSS1335+0728: The awakening of a ∼ 106M⊙ black hole” published in Astronomy & Astrophysics (https://aanda.org/10.1051/0004-6361/202347957).

The team is composed of P. Sánchez-Sáez (European Southern Observatory, Garching, Germany [ESO] and Millenium Institute of Astrophysics, Chile [MAS]), L. Hernández-García (MAS and Instituto de Física y Astronomía, Universidad de Valparaíso, Chile [IFA-UV]), S. Bernal (IFA-UV and Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, Chile [TITANS]), A. Bayo (ESO), G. Calistro Rivera (ESO and German Space Agency [DLR]), F. E. Bauer (Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Chile; Centro de Astroingeniería, Pontificia Universidad Católica de Chile, Chile; MAS; and Space Science Institute, USA), C. Ricci (Instituto de Estudios Astrofísicos, Universidad Diego Portales, Chile [UDP] and Kavli Institute for Astronomy and Astrophysics, China), A. Merloni (Max-Planck-Institut für Extraterrestrische Physik, Germany [MPE]), M. J. Graham (California Institute of Technology, USA), R. Cartier (Gemini Observatory, NSF National Optical-Infrared Astronomy Research Laboratory, Chile, and UDP), P. Arévalo (IFA-UV and TITANS), R.J. Assel (UDP), A. Concas (ESO and INAF - Osservatorio Astrofisico di Arcetri, Italy), D. Homan (Leibniz-Institut für Astrophysik Potsdam, Germany [AIP]), M. Krumpe (AIP), P. Lira (Departamento de Astronomía, Universidad de Chile, Chile [UChile], and TITANS), A. Malyali (MPE), M. L. Martínez-Aldama (Astronomy Department, Universidad de Concepción, Chile), A. M. Muñoz Arancibia (MAS and Center for Mathematical Modeling, University of Chile, Chile [CMM-UChile]), A. Rau (MPE), G. Bruni (INAF - Institute for Space Astrophysics and Planetology, Italy), F. Förster (Data and Artificial Intelligence Initiative, University of Chile, Chile; MAS; CMM-UChile; and UChile), M. Pavez-Herrera (MAS), D. Tubín-Arenas (AIP), and M. Brightman (Cahill Center for Astrophysics, California Institute of Technology, USA).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.




Links



Contacts

Paula Sánchez Sáez
European Southern Observatory (ESO)
Garching bei München, Germany
Tel: +49 89 3200 6580
Email:
Paula.SanchezSaez@eso.org

Lorena Hernández García
Millennium Institute of Astrophysics (MAS)
Santiago, Chile
Email:
lorena.hernandez@uv.cl

Claudio Ricci
Diego Portales University
Santiago, Chile
Email:
claudio.ricci@mail.udp.cl

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org


Monday, June 24, 2024

Massive black holes in low-mass galaxies: what happened to the X-ray Corona?

Two examples of X-ray-detected MBH candidates. On the top we show the eROSITA eRASS-4 X-ray images centered at the input optical coordinates, while on the bottom the optical image with overlayed X-ray contours. For the vast majority of MBH candidates, X-ray counterparts such those shown here were not found. © Legacy Surveys/D. Lang (Perimeter Institute); R. Arcodia.

Illustration of accretion disk corona.
Nahks Tr'Ehnl and Niel Brandt, Penn State University



Identifying massive black holes in low-mass galaxies is crucial for understanding black hole formation and growth over cosmic time but challenging due to their low accretion luminosities. Astronomers at MPE, led by Riccardo Arcodia, used the eROSITA X-ray telescope's all-sky survey to study massive black hole candidates selected based on variability in other wavelength ranges. Surprisingly, despite being flagged as accreting MBHs, the X-rays were weak and didn't match predictions from more massive AGN scaling relations. This discrepancy suggests either the absence of a canonical X-ray corona or the presence of unusual accretion modes and spectral energy distributions in these dwarf galaxy MBHs.

The centre of the Milky Way harbours a supermassive black hole – as do basically all galaxies of similar size and bigger than our Milky Way. But what about small galaxies? There is a hot debate in the astronomy community on whether all, or only some, low-mass galaxies are populated by “massive black holes”, anything between a few thousands to a few million solar masses. If these could be found and analysed, we could also learn something about the galaxies in the early Universe and how black holes grow over cosmic times, as the local dwarf galaxies closely resemble these first galaxies. So far, about 500 massive black holes have been found in the nearby Universe, as they need to be active and luminous enough to discern emission from their immediate vicinity from the host galaxy’s overall emission.

A team of astronomers has now used the all-sky survey with the eROSITA X-ray telescope to study massive black hole candidates selected by their variability in other wavelength ranges. “The variability at optical or infrared wavelengths indicates that there is some activity in the galactic nucleus. So, if there is a massive black hole accreting material, it should emit X-rays,” explains Riccardo Arcodia, who led the study at the Max Planck Institute for Extraterrestrial Physics (MPE) and is now working at the MIT Kavli Institute for Astrophysics and Space Research.

The only selection criterion for the sample was a cut on stellar mass to single out low-mass galaxies, leading to about 200 sources/MBHs. The team then looked for X-ray emission at the positions of these galaxies in the eROSITA all-sky survey and found only 17 sources, four of which had never been seen in X-rays before.

“The predicted X-ray luminosity of most of these candidates should be well above the detection limit of the eROSITA all-sky survey,” points out Andrea Merloni, eROSITA’s principal investigator. “Moreover, our stacking analysis of the non-detected sources shows that their emission is consistent with predictions for the X-ray emission of the galaxy alone.” While a possible X-ray weakness of massive black holes in dwarf galaxies was reported before for a few cases, this is the first confirmation on a large sample of homogeneous X-ray observations.

This means that the massive black holes in dwarf galaxies most likely behave differently than their supermassive counterparts. High-energy X-rays are typically produced in a region of hot plasma in the immediate vicinity of the black hole called the corona. In low-mass galaxies, the gravitational pull towards the centre is less strong and their interstellar medium is clumpier than in more massive ones, which might lead to differences in the magnetic field or the interplay between the accretion disk and the black hole corona. “This could be the reason why a classical corona was not found in these low-mass black holes”, says first author Riccardo Arcodia. “A different accretion mode in low-mass galaxies would also imply that selection techniques at different wavebands do not offer the same agreement seen at higher masses”, he adds. Future multi-wavelength studies on large samples are needed to test whether this is the case, or whether the X-ray emission alone is unusually low.

“This work serves as a pilot study for future synergies between eROSITA and VRO/LSST, which will perform a 10-year optical survey of the southern sky,” explains Mara Salvato, eROSITA Spokesperson and chair of the eROSITA followup working group. “We expect to find hundreds of LSST’s massive black hole candidates in eROSITA data, and hopefully learn a lot more about what is going on with the less-massive black holes at the centers of dwarf galaxies.”




Contact:

Riccardo Arcodia
Postdoc
tel:+49 (0)89 30000-3643

arcodia@mpe.mpg.de
Max Planck Institute for Extraterrestrial Physics, Garching

Dr. Andrea Merloni
tel:+49 89 30000-3893

am@mpe.mpg.de

Max Planck Institute for Extraterrestrial Physics, Garching



Original Publication

R. Arcodia, A.Merloni, J.Comparat et al
O Corona, where art thou? eROSITA’s view of UV-optical-IR variability-selected massive black holes in low-mass galaxies.
A&A, 681, A97 (2024)

Source | DOI



Further Information


eROSITA witnesses the awakening of massive black holes
April 29, 2021
Using the SRG/eROSITA all-sky survey data, scientists at the MPE have found two previously quiescent galaxies that now show quasi-periodic eruptions.

more



The X-ray sky opens to the world
January 31, 2024
First eROSITA sky-survey data release makes public the largest ever catalogue of high-energy cosmic sources


more





Sunday, June 23, 2024

Seeing Triple

SN H0pe

What at first appears to be a glowing strand of molten iron in the image above is something far wilder: a distant galaxy whose light has been stretched into galactic taffy by the immense gravity of an intervening galaxy cluster. This phenomenon, known as strong gravitational lensing, multiplies and magnifies images of faraway sources, allowing astronomers to use massive objects like galaxy clusters as natural telescopes. Look closely at the zoomed-in version of the image: three points of light stand out against the glow of the lensed galaxy. These three dots are multiple images of a single supernova cataloged as SN H0pe. Researchers plan to use this rare multiply imaged supernova to calculate the Hubble constant, which quantifies the universe’s expansion rate. Using observations from JWST, a team led by Justin Pierel (Space Telescope Science Institute) calculated the time delay of the light from the images, finding arrival times offset by 49 and 117 days. The value of the Hubble constant derived from these observations will be reported in a future publication. In the meantime, be sure to check out the details of these initial calculations in the article linked below.

Citation

“JWST Photometric Time-Delay and Magnification Measurements for the Triply Imaged Type Ia “SN H0pe” at z = 1.78,” J. D. R. Pierel et al 2024 ApJ 967 50. doi:10.3847/1538-4357/ad3c43



Saturday, June 22, 2024

Investigating the Origins of the Crab Nebula With NASA's Webb

Crab Nebula
Credits: Image: NASA, ESA, CSA, STScI, Tea Temim (Princeton University)




A team of scientists used NASA’s James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus. With the telescope’s MIRI (Mid-Infared Instrument) and NIRCam (Near-Infrared Camera), the team gathered data that is helping to clarify the Crab Nebula’s history.

The Crab Nebula is the result of a core-collapse supernova from the death of a massive star. The supernova explosion itself was seen on Earth in 1054 CE and was bright enough to view during the daytime. The much fainter remnant observed today is an expanding shell of gas and dust, and outflowing wind powered by a pulsar, a rapidly spinning and highly magnetized neutron star.

The Crab Nebula is also highly unusual. Its atypical composition and very low explosion energy previously have been explained by an electron-capture supernova — a rare type of explosion that arises from a star with a less-evolved core made of oxygen, neon, and magnesium, rather than a more typical iron core.

“Now the Webb data widen the possible interpretations,” said Tea Temim, lead author of the study at Princeton University in New Jersey. “The composition of the gas no longer requires an electron-capture explosion, but could also be explained by a weak iron core-collapse supernova.”

Studying the Present to Understand the Past

Past research efforts have calculated the total kinetic energy of the explosion based on the quantity and velocities of the present-day ejecta. Astronomers deduced that the nature of the explosion was one of relatively low energy (less than one-tenth that of a normal supernova), and the progenitor star’s mass was in the range of eight to 10 solar masses — teetering on the thin line between stars that experience a violent supernova death and those that do not.

However, inconsistencies exist between the electron-capture supernova theory and observations of the Crab, particularly the observed rapid motion of the pulsar. In recent years, astronomers have also improved their understanding of iron core-collapse supernovae and now think that this type can also produce low-energy explosions, providing that the stellar mass is adequately low.

Webb Measurements Reconcile Historic Results

To lower the level of uncertainty surrounding the Crab’s progenitor star and nature of the explosion, the team led by Temim used Webb’s spectroscopic capabilities to hone in on two areas located within the Crab’s inner filaments.

Theories predict that because of the different chemical composition of the core in an electron-capture supernova, the nickel to iron (Ni/Fe) abundance ratio should be much higher than the ratio measured in our Sun (which contains these elements from previous generations of stars). Studies in the late 1980s and early 1990s measured the Ni/Fe ratio within the Crab using optical and near-infrared data and noted a high Ni/Fe abundance ratio that seemed to favor the electron-capture supernova scenario.

The Webb telescope, with its sensitive infrared capabilities, is now advancing Crab Nebula research. The team used MIRI’s spectroscopic abilities to measure the nickel and iron emission lines, resulting in a more reliable estimate of the Ni/Fe abundance ratio. They found that the ratio was still elevated compared to the Sun, but only modestly and much lower in comparison to prior estimates.

The revised values are consistent with electron-capture, but do not rule out an iron core-collapse explosion from a similarly low-mass star. (Higher-energy explosions from higher-mass stars are expected to produce ratios closer to solar abundances.) Further observational and theoretical work will be needed to distinguish between these two possibilities.

“At present, the spectral data from Webb covers two small regions of the Crab, so it’s important to study much more of the remnant and identify any spatial variations,” said Martin Laming of the Naval Research Laboratory in Washington and a co-author of the paper. “It would be interesting to see if we could identify emission lines from other elements, like cobalt or germanium.”

Mapping the Crab’s Current State

Besides pulling spectral data from two small regions of the Crab Nebula’s interior to measure the abundance ratio, the telescope also observed the remnant’s broader environment to understand details of the synchrotron emission and the dust distribution.

The images and data collected by MIRI enabled the team to isolate the dust emission within the Crab and map it in high resolution for the first time. By mapping the warm dust emission with Webb, and even combining it with the Herschel Space Observatory’s data on cooler dust grains, the team created a well-rounded picture of the dust distribution: The outermost filaments contain relatively warmer dust, while cooler grains are prevalent near the center.

“Where dust is seen in the Crab is interesting because it differs from other supernova remnants, like Cassiopeia A and Supernova 1987A," said Nathan Smith of the Steward Observatory at the University of Arizona and a co-author of the paper. “In those objects, the dust is in the very center. In the Crab, the dust is found in the dense filaments of the outer shell. The Crab Nebula lives up to a tradition in astronomy: The nearest, brightest, and best-studied objects tend to be bizarre.”

These findings have been accepted for publication in The Astrophysical Journal Letters.

The observations were taken as part of General Observer program 1714.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).




About This Release

Credits:

Media Contact:

Abigail Major
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Science: Tea Temim (Princeton University)

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.


Friday, June 21, 2024

Black hole’s business-as-usual in the earliest universe highlights galaxy evolution problem

Artist's conception of an early quasar. The black hole in the center is surrounded by a bright accretion disk. Farther outside is the "dust torus", an irregular, larger and markedly thicker disk that can obscure an outside observer's view of the accretion disk. The dust torus predominantly emits mid-infrared light, and its properties can be read off the overall shape ("continuum") of the spectrum. The accretion disk's magnetic fields produce a focused high-energy jet of particles that emitted from the immediate neighbourhood of the black hole, beaming away at right angles to the disk. Above and below the disk are irregular gas clouds. Since their shapes are not known, they are shown here in stylized form, as spheres. The gas clouds that are close to the center orbit the black hole at high speeds. This produces broad emission lines in the quasar's spectrum, and that region of gas is called the "broad-line region". The gas clouds farther away, shown here as somewhat larger sphere, move less quickly, producing narrower emission lines; they form what is called the "narrow-line region".© T. Müller / MPIA



Using the space telescope JWST, astronomers have examined one of the most distant known black holes in the universe. Their observations provide a glimpse of the growth of black holes in the early universe, less than a billion years after the Big Bang. Surprisingly, the early black hole in question seems to be “feeding” in much the same manner as its more recent kin. Astronomers have been struggling for a while now to explain how the earliest black holes gained their considerable masses. The new results all but rule out unusually efficient feeding mechanisms at early times as a possible solution. The results have been published in the journal Nature Astronomy.

The first billion years of cosmic history pose a challenge: The earliest known black holes in the centers of galaxies have surprisingly large masses. How did they get so massive, so quickly? The new observations described here provide strong evidence against some proposed explanations, notably against an “ultra-effective feeding mode” for the earliest black holes.

The limits of supermassive black hole growth

Stars and galaxies have changed enormously over the past 13.8 billion years, the lifetime of the Universe. Galaxies have grown larger and acquired more mass, either by consuming surrounding gas or (occasionally) by merging with each other. For a long time, astronomers assumed that the supermassive black holes in the centers of galaxies would have grown gradually along with the galaxies themselves.

But black hole growth cannot be arbitrarily fast. Matter falling onto a black hole forms a swirling, hot, bright "accretion disk." When this happens around a supermassive black hole, the result is an active galactic nucleus. The brightest such objects, known as quasars, are among the brightest astronomical objects in the whole cosmos. But that brightness limits how much matter can fall onto the black hole: Light exerts a pressure, which can keep additional matter from falling in.

How did black holes get so massive, so fast?

That is why astronomers were surprised when, over the past twenty years, observations of distant quasars revealed very young black holes that had nevertheless reached masses as high as 10 billion solar masses. Light takes time to travel from a distant object to us, so looking at far-away objects means looking into the distant past. We see the most distant known quasars as they were in an era known as “cosmic dawn,” less than one billion years after the Big Bang, when the first stars and galaxies formed.

Explaining those early, massive black holes is a considerable challenge for current models of galaxy evolution. Could it be that early black holes were much more efficient at accreting gas than their modern counterparts? Or could the presence of dust affect quasar mass estimates in a way that made researchers overestimate early black hole masses? There are numerous proposed explanations at this time, but none that is widely accepted.

A closer look at early black-hole growth

Deciding which – if any – of the explanations are correct requires a more complete picture of quasars than had been available before. With the advent of the space telescope JWST, specifically the telescope’s mid-infrared instrument MIRI, astronomers' ability to study distant quasars took a gigantic leap. For measuring distant quasar spectra, MIRI is 4000 more times more sensitive than any previous instrument.

Instruments like MIRI are built by international consortia, with scientists, engineers and technicians working closely together. Naturally, a consortium is very interested in testing whether their instrument performs as well as planned. In return for building the instrument, consortia typically are given a certain amount of observation time. In 2019, years before JWST launched, the MIRI European Consortium decided to use some of this time to observe what was then the most distant known quasar, an object that goes by the designation J1120+0641.

Observing one of the earliest black holes

Analysing the observations fell to Dr. Sarah Bosman, a post-doctoral researcher at the Max Planck Institute for Astronomy (MPIA) and member of the MIRI European consortium. MPIA’s contributions to the MIRI instrument include building a number of key internal parts. Bosman was asked to join the MIRI collaboration specifically to bring in expertise on how to best use the instrument to study the early Universe, in particular the first supermassive black holes.

The observations were carried out in January 2023, during JWST’s first cycle of observations, and lasted for about two and a half hours. They constitute the first mid-infrared study of a quasar in the period of cosmic dawn, a mere 770 million years after the Big Bang (redshift z=7). The information stems not from an image, but from a spectrum: the rainbow-like decomposition of the object's light into components at different wavelengths.

Tracing dust and fast-moving gas

The overall shape of the mid-infrared spectrum ("continuum") encodes the properties of a large torus of dust that surrounds the accretion disk in typical quasars. This torus helps to guide matter onto the accretion disk, "feeding" the black hole. The bad news for those whose preferred solution to the massive early black holes lies in alternative quick modes of growth: The torus, and by extension the feeding mechanism in this very early quasar, appear to be the same as for its more modern counterparts. The only difference is one that no model of quick early quasar growth predicted: a somewhat higher dust temperature around a hundred Kelvin warmer than the 1300 K found for the hottest dust in less distant quasars.

The shorter-wavelength part of the spectrum, dominated by the emissions from the accretion disk itself, shows that for us as distant observers, the quasar's light is not dimmed by more-than-usual dust. Arguments that maybe we are merely overestimating early black hole masses because of additional dust are not the solution either.

Early quasars “shockingly normal”

The quasar's broad-line region, where clumps of gas orbit the black hole at speeds near the speed of light – which permit deductions about the black hole mass, and the density and ionization of the surrounding matter – look normal as well. By almost all the properties that can be deduced from the spectrum, J1120+0641 is no different from quasars at later times.

“Overall, the new observations only add to the mystery: Early quasars were shockingly normal. No matter in which wavelengths we observe them, quasars are nearly identical at all epochs of the Universe,” says Bosman. Not only the supermassive black holes themselves, but also their feeding mechanisms were apparently already completely "mature" when the Universe was a mere 5% of its current age. By ruling out a number of alternative solutions, the results strongly support the idea that supermassive black holes started out with considerable masses from the get-go, in astronomy lingo: that they are "primordial" or "seeded large." Supermassive black holes did not form from the remnants of early stars, then grew massive very fast. They must have formed early with initial masses of at least a hundred thousand solar masses, presumably via the collapse of massive early clouds of gas.

Background information

The results described here have been published as S. Bosman et al., "JWST rest-frame infrared spectroscopy reveals a mature quasar at cosmic dawn" in the journal Nature Astronomy.

The MPIA scientists involved are Sarah Bosman (also University of Heidelberg), Fabian Walter, Leindert Boogaard, Manuel Gudel and Thomas Henning, in collaboration with the MIRI Guaranteed Time Observations (MIRI GTO) team.

You can access the original paper via press@nature.com or https://press.nature.com




Contact:

Dr. Sarah Bosman
tel:+49 6221 528-375

bosman@mpia.de
Max Planck Institute for Astronomy, Heidelberg

Dr. Markus Pössel
Head of press relations and outreach
tel:+49 6221 528-261

pr@mpia.de
Max Planck Institute for Astronomy, Heidelberg


Thursday, June 20, 2024

It’s Twins! Astronomers Discover Parallel Disks and Jets Erupting From a Pair of Young Stars

At left, a mid-infrared image of the rho Ophiuchi molecular cloud complex by NASA’s Spitzer Space Telescope, the focus pointing to star system WL20. At right, WL20 expands to reveal an artist’s impression of this new discovery. Astronomers couldn't believe their luck when observations across multiple radio and infrared wavelengths from ALMA and JWST revealed twin disks and jets erupting from a pair of young binary stars in WL20. Credit: U.S. NSF/ NSF NRAO/B. Saxton.; NASA/JPL-Caltech/Harvard-Smithsonian CfA. Hi-Res File

These brightly colored shapes represent astronomical data collected by NRAO's ALMA and NASA's JWST telescopes. At left, a composite image overlaps ALMA and JWST data revealing the discs and parallel jets emitting from the pair of binary stars in WL20. At right, the breakdown of the separate ALMA data, and JWST data representing various chemical compositions, is shown. Credit: U.S. NSF/ NSF NRAO/ ALMA(ESO/NAOJ/NRAO)/ NASA/ JPL-Caltech/ JWST/ B. Saxton. Hi-Res File



Telescopes from the U.S. National Science Foundation’s National Radio Astronomy Observatory and NASA’s Jet Propulsion Laboratory discover dynamic duo

Most of the Universe is invisible to the human eye. The building blocks of stars are only revealed in wavelengths that are outside of the visible spectrum. Astronomers recently used two very different, and very powerful, telescopes to discover twin disks—and twin parallel jets—erupting from young stars in a multiple star system. This discovery was unexpected, and unprecedented, given the age, size, and chemical makeup of the stars, disks, and jets. Their location in a known, well-studied part of the Universe adds to the thrill.

Observations from the U.S. National Science Foundation’s (NSF) National Radio Astronomy Observatory’s (NRAO) Atacama Large Millimeter/submillimeter Array (ALMA) and NASA’s James Webb Space Telescope’s (JWST) Mid-Infrared Instrument (MIRI) were combined for this research.

ALMA and JWST’s MIRI observe very different parts of the electromagnetic spectrum. Using them together allowed astronomers to discover these twins, hidden in radio and infrared wavelengths in star system WL20, located in the nearby rho Ophiuchi molecular cloud complex, over 400 light years away from the Earth’s Solar System.

“What we discovered was absolutely wild,” shares astronomer Mary Barsony, “We’ve known about star system WL20 for a long time. But what caught our attention is that one of the stars in the system appeared much younger than the rest. Using MIRI and ALMA together, we actually saw that this ONE star was TWO stars right next to each other. Each of these stars was surrounded by a disk, and each disc was emitting jets parallel to the other.”

ALMA spotted the discs, while MIRI found the jets. Co-author Valentin J.M. Le Gouellec of NASA-ARC retrieved and reduced ALMA archival data to reveal the discs’ composition, while Lukasz Tychoniec of Leiden Observatory provided high-resolution images, revealing the discs massive size, approximately 100 times the distance between the Earth and the Sun. Another co-author, Martijn L. van Gelder, provided resources to process the data collected by MIRI, revealing the chemical makeup of the jets.

Adds Barsony, “So if it weren’t for MIRI, we wouldn’t even know that these jets existed, which is amazing.” ALMA’s high resolution observations of the disks surrounding the two newly observed stars revealed the disks’ structure, as Barsony explains,“Someone looking at this ALMA data not knowing there were twin jets would think, oh, it’s a large edge on disk with a central hole, instead of two edge on disks and two jets. That’s pretty remarkable.”

Another remarkable thing about this discovery is that it may never have had the opportunity to happen. Explains JPL scientist Michael Ressler, “A lot of the research about binary protostars focuses on a few nearby star forming regions. I had been awarded some observing time of my own with JWST, and I chose to split it into a few small projects. For one project, I decided to study binaries in the Perseus star forming region. However, I had been studying WL20, which is in the rho Ophiuchus region in nearly the opposite part of the sky, for nearly 30 years, and I thought, ‘why not sneak it in? I’m never going to get another chance, even if it doesn’t quite fit with the others.’ We had a very fortunate accident with what we found, and the results are stunning.”

By combining multi-wavelength data from ALMA and JWST, these new findings shed light on the complex processes involved in the formation of multiple star systems. Astronomers plan to utilize ALMA’s future upgraded capabilities, like the Wideband Sensitivity Upgrade, to continue unraveling the mysteries surrounding the birth of stars and planetary systems.




About ALMA & NRAO

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Southern Observatory (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science and Technology Council (NSTC) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

The NRAO is a facility of the U.S. National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

About JWST

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).