SN H0pe
What at first appears to be a glowing strand of molten iron in the image above is something far wilder: a distant galaxy whose light has been stretched into galactic taffy by the immense gravity of an intervening galaxy cluster. This phenomenon, known as strong gravitational lensing, multiplies and magnifies images of faraway sources, allowing astronomers to use massive objects like galaxy clusters as natural telescopes. Look closely at the zoomed-in version of the image: three points of light stand out against the glow of the lensed galaxy. These three dots are multiple images of a single supernova cataloged as SN H0pe. Researchers plan to use this rare multiply imaged supernova to calculate the Hubble constant, which quantifies the universe’s expansion rate. Using observations from JWST, a team led by Justin Pierel (Space Telescope Science Institute) calculated the time delay of the light from the images, finding arrival times offset by 49 and 117 days. The value of the Hubble constant derived from these observations will be reported in a future publication. In the meantime, be sure to check out the details of these initial calculations in the article linked below.
Citation
“JWST Photometric Time-Delay and Magnification Measurements for the Triply Imaged Type Ia “SN H0pe” at z = 1.78,” J. D. R. Pierel et al 2024 ApJ 967 50. doi:10.3847/1538-4357/ad3c43