Thursday, August 31, 2023

Fast Radio Burst Roundup

A visualization of a magnetar, one of the possible sources of fast radio bursts.
Credit:
NASA’s Goddard Space Flight Center

They’re powerful, they’re fast, and we aren’t sure about what causes them, but astronomers are closer than ever to understanding the source of mysterious fast radio bursts.

Flashes Without a Cause

Fast radio bursts: one of the most recent mysteries to appear in the sky and one of the most active fields of astronomical research. Since the discovery of the first of these powerful (< 1)-second eruptions of radio waves back in 2007, astronomers have recorded hundreds of similar events. We know that they must originate from beyond our Milky Way galaxy, but, beyond that, astronomers have still yet to settle on a consensus about what might cause such brief, energetic flashes. This mystery of the origins of these bursts has driven many astronomers into an exciting, frustrating, and increasingly productive quest to understand whatever immense forces power them.

For the 16 years since the discovery of the first fast radio burst, astronomers have been trying to piece together their secrets without even knowing the location of each flash. Recently, however, they have made progress both in narrowing in on their quarry and on understanding their source. Below are three recent studies published in AAS Journals detailing this progress.


Zooming In


First up is a study published in May of this year by a team led by Shivani Bhandari, Netherlands Institute for Radio Astronomy. Bhandari and collaborators describe their discovery of a fast radio burst using the Australian Square Kilometre Array Pathfinder, a relatively new and phenomenally capable radio telescope that they used the pin down the location of the flash to within one arcsecond (about 0.03% of a degree!). This extreme precision allowed the team to identify which galaxy the flash came from, and what they found was somewhat surprising: the host was a small, somewhat boring dwarf galaxy with almost no ongoing star formation. This is in contrast to the handful of known hosts of repeating fast radio burst, which were all more lively, active galaxies. Considering both the host and the properties of the burst itself, the team concluded that their burst could have been caused by an “accretion jet from a hyperaccreting black hole.”

Magnetar Earthquakes?

A month later in early June, a team led by Fayin Wang, Nanjing University, published their own analysis of archival data to suggest an alternative source. By digging through all of the observations of two known repeating fast radio burst collected by the Five-hundred-meter Aperture Spherical radio Telescope (FAST), Wang and colleagues realized that the gaps between bursts were not quite as random as previously thought. Instead, whatever was causing the bursts seemed to have “memory,” meaning the triggers must be correlated in time. Building from this, they advocate for a different explanation, positing that the bursts occur whenever a highly magnetized neutron star undergoes “crustal fractures” — in other words, earthquakes. After a shift, the magnetic stresses will build up again and cause the process to repeat, which could give rise to the recurring bursts.


The location of one of the thirteen repeating fast radio burst, which lines up perfectly with a pair of merging spiral galaxies.
Credit: Michilli et al. 2023

More then One

Finally, in late June, another study led by Daniele Michilli, Massachusetts Institute of Technology, offered a bridge between the two previous ones. This publication describes a re-analysis of data collected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME), which resulted in newer, much more precise estimates of previous fast radio burst locations. The team focused on 13 repeating bursts and pinned down each of their locations to within about 10 arcseconds. While that isn’t precise enough to nail the host galaxy for all 13, they did mange to conclusively identify the host for two of them. Intriguingly, these two galaxies were nothing alike: one is a peaceful, quiescent galaxy, and the other is one in a pair of merging spiral galaxies that are actively forming many stars. This suggests that fast radio burst can come from a range of environments, or even that there could be multiple causes that each produce a similar looking signal.

While the final, well-supported model to describe all fast radio burst is still out of reach, astronomers are actively getting closer to this final goal. As new telescopes and processing techniques come online, it is only a matter of time until enough data is collected and analyzed that a clearer picture emerges. Soon, what now appear as mysterious flashes will be the subjects of well-documented chapters in the next textbooks, and this knowledge will be based on studies happening today, like these three.


Citation

“A Nonrepeating Fast Radio Burst in a Dwarf Host Galaxy,” Shivani Bhandari et al 2023 ApJ 948 67. doi:10.3847/1538-4357/acc178

“Repeating Fast Radio Bursts Reveal Memory from Minutes to an Hour,” F. Y. Wang et al 2023 ApJL 949 L33. doi:10.3847/2041-8213/acd5d2

“Subarcminute Localization of 13 Repeating Fast Radio Bursts Detected by CHIME/FRB,” Daniele Michilli et al 2023 ApJ 950 134. doi:10.3847/1538-4357/accf89



Wednesday, August 30, 2023

ESO telescopes help unravel pulsar puzzle

PR Image eso2315a
Artist’s impression of the pulsar PSR J1023+0038



Videos

ESO telescopes help solve pulsar puzzle (ESOcast 266 Light)
ESO telescopes help solve pulsar puzzle (ESOcast 266 Light)
 
Artist’s animation of the pulsar PSR J1023+0038
Artist’s animation of the pulsar PSR J1023+0038



With a remarkable observational campaign that involved 12 telescopes both on the ground and in space, including three European Southern Observatory (ESO) facilities, astronomers have uncovered the strange behaviour of a pulsar, a super-fast-spinning dead star. This mysterious object is known to switch between two brightness modes almost constantly, something that until now has been an enigma. But astronomers have now found that sudden ejections of matter from the pulsar over very short periods are responsible for the peculiar switches.

“We have witnessed extraordinary cosmic events where enormous amounts of matter, similar to cosmic cannonballs, are launched into space within a very brief time span of tens of seconds from a small, dense celestial object rotating at incredibly high speeds,” says Maria Cristina Baglio, researcher at New York University Abu Dhabi, affiliated with the Italian National Institute for Astrophysics (INAF), and the lead author of the paper published today in Astronomy & Astrophysics.

A pulsar is a fast-rotating, magnetic, dead star that emits a beam of electromagnetic radiation into space. As it rotates, this beam sweeps across the cosmos — much like a lighthouse beam scanning its surroundings — and is detected by astronomers as it intersects the line of sight to Earth. This makes the star appear to pulse in brightness as seen from our planet.

PSR J1023+0038, or J1023 for short, is a special type of pulsar with a bizarre behaviour. Located about 4500 light-years away in the Sextans constellation, it closely orbits another star. Over the past decade, the pulsar has been actively pulling matter off this companion, which accumulates in a disc around the pulsar and slowly falls towards it.

Since this process of accumulating matter began, the sweeping beam virtually vanished and the pulsar started incessantly switching between two modes. In the ‘high’ mode, the pulsar gives off bright X-rays, ultraviolet and visible light, while in the ‘low’ mode it’s dimmer at these frequencies and emits more radio waves. The pulsar can stay in each mode for several seconds or minutes, and then switch to the other mode in just a few seconds. This switching has thus far puzzled astronomers.

"Our unprecedented observing campaign to understand this pulsar’s behaviour involved a dozen cutting-edge ground-based and space-borne telescopes," says Francesco Coti Zelati, a researcher at the Institute of Space Sciences, Barcelona, Spain, and co-lead author of the paper. The campaign included ESO’s Very Large Telescope (VLT) and ESO’s New Technology Telescope (NTT), which detected visible and near-infrared light, as well as the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Over two nights in June 2021, they observed the system make over 280 switches between its high and low modes.

“We have discovered that the mode switching stems from an intricate interplay between the pulsar wind, a flow of high-energy particles blowing away from the pulsar, and matter flowing towards the pulsar,” says Coti Zelati, who is also affiliated with INAF.

In the low mode, matter flowing towards the pulsar is expelled in a narrow jet perpendicular to the disc. Gradually, this matter accumulates closer and closer to the pulsar and, as this happens, it is hit by the wind blowing from the pulsating star, causing the matter to heat up. The system is now in a high mode, glowing brightly in the X-ray, ultraviolet and visible light. Eventually, blobs of this hot matter are removed by the pulsar via the jet. With less hot matter in the disc, the system glows less brightly, switching back into the low mode.

While this discovery has unlocked the mystery of J1023’s strange behaviour, astronomers still have much to learn from studying this unique system and ESO’s telescopes will continue to help astronomers observe this peculiar pulsar. In particular, ESO’s Extremely Large Telescope (ELT), currently under construction in Chile, will offer an unprecedented view of J1023’s switching mechanisms. “The ELT will allow us to gain key insights into how the abundance, distribution, dynamics, and energetics of the inflowing matter around the pulsar are affected by the mode switching behavior,” concludes Sergio Campana, Research Director at the INAF Brera Observatory and coauthor of the study.




More Information

This research was presented in a paper to appear in Astronomy & Astrophysics (doi:10.1051/0004-6361/202346418)

The team is composed of M. C. Baglio (Center for Astro, Particle, and Planetary Physics, New York University Abu Dhabi, UAE [NYU Abu Dhabi]; INAF – Osservatorio Astronomico di Brera, Merate, Italy [INAF Brera]), F. Coti Zelati (Institute of Space Sciences, Campus UAB, Barcelona, Spain [ICE–CSIC]; Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona, Spain [IEEC]; INAF Brera), S. Campana (INAF Brera), G. Busquet (Departament de Física Quànticai Astrofísica, Universitat de Barcelona, Spain; Institut de Ciències del Cosmos, Universitat de Barcelona, Spain; IEEC), P. D’Avanzo (INAF Brera), S. Giarratana (INAF – Istituto di Radioastronomia, Bologna, Italy [INAF Bologna]; Department of Physics and Astronomy, University of Bologna, Italy [Bologna]), M. Giroletti (INAF Bologna; Bologna), F. Ambrosino (INAF – Osservatorio Astronomico di Roma, Rome, Italy [INAF Roma]); INAF – Istituto Astrofisica Planetologia Spaziali, Rome, Italy; Sapienza Università di Roma, Rome, Italy), S.Crespi (NYU Abu Dhabi), A. Miraval Zanon (Agenzia Spaziale Italiana, Rome, Italy; INAF Roma), X. Hou (Yunnan Observatories, Chinese Academy of Sciences, Kunming, China; Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, China), D. Li (National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Research Center for Intelligent Computing Platforms, Zhejiang Laboratory, Hangzhou, China), J. Li (CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, China; School of Astronomy and Space Science, University of Science and Technology of China, Hefei, China), P. Wang (Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing, China), D. M. Russell (NYU Abu Dhabi), D. F. Torres (INAF Brera; IEEC; Institució Catalana de Recercai Estudis Avançats, Barcelona, Spain), K. Alabarta (NYU Abu Dhabi), P. Casella (INAF Roma), S. Covino (INAF Brera), D. M. Bramich (NYU Abu Dhabi; Division of Engineering, New York University Abu Dhabi, UAE), D. de Martino (INAF − Osservatorio Astronomico di Capodimonte, Napoli, Italy), M. Méndez (Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands), S. E. Motta (INAF Brera), A. Papitto (INAF Roma), P. Saikia (NYU Abu Dhabi), and F. Vincentelli (Instituto de Astrofísica de Canarias, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science and Technology Council (NSTC) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.




Links




Contacts:

Maria Cristina Baglio
New York University Abu Dhabi and Italian National Institute for Astrophysics (INAF)
Abu Dhabi, United Arab Emirates
Tel: +97126287089
Email:
mcb19@nyu.edu ; maria.baglio@inaf.it

Francesco Coti Zelati
Institute of Space Sciences
Barcelona, Spain
Tel: (+34) 937379788 430416
Email:
cotizelati@ice.csic.es

Sergio Campana
INAF Brera Observatory
Merate, Italy
Tel: +39 02 72320418
Email:
sergio.campana@brera.inaf.it

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org

Source: ESO/News


Tuesday, August 29, 2023

Stellar cradle

The field is filled with hundreds of bright stars. They are primarily blue in colour, with scattered smaller stars visible in yellow/orange. The background is dominated by cloudy grey dust, with permeating regions of dark black and orange. Credit: ESA/Hubble & NASA, J. C. Tan (Chalmers Univ. & Univ. of Virginia

The protostellar object OH 339.88-1.26, which lies 8 900 light-years from Earth in the constellation Ara, lurks in this dust-filled image from the NASA/ESA Hubble Space Telescope. Winding lanes of dark dust thread through this image, which is also studded with bright stars crowned with criss-crossing diffraction spikes.

The dark vertical streak at the centre of this image hides OH 339.88-1.26, which is an astrophysical maser. A maser — which is an acronym for “microwave amplification by stimulated emission of radiation” — is essentially a laser that produces coherent light at microwave wavelengths. Such objects can occur naturally in astrophysical situations, in environments ranging from the north pole of Jupiter to star-forming regions such as the one pictured here.

This image comes from a set of Hubble observations that peer into the hearts of regions where massive stars are born to constrain the nature of massive protostars and test theories of their formation. Astronomers turned to Hubble’s Wide Field Camera 3 to explore the massive protostar G339.88-1.26, which is estimated to be about 20 times the mass of the Sun and is lurking in the dusty clouds in the center of the image. The Hubble observations were supported by other state-of-the-art observatories including ALMA, the Atacama Large Millimeter/submillimeter Array. ALMA is composed of 66 moveable high-precision antennas which can be arranged over distances of up to 16 kilometres on a plateau perched high in the Chilean Andes. Further data were contributed by the Stratospheric Observatory For Infrared Astronomy (SOFIA), which is a telescope that — until recently — operated out of a converted 747 aircraft.


Monday, August 28, 2023

Astronomers Find Progenitor of Magnetic Monster

PR Image noirlab2323a
Artist’s impression of a highly unusual star that may evolve into a magnetar

PR Image noirlab2323b
Infographic: Evolution of a massive magnetic helium star into a magnetar

PR Image noirlab2323c
Artist Impression of Newly Formed Magentar

PR Image noirlab2323d
Massive Magnetic Helium Star Goes Supernova



Videos

Interview with NOIRLab Astronomer André-Nicolas Chené  
Interview with NOIRLab Astronomer André-Nicolas Chené



Research team including NOIRLab astronomer identify highly unusual star that may evolve into a magnetar — the most magnetic object in the known Universe

A team of researchers, including NOIRLab astronomer André-Nicolas Chené, has found a highly unusual star that has the most powerful magnetic field ever found in a massive star — and that may become one of the most magnetic objects in the Universe: a variant of a neutron star known as a magnetar. This finding marks the discovery of a new type of astronomical object — a massive magnetic helium star — and sheds light on the origin of magnetars.

Neutron stars, the compact remains of a massive star following a supernova explosion, are the densest matter in the Universe. Some neutron stars, known as magnetars, also claim the record for the strongest magnetic fields of any object. How magnetars, which are a mere 15 kilometers across, form and produce such colossal magnetic fields remains a mystery.

New observations by a team of astronomers, including NSF’s NOIRLab’s André-Nicolas Chené, may shed important light on the origin of these magnetic powerhouses. Using various telescopes around the globe, including the Canada-France-Hawai‘i Telescope (CFHT) on Maunakea [1], the researchers have identified a new type of astronomical object — a massive magnetic helium star (an unusual variant of a Wolf-Rayet star), which may be the precursor of a magnetar.

For the first time, a strong magnetic field was discovered in a massive helium star,” said Chené. “Our study suggests that this helium star will end its life as a magnetar.”

Despite having been observed for more than a century by astronomers, little was known about the true nature of this star, known as HD 45166, beyond the fact that it is rich in helium, somewhat more massive than our Sun, and part of a binary system.

This star became a bit of an obsession of mine,” said Tomer Shenar, an astronomer at the University of Amsterdam and lead author of a study published in the journal Science. Having studied similar helium-rich stars before, Shenar was intrigued by the unusual characteristics of HD 45166, which has some of the characteristics of a Wolf-Rayet star, but with a unique spectral signature. He suspected that magnetic fields could explain these perplexing characteristics. "I remember having a Eureka moment while reading the literature: ‘What if the star is magnetic?’,” he said.

Shenar, Chené, and their collaborators set out to test this hypothesis by taking new spectroscopic observations of this star system with the CFHT. These observations revealed that this star has a phenomenally powerful magnetic field, about 43,000 gauss [2], the most powerful magnetic field ever found in a massive star. By also studying its interactions with its companion star, the team were able to make precise estimates of its mass and age.

The researchers speculate that, unlike other helium stars that eventually evolve from a red supergiant, this particular star was likely created by the merger of a pair of intermediate-mass stars.

This is a very specific scenario, and it raises the question of how many magnetars come from similar systems and how many come from other types of systems,” said Chené.

In a few million years, HD 45166, which is located 3000 light-years away in the constellation Monoceros (the Unicorn), will explode as a very bright, but not particularly energetic, supernova. During this explosion, its core will contract, trapping and concentrating the star’s already daunting magnetic field lines. The result will be a neutron star with a magnetic field of around 100 trillion gauss — the most powerful type of magnet in the Universe.

We thought that the most likely magnetar candidates would come from the most massive of stars,” said Chené. “What this research shows us is that stars that are much less massive can still become a magnetar, if the conditions are just right.”




More Information

[1] The team also relied on key archive data taken with the Fiber-fed Extended Range Optical Spectrograph (FEROS) at ESO’s La Silla Observatory in Chile.

[2] Gauss is a unit of measurement of magnetic induction, also known as magnetic flux density (essentially, a measure of magnetic strength). The Sun’s typical polar magnetic field is 1–2 gauss, while sunspots can achieve a magnetic field strength of around 3000 gauss.

Reference: Shenar, T., Wade, G., Marchat, P., et al. 2023, A massive helium star with a sufficiently strong magnetic field to form a magnetar, Science, DOI 10.1126.

NSF’s NOIRLab, the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O'odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.



Links



Contacts:

Charles Blue
NSF’s NOIRLab
Tel: +1 202 236 6324
Email:
charles.blue@noirlab.edu

André-Nicolas Chené
NSF's NIORLab
Email:
andre-nicolas.chene@noirlab.edu

Tomer Shenar
University of Amsterdam
Email:
t.shenar@uva.nl


Saturday, August 26, 2023

Mysterious Neptune dark spot detected from Earth for the first time

PR Image eso2314a
Dark spot on Neptune observed with MUSE at ESO’s Very Large Telescope

PR Image eso2314b
Natural view of Neptune taken by MUSE at the VLT



Videos

Mysterious Neptune Dark Spot Detected from Earth (ESOcast 265 Light)
Mysterious Neptune Dark Spot Detected from Earth (ESOcast 265 Light)

Scanning through different colours of Neptune with MUSE
Scanning through different colours of Neptune with MUSE

Dark spot on Neptune observed with MUSE at the VLT
Dark spot on Neptune observed with MUSE at the VLT



Using ESO’s Very Large Telescope (VLT), astronomers have observed a large dark spot in Neptune’s atmosphere, with an unexpected smaller bright spot adjacent to it. This is the first time a dark spot on the planet has ever been observed with a telescope on Earth. These occasional features in the blue background of Neptune’s atmosphere are a mystery to astronomers, and the new results provide further clues as to their nature and origin.

Large spots are common features in the atmospheres of giant planets, the most famous being Jupiter’s Great Red Spot. On Neptune, a dark spot was first discovered by NASA’s Voyager 2 in 1989, before disappearing a few years later. “Since the first discovery of a dark spot, I’ve always wondered what these short-lived and elusive dark features are,” says Patrick Irwin, Professor at the University of Oxford in the UK and lead investigator of the study published today in Nature Astronomy.

Irwin and his team used data from ESO’s VLT to rule out the possibility that dark spots are caused by a ‘clearing’ in the clouds. The new observations indicate instead that dark spots are likely the result of air particles darkening in a layer below the main visible haze layer, as ices and hazes mix in Neptune’s atmosphere.

Coming to this conclusion was no easy feat because dark spots are not permanent features of Neptune’s atmosphere and astronomers had never before been able to study them in sufficient detail. The opportunity came after the NASA/ESA Hubble Space Telescope discovered several dark spots in Neptune's atmosphere, including one in the planet’s northern hemisphere first noticed in 2018. Irwin and his team immediately got to work studying it from the ground — with an instrument that is ideally suited to these challenging observations.

Using the VLT’s Multi Unit Spectroscopic Explorer (MUSE), the researchers were able to split reflected sunlight from Neptune and its spot into its component colours, or wavelengths, and obtain a 3D spectrum [1]. This meant they could study the spot in more detail than was possible before. “I’m absolutely thrilled to have been able to not only make the first detection of a dark spot from the ground, but also record for the very first time a reflection spectrum of such a feature,” says Irwin.

Since different wavelengths probe different depths in Neptune’s atmosphere, having a spectrum enabled astronomers to better determine the height at which the dark spot sits in the planet's atmosphere. The spectrum also provided information on the chemical composition of the different layers of the atmosphere, which gave the team clues as to why the spot appeared dark.

The observations also offered up a surprise result. “In the process we discovered a rare deep bright cloud type that had never been identified before, even from space,” says study co-author Michael Wong, a researcher at the University of California, Berkeley, USA. This rare cloud type appeared as a bright spot right beside the larger main dark spot, the VLT data showing that the new ‘deep bright cloud’ was at the same level in the atmosphere as the main dark spot. This means it is a completely new type of feature compared to the small ‘companion’ clouds of high-altitude methane ice that have been previously observed.

With the help of ESO’s VLT, it is now possible for astronomers to study features like these spots from Earth. “This is an astounding increase in humanity’s ability to observe the cosmos. At first, we could only detect these spots by sending a spacecraft there, like Voyager. Then we gained the ability to make them out remotely with Hubble. Finally, technology has advanced to enable this from the ground,” concludes Wong, before adding, jokingly: "This could put me out of work as a Hubble observer!




Notes

[1] MUSE is a 3D spectrograph that allows astronomers to observe the entirety of an astronomical object, like Neptune, in one go. At each pixel, the instrument measures the intensity of light as a function of its colour or wavelength. The resulting data form a 3D set in which each pixel of the image has a full spectrum of light. In total, MUSE measures over 3500 colours. The instrument is designed to take advantage of adaptive optics, which corrects for the turbulence in the Earth’s atmosphere, resulting in sharper images than otherwise possible. Without this combination of features, studying a Neptune dark spot from the ground would not have been possible.




More Information

This research was presented in a paper titled “Cloud structure of dark spots and storms in Neptune’s atmosphere” to appear in Nature Astronomy (doi: 10.1038/s41550-023-02047-0).

The team is composed of Patrick G. J. Irwin (University of Oxford, UK [Oxford]), Jack Dobinson (Oxford), Arjuna James (Oxford), Michael H. Wong (University of California, USA [Berkeley]), Leigh N. Fletcher (University of Leicester, UK [Leicester]), Michael T. Roman (Leicester), Nicholas A. Teanby (University of Bristol, UK), Daniel Toledo (Instituto Nacional de Técnica Aeroespacial, Spain), Glenn S. Orton (Jet Propulsion Laboratory, USA), Santiago Pérez-Hoyos (University of the Basque Country, Spain [UPV/EHU]), Agustin Sánchez Lavega (UPV/EHU), Lawrence Sromovsky (University of Wisconsin, USA), Amy Simon (Solar System Exploration Division, NASA Goddard Space Flight Center, USA), Raúl Morales-Juberias (New Mexico Institute of Technology, USA), Imke de Pater (Berkeley), and Statia L. Cook (Columbia University, USA).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.




Links



Contacts:

Patrick Irwin
Department of Physics, University of Oxford
Oxford, UK
Tel: +44 1865 272083
Email:
patrick.irwin@physics.ox.ac.uk

Michael H. Wong
Center for Integrative Planetary Science, University of California at Berkeley
Berkeley, California, USA
Tel: +1 510 224 3411
Email:
mikewong@astro.berkeley.edu

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org

Source: ESO/News


Friday, August 25, 2023

Featured Image: A New Einstein Cross


As the light from a distant galaxy travels toward us, it sometimes encounters a region of spacetime warped by a massive galaxy in its path. If the alignment between the foreground galaxy and the background galaxy is just right, we’re treated to a spectacular sight: multiple images of the background galaxy arrayed around the foreground galaxy — a phenomenon called gravitational lensing. If the foreground galaxy is elliptical, the images of the background galaxy form a cross known as an Einstein Cross, as is the case with a system newly confirmed by Aleksandar Cikota (Gemini Observatory/NSF’s NOIRLab) and collaborators. To confirm the gravitationally lensed nature of the system, the team demonstrated via spectroscopy that the four images were of the same galaxy. The golden central galaxy is an elliptical behemoth whose light has been traveling to us for nearly 6 billion years, while the lensed starburst galaxy is far more distant, giving us a glimpse of when the universe was just 18.5% of its current age. To learn more about this new addition to the short list of known Einstein Crosses, be sure to check out the full article linked below.

By Kerry Hensley

Citation

“DESI-253.2534+26.8843: A New Einstein Cross Spectroscopically Confirmed with Very Large Telescope/MUSE and Modeled with GIGA-Lens,” Aleksandar Cikota et al 2023 ApJL 953 L5. doi:10.3847/2041-8213/ace9da



Thursday, August 24, 2023

Rewriting the Past and Future of the Universe


A conceptual diagram of this research. Signals from supernovae (bottom right inset), quasars (middle left inset), and gamma-ray bursts (top center inset) reach Earth in the Milky Way Galaxy (background), where we can use them to measure cosmological parameters. Credit: NAOJ).
Download image (2.7MB)

New research has improved the accuracy of the parameters governing the expansion of the Universe. More accurate parameters will help astronomers determine how the Universe grew to its current state, and how it will evolve in the future.

It is well established that the Universe is expanding. But with no landmarks in space, it is difficult to accurately measure how fast it is expanding. So, astronomers search for reliable landmarks. The same way a candle looks fainter as it gets farther away, even though the candle itself hasn’t changed, distant objects in the Universe look fainter. If we know the intrinsic (initial) brightness of an object, we can calculate its distance based on its observed brightness. Objects of known brightness in the Universe that allow us to calculate the distance are called “standard candles.”

An international team led by Maria Giovanna Dainotti, Assistant Professor at the National Astronomical Observatory of Japan (NAOJ), and Giada Bargiacchi, PhD student at the Scuola Superiore Meridionale in Naples, with the aid of the supercomputing facilities at NAOJ run by Kazunari Iwasaki, Assistant Professor at NAOJ and member of the Center for Computational Astrophysics, ushered in a new research field by leveraging the use of a variety of new statistical methods to analyze data for various standard candles such as Supernovae, Quasars (powerful black holes consuming matter in the distant Universe), and Gamma Ray Bursts (sudden flashes of powerful radiation). Different standard candles are useful in different distant ranges, so combining multiple standard candles allowed the team to map larger areas of the Universe.

The new results reduce the uncertainty of key parameters by up to 35 percent. More accurate parameters will help determine whether the Universe will continue expanding forever, or eventually fall back in on itself.




Release Information:

Researcher(s) Involved in this Release

Maria Giovanna Dainotti (Assistant Professor @ National Astronomical Observatory of Japan, NINS)
Kazunari Iwasaki (Assistant Professor @ National Astronomical Observatory of Japan, NINS)

Coordinated Release Organization(s)

National Astronomical Observatory of Japan, NINS
Space Science Institute
Lund University
National Autonomous University of Mexico (UNAM)

Paper(s)

M. G. Dainotti et al “Reducing the uncertainty on the Hubble constant up to 35% with an improved statistical analysis: different best-fit likelihoods for Supernovae Ia, Baryon Acoustic Oscillations, Quasars, and Gamma-Ray Bursts” in the Astrophysical Journal, DOI:
10.3847/1538-4357/acd63f
M.G. Dainotti et al “Quasars: Standard Candles up to z = 7.5 with the Precision of Supernovae Ia” in the Astrophysical Journal, DOI: 10.3847/1538-4357/accea0


Wednesday, August 23, 2023

A sparkling galactic neighbour

An irregular galaxy that resembles the shape of a cloud. It is made of many tiny stars all clumped together, surrounded in a diffuse light. In the central, brightest part there is a bubble of blue gas. The galaxy is surrounded by mostly very small and faint objects, though there are bright stars above and to the left of it, and a string of galaxies nearby. Credit: ESA/Hubble & NASA, R. Tully

The galaxy ESO 300-16 looms over this image from the NASA/ESA Hubble Space Telescope. This galaxy, which lies 28.7 million light-years from Earth in the constellation Eridanus, is a ghostly assemblage of stars which resembles a sparkling cloud. A rogue’s gallery of distant galaxies and foreground stars complete this astronomical portrait, which was captured by the Advanced Camera for Surveys.

This observation is one of a series which aims to get to know our galactic neighbours; around three quarters of the known galaxies suspected to lie within 10 megaparsecs of Earth have been observed by Hubble in enough detail to resolve their brightest stars and establish the distances to these galaxies. A team of astronomers proposed using small gaps in Hubble’s observing schedule to acquaint ourselves with the remaining quarter of the nearby galaxies.

The megaparsec — meaning one million parsecs — is a unit used by astronomers to chart the mind-bogglingly large distances involved in astronomy. The motion of Earth around the Sun means that stars appear to slightly shift against very distant stars over the course of a year. This small shift is referred to as parallax and is measured in angular units: degrees, minutes, and seconds. One parsec is equivalent to saying a parallax of one-arcsecond, and is equivalent to 3.26 light-years or 30.9 trillion kilometres. The closest exoplanet to the Sun is Proxima Centauri b, which lies 1.3 parsecs away.

Tuesday, August 22, 2023

ASASSN-14li: A Giant Black Hole Destroys a Massive Star

X-ray Spectrum Chandra
Credit: NASA/CXC/Univ of Michigan/J. Miller et al.; Illustration: NASA/CXC/M.Weiss





Using NASA’s Chandra X-ray Observatory, ESA’s XMM-Newton and other telescopes, astronomers have determined that a giant black hole has destroyed a large star and strewn its contents into space, as described in our latest press release. By analyzing the details of the X-ray data, the team were able to estimate the relative amount of nitrogen compared to carbon in the aftermath of this gravitational assault. These elements provide valuable clues to the researchers for what type of star met its demise.

This artist’s illustration depicts the “tidal disruption event” (TDE) called ASASSN-14li, which is the focus of the latest study. As a star approached too closely to the supermassive black hole at the system, the strong gravity tore the star apart. This artist's impression depicts the aftermath of this destruction. After the star was ripped apart, some of its gas (red) was left orbiting around and falling into the black hole. A portion of the gas was driven away in a wind (blue). .

Scientists used an X-ray spectrum — that is, a plot of X-ray brightness compared to wavelength — from Chandra and XMM to probe the elements contained in this wind. The Chandra spectrum is shown in the inset, where the data is colored blue (jagged lines) and the uncertainties for each data point are blue vertical lines. A model of the spectrum is given in red, highlighting the detection of nitrogen from the dip in the spectrum, and the non-detection of carbon from the lack of a dip.

X-ray Spectrum Chandra
Credit: NASA/CXC/Univ of Michigan/J. Miller et al
.

The amount of nitrogen and the maximum amount of carbon that could escape detection gives a minimum value for the ratio of nitrogen to carbon that agrees with the data. This value indicates that the shredded star in ASASSN-14li was about three times the mass of the Sun. This would make it one of the largest stars ever known to be devastated in a TDE.

ASASSN-14li was first discovered in November 2014 by ground-based telescopes, when it was realized that this was the closest TDE to Earth in about a decade. In the years since, many telescopes, including Chandra, have observed this system.

In addition to the unusual size of the destroyed star and the ability to conduct the detailed forensics on it, ASASSN-14li is also exciting because of what it means for future studies. Astronomers have seen moderately massive stars like ASASSN-14li’s in the star cluster containing the supermassive black hole in the center of our galaxy. Therefore, the ability to estimate stellar masses of tidally disrupted stars potentially gives astronomers a way to identify the presence of star clusters around supermassive black holes in more distant galaxies.

Until this study there was a strong possibility that the elements observed in X-rays might have come from gas released in previous eruptions from the supermassive black hole. The pattern of elements analyzed here, however, appears to have come from a single star.

A paper describing these results has been published in The Astrophysical Journal Letters. The authors are Jon M. Miller (University of Michigan, Ann Arbor), Brenna Mockler (Carnegie Observatories), Enrico Ramirez-Ruiz (University of California, Santa Cruz), Paul Draghis (University of Michigan), Jeremy Drake (Center for Astrophysics | Harvard & Smithsonian), John Raymond (CfA), Mark Reynolds (University of Michigan), Xin Xiang (University of Michigan), Sol Bin Yun (University of Michigan), and Abderahmen Zoghbi (University of Maryland).

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.



Visual Description:

This release features an artist's illustration of red stellar debris swirling around a giant, spherical black hole. The debris field represents the remains of a star with three times the mass of our Sun, which was ripped apart by the black hole's immense gravity. This tidal disruption event is known as ASASSN-14li. Its aftermath was studied by NASA's Chandra X-ray Observatory, ESA's XMM-Newton, and other telescopes.

At the center of the illustration is the spherical black hole, half-submerged in the debris field, which resembles the top half of a jet black ball. The ball sits at the core of the disk-shaped debris field, which is composed of distinct orange and red rings. A long, wide, ribbon of red cloud, representing part of the star's residual gas, enters the illustration at our lower left corner. This ribbon of red gas sweeps toward our center right across the black, starry sky. There, the gas curves back to the left, behind the black hole. Drawn in by gravity, the ribbon of gas encircles the ringed disk of brick red and golden orange stellar debris. This debris orbits, and eventually falls into, the black hole. Faint blue mist appears to radiate from the black hole and the orbiting stellar debris field. This mist represents the portion of stellar gas driven away from the ringed disk by a wind.




Fast Facts for ASASSN-14li:

Category: Black Holes
Coordinates (J2000): RA 12h 48m 15.20s | Dec 17° 46´ 26.20"
Constellation: Coma Berenices
Observation Dates: 2 observations; Dec 8 & 11, 2014
Observation Time: 22 hours 1 minute
Obs. ID: 17566, 17567
Instrument: HRC
References: Miller, J.M., et al., 2023, ApJL, 53, 2 DOI 10.3847/2041-8213/ace03c
Distance Estimate: About 285 million light-years (z=0.0206)


Monday, August 21, 2023

Stellar Surf's Up: Monster Waves as Tall as Three Suns are Crashing upon a Colossal Star


Artist conception of the system, where the smaller star induces breaking surface waves in the more massive companion. Credit: Melissa Weiss, CfA


A gas dynamics computer simulation of the system shows that during a close passage, gas is raised into a huge tidal wave on the larger star before crashing back to the surface. Credit: Morgan MacLeod, CfA


 

A first-of-its-kind "heartbreak" star, with pulsing brightness changes and breaking surface waves, offers a unique vantage into the evolution of massive double star systems.
 
Cambridge, Mass. – An extreme star system is giving new meaning to the phrase "surf's up."

The star system intrigued researchers because it is the most dramatic "heartbeat star" on record. Now new models have revealed that titanic waves, generated by tides, are repeatedly breaking on one of the stars in the system—the first time this phenomenon has ever been seen on a star.

Heartbeat stars are stars in close pairs that periodically pulse in brightness, like the rhythm of a beating heart on an EKG machine. The stars in heartbeat systems loop through elongated oval orbits. Whenever they swing close together, the stars' gravities generate tides—just as the Moon creates ocean tides on Earth. The tides stretch and distort the shapes of the stars, altering the amount of starlight seen coming from them as their wide or narrow sides alternately face Earth.

A new study explains why the brightness fluctuations from one particularly extreme heartbeat star system measure some 200 times greater than typical heartbeat stars. The cause: gargantuan waves that roll across the bigger star, kicked up when its smaller companion star regularly makes close passes. These tidal waves attain such towering heights and high speeds, the study finds, that the waves break—similar to ocean waves—and crash down onto the big star's surface.

Dubbed a "heartbreak star" by astronomers, the system offers an unprecedented look at how massive stars interact.

"Each crash of the star's towering tidal waves releases enough energy to disintegrate our entire planet several hundred times over," says Morgan MacLeod, a Postdoctoral Fellow in Theoretical Astrophysics at the Center for Astrophysics | Harvard & Smithsonian (CfA) and author of a new study published in Nature Astronomy reporting the findings. "These are really big waves."

And yet, according to Professor Abraham (Avi) Loeb, MacLeod's advisor, the Director of the Institute for Theory and Computation at CfA and the paper's other author, "Breaking waves in stars are as beautiful as those on the beaches of our oceans."

Heartbeat stars were first seen when NASA's exoplanet-hunting Kepler space telescope picked out their telltale, usually subtle stellar brightness pulsations.

The extreme heartbreak star, though, is anything but subtle. The larger star in the system is nearly 35 times the mass of the Sun and, together with its smaller companion star, is officially designated MACHO 80.7443.1718 — not because of any stellar brawn, but because the system's brightness changes were first recorded by the MACHO Project in the 1990s, which sought signs of dark matter in our galaxy.

Most heartbeat stars vary in brightness only by about 0.1%, but MACHO 80.7443.1718 jumped out to astronomers because of its unprecedentedly dramatic brightness swings, up and down by 20%. "We don't know of any other heartbeat star that varies this wildly," says MacLeod.

To unravel the mystery, MacLeod created a computer model of MACHO 80.7443.1718. His model captured how the interacting gravity of the two stars generates massive tides in the bigger star. The resulting tidal waves rise to about a fifth of the behemoth star's radius, which equates to waves about as tall as three Suns stacked on top of each other, or roughly 2.7 million miles high.

The simulations show that the massive waves start out as smooth and organized swells, just like ocean water waves, before curling over on themselves and breaking. As beachgoers know, powerfully crashing ocean waves launch sea spray and bubbles, leaving "a big foamy mess" where there was once a smooth wave, MacLeod says.

The tremendous energy release of the crashing waves on MACHO 80.7443.1718 has two effects, MacLeod's model shows. It spins the stellar surface faster and faster, and hurls stellar gas outward to form a rotating and glowing stellar atmosphere.

About once a month, the two stars pass each other and a fresh monster wave barrels across the heartbreak star's surface. Cumulatively, this agitation has caused the big star in MACHO 80.7443.1718 to bulge at its equator by about 50% more than at its poles. And, with each new passing wave, more material is flung outward, like "spinning pizza crust flinging off chunks of cheese and sauce" says MacLeod. The signature glow of this atmosphere was one of the key clues that waves were breaking on the star's surface, according to MacLeod.

As unprecedented as MACHO 80.7443.1718 is, it is unlikely to be unique. Of the nearly 1,000 heartbeat stars discovered so far, about 20 of them display large brightness fluctuations approaching those of the system simulated by MacLeod and Loeb. "This heartbreak star could just be the first of a growing class of astronomical objects," MacLeod says. "We're already planning a search for more heartbreak stars, looking for the glowing atmospheres flung off by their breaking waves."

All things considered, MacLeod says we are lucky to have caught the star in this phase, "We are watching a brief and transformative moment in a long stellar lifetime." And by watching the colossal surf roll across a stellar surface, astronomers hope to gain an understanding of how close interactions shape the evolution of stellar pairs.

The paper in Nature Astronomy describing these results is freely available at https://rdcu.be/djb5j.



About the Center for Astrophysics | Harvard & Smithsonian


The Center for Astrophysics | Harvard & Smithsonian is a collaboration between Harvard and the Smithsonian designed to ask—and ultimately answer—humanity's greatest unresolved questions about the nature of the universe. The Center for Astrophysics is headquartered in Cambridge, MA, with research facilities across the U.S. and around the world.




Media Contact:

Peter Edmonds
Interim CfA Public Affairs Officer
Center for Astrophysics | Harvard & Smithsonian
+1 617-571-7279

pedmonds@cfa.harvard.edu



Friday, August 18, 2023

New type of star gives clues to mysterious origin of magnetars

PR Image eso2313a
Artist’s impression of HD 45166, the star that might become a magnetar



Videos

New type of star gives clues to magnetars' origins (ESOcast 264 Light)
New type of star gives clues to magnetars' origins (ESOcast 264 Light)

Artist’s animation of HD 45166, the most magnetic massive star ever found
Artist’s animation of HD 45166, the most magnetic massive star ever found



Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don’t know exactly how they form. Now, using multiple telescopes around the world, including European Southern Observatory (ESO) facilities, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object — massive magnetic helium stars — and sheds light on the origin of magnetars.

Dispate having been observed for over 100 years, the enigmatic nature of the star HD 45166 could not be easily explained by conventional models, and little was known about it beyond the fact that it is one of a pair of stars [1], is rich in helium and is a few times more massive than our Sun.

This star became a bit of an obsession of mine,” says Tomer Shenar, the lead author of a study on this object published today in Science and an astronomer at the University of Amsterdam, the Netherlands. “Tomer and I refer to HD 45166 as the ‘zombie star,” says co-author and ESO astronomer Julia Bodensteiner, based in Germany. “This is not only because this star is so unique, but also because I jokingly said that it turns Tomer into a zombie."

Having studied similar helium-rich stars before, Shenar thought magnetic fields could crack the case. Indeed, magnetic fields are known to influence the behaviour of stars and could explain why traditional models failed to describe HD 45166, which is located about 3000 light-years away in the constellation Monoceros. “I remember having a Eureka moment while reading the literature: ‘What if the star is magnetic?’,” says Shenar, who is currently based at the Centre for Astrobiology in Madrid, Spain.

Shenar and his team set out to study the star using multiple facilities around the globe. The main observations were conducted in February 2022 using an instrument on the Canada-France-Hawaii Telescope that can detect and measure magnetic fields. The team also relied on key archive data taken with the Fiber-fed Extended Range Optical Spectrograph (FEROS) at ESO’s La Silla Observatory in Chile.

Once the observations were in, Shenar asked co-author Gregg Wade, an expert on magnetic fields in stars at the Royal Military College of Canada, to examine the data. Wade’s response confirmed Shenar’s hunch: “Well my friend, whatever this thing is — it is definitely magnetic.

Shenar's team had found that the star has an incredibly strong magnetic field, of 43 000 gauss, making HD 45166 the most magnetic massive star found to date [2]. “The entire surface of the helium star has a magnetic field almost 100,000 times stronger than Earth's,” explains co-author Pablo Marchant, an astronomer at KU Leuven’s Institute of Astronomy in Belgium [see edit].

This observation marks the discovery of the very first massive magnetic helium star. “It is exciting to uncover a new type of astronomical object,” says Shenar, ”especially when it’s been hiding in plain sight all along.

Moreover, it provides clues to the origin of magnetars, compact dead stars laced with magnetic fields at least a billion times stronger than the one in HD 45166. The team’s calculations suggest that this star will end its life as a magnetar. As it collapses under its own gravity, its magnetic field will strengthen, and the star will eventually become a very compact core with a magnetic field of around 100 trillion gauss [3] — the most powerful type of magnet in the Universe.

Shenar and his team also found that HD 45166 has a mass smaller than previously reported, around twice the mass of the Sun, and that its stellar pair orbits at a far larger distance than believed before. Furthermore, their research indicates that HD 45166 formed through the merger of two smaller helium-rich stars. “Our findings completely reshape our understanding of HD 45166,” concludes Bodensteiner.

Edit [17 August]: the quote by Pablo Marchant was changed since a unit conversion mistake led to the previous version being incorrect.




Notes:

[1] While HD 45166 is a binary system, in this text HD 45166 refers to the helium-rich star, not to both stars.


[2] The magnetic field of 43 000 gauss is the strongest magnetic field ever detected in a star that exceeds the Chandrasekhar mass limit, which is the critical limit above which stars may collapse into neutron stars (magnetars are a type of neutron star).

[3] In this text, a billion refers to one followed by nine zeros and a trillion refers to one followed by 12 zeros.



More information

This research was presented in a paper to appear in Science (doi: science.org/doi/10.1126/science.ade3293).

The team is composed of Tomer Shenar (Anton Pannekoek Institute for Astronomy, University of Amsterdam, the Netherlands [API], now at the Centre for Astrobiology, Madrid, Spain), Gregg Wade (Department of Physics and Space Science, Royal Military College of Canada, Canada), Pablo Marchant (Institute of Astronomy, KU Leuven, Belgium [KU Leuven]), Stefano Bagnulo (Armagh Observatory & Planetarium, UK), Julia Bodensteiner (European Southern Observatory, Garching, Germany; KU Leuven), Dominic M. Bowman (KU Leuven), Avishai Gilkis (The School of Physics and Astronomy, Tel Aviv University, Israel), Norbert Langer (Argelander-Institut für Astronomie, Universitӓt Bonn, Germany; Max Planck Institute for Radio Astronomy, Bonn, Germany), André Nicolas-Chené (National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory, Hawai‘i), Lidia Oskinova (Institut für Physik und Astronomie, Universitӓt Potsdam, Germany [Potsdam]), Timothy Van Reeth (KU Leuven), Hugues Sana (KU Leuven), Nicole St-Louis (Département de physique, Université de Montréal, Complexe des sciences, Canada), Alexandre Soares de Oliveira (Institute of Research and Development, Universidade do Vale do Paraíba, São José dos Campos, Brazil), Helge Todt (Potsdam) and Silvia Toonen (API).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.

The Canada-France-Hawaii Telescope (CFHT) is located on Maunakea, land of the Kānaka Maoli people, and a mountain of considerable cultural, natural, and ecological significance to the Native Hawaiian people.



Links:



Contacts:

Tomer Shenar
University of Amsterdam and Centre for Astrobiology
Amsterdam and Madrid, the Netherlands and Spain
Email:
t.shenar@uva.nl

Julia Bodensteiner
European Southern Observatory
Garching bei München, Germany
Tel: +49-89-3200-6409
Email:
julia.bodensteiner@eso.org

Gregg Wade
Royal Military College of Canada
Tel: +1 613 541-6000 ext 6419
Email:
Gregg.Wade@rmc-cmr.ca

Pablo Marchant
Institute of Astronomy, KU Leuven
Leuven, Belgium
Tel: +32 16 33 05 47
Email:
pablo.marchant@kuleuven.be

Lida Oskinova
Institute for Physics and Astronomy, University of Potsdam
Potsdam, Germany
Tel: +49 331 977 5910
Email:
lida@astro.physik.uni-potsdam.de

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org

Source: ESO/News