Friday, March 31, 2023

AI Finds that First Stars were Clustered Together


A schematic illustration of this research. Ejecta from the first supernovae (cyan, green, and purple objects surrounded by clouds of ejected material) enrich the primordial hydrogen and helium gas with heavy elements. If the first stars were born as multiple stellar systems, rather than as isolated single stars, elements ejected by different supernovae would be mixed together and incorporated into the next generation of stars. The characteristic chemical abundances in such a mechanism are preserved in the atmospheres of long-lived stars. The team invented a machine learning algorithm to distinguish between the observed stars (shown in red in the diagram) formed out of the ejecta of a single supernova and stars (shown in blue in the diagram) formed out of ejecta from multiple supernovae, based on measured elemental abundances from the spectra of the stars. (Credit: Kavli IPMU).
Original size (673KB)

An international team has used artificial intelligence to analyze the chemical abundances of old stars and found indications that the very first stars in the Universe were born in groups rather than as isolated single stars. Now the team hopes to apply this method to new data from on-going and planned observation surveys to better understand the early days of the Universe.

After the Big Bang, the only elements in the Universe where hydrogen, helium, and lithium. Most of the other elements making up the world we see around us were produced by nuclear reactions in stars. Some elements are formed by nuclear fusion at the core of a star, and others form in the explosive supernova death of a star. Supernovae also play an important role in scattering the elements created by stars, so that they can be incorporated into the next generation of stars, planets, and possibly even living creatures.

The first generation of stars, the first to produce elements heavier than lithium, are of particular interest. But first-generation stars are difficult to study because none have ever been observed directly. It is thought that they have all already exploded as supernovae. Instead, researchers try to draw inferences about first-generation stars by studying the chemical signature the first generation of supernovae imprinted on the next generation of stars. Based on their composition, extremely metal-poor stars are believed to be stars formed after the first round of supernovae. Extremely metal-poor stars are rare, but enough have been found now to be analyzed as a group.

In this study, a team including members from the University of Tokyo/Kavli IPMU, National Astronomical Observatory of Japan, and University of Hertfordshire took a novel approach of using artificial intelligence to interpret elemental abundances in over 450 extremely metal-poor stars observed by telescopes including the Subaru Telescope. They found that 68% of the observed extremely metal-poor stars have a chemical fingerprint that is consistent with enrichment by multiple previous supernovae.

In order for the ejecta from multiple previous supernovae to get mixed together in a single star, the supernovae must have occurred in close proximity. This means that in many cases first-generation stars must have formed together in clusters rather than as isolated stars. This offers the first quantitative constraint based on observations for the multiplicity of the first stars.

Now the team hopes to apply this method to Big Data from current and future observing programs, such as the data expected from the Prime Focus Spectrograph on the Subaru Telescope.

These results appeared as Hartwig et al. “Machine Learning Detects Multiplicity of the First Stars in Stellar Archaeology Data” in The Astrophysical Journal on March 22, 2023.

 Related Links

 Source: National Astronomical Observatory of Japan (NAOJ)/News


Thursday, March 30, 2023

Astronomers witness the birth of a very distant cluster of galaxies from the early Universe

PR Image eso2304a
The Sunyaev-Zeldovich effect in the Spiderweb protocluster

PR Image eso2304b
The Spiderweb protocluster

Wide-field image of the Spiderweb galaxy (ground-based image)
 

Videos


Witnessing the Birth of a Distant Cluster of Galaxies (ESOcast Light 259)
Witnessing the Birth of a Distant Cluster of Galaxies (ESOcast Light 259) 
 
The Sunyaev-Zeldovich effect in the Spiderweb protocluster
The Sunyaev-Zeldovich effect in the Spiderweb protocluster 
 
Artist’s impression of a protocluster forming in the early Universe
Artist’s impression of a protocluster forming in the early Universe



Using the Atacama Large Millimeter/submillimeter Array (ALMA), of which ESO is a partner, astronomers have discovered a large reservoir of hot gas in the still-forming galaxy cluster around the Spiderweb galaxy — the most distant detection of such hot gas yet. Galaxy clusters are some of the largest objects known in the Universe and this result, published today in Nature, further reveals just how early these structures begin to form.

Galaxy clusters, as the name suggests, host a large number of galaxies — sometimes even thousands. They also contain a vast “intracluster medium” (ICM) of gas that permeates the space between the galaxies in the cluster. This gas in fact considerably outweighs the galaxies themselves. Much of the physics of galaxy clusters is well understood; however, observations of the earliest phases of formation of the ICM remain scarce.

Previously, the ICM had only been studied in fully-formed nearby galaxy clusters. Detecting the ICM in distant protoclusters — that is, still-forming galaxy clusters – would allow astronomers to catch these clusters in the early stages of formation. A team led by Luca Di Mascolo, first author of the study and researcher at the University of Trieste, Italy, were keen to detect the ICM in a protocluster from the early stages of the Universe.

Galaxy clusters are so massive that they can bring together gas that heats up as it falls towards the cluster. “Cosmological simulations have predicted the presence of hot gas in protoclusters for over a decade, but observational confirmations has been missing,” explains Elena Rasia, researcher at the Italian National Institute for Astrophysics (INAF) in Trieste, Italy, and co-author of the study. “Pursuing such key observational confirmation led us to carefully select one of the most promising candidate protoclusters.

That was the Spiderweb protocluster, located at an epoch when the Universe was only 3 billion years old. Despite being the most intensively studied protocluster, the presence of the ICM has remained elusive. Finding a large reservoir of hot gas in the Spiderweb protocluster would indicate that the system is on its way to becoming a proper, long-lasting galaxy cluster rather than dispersing.

Di Mascolo’s team detected the ICM of the Spiderweb protocluster through what’s known as the thermal Sunyaev-Zeldovich (SZ) effect. This effect happens when light from the cosmic microwave background — the relic radiation from the Big Bang — passes through the ICM. When this light interacts with the fast-moving electrons in the hot gas it gains a bit of energy and its colour, or wavelength, changes slightly. “At the right wavelengths, the SZ effect thus appears as a shadowing effect of a galaxy cluster on the cosmic microwave background,” explains Di Mascolo.

By measuring these shadows on the cosmic microwave background, astronomers can therefore infer the existence of the hot gas, estimate its mass and map its shape. “Thanks to its unparalleled resolution and sensitivity, ALMA is the only facility currently capable of performing such a measurement for the distant progenitors of massive clusters,” says Di Mascolo.

They determined that the Spiderweb protocluster contains a vast reservoir of hot gas at a temperature of a few tens of millions of degrees Celsius. Previously, cold gas had been detected in this protocluster, but the mass of the hot gas found in this new study outweighs it by thousands of times. This finding shows that the Spiderweb protocluster is indeed expected to turn into a massive galaxy cluster in around 10 billion years, growing its mass by at least a factor of ten.

Tony Mroczkowski, co-author of the paper and researcher at ESO, explains that “this system exhibits huge contrasts. The hot thermal component will destroy much of the cold component as the system evolves, and we are witnessing a delicate transition." He concludes that "it provides observational confirmation of long-standing theoretical predictions about the formation of the largest gravitationally bound objects in the Universe.

These results help to set the groundwork for synergies between ALMA and ESO’s upcoming Extremely Large Telescope (ELT), which “will revolutionise the study of structures like the Spiderweb,” says Mario Nonino, a co-author of the study and researcher at the Astronomical Observatory of Trieste. The ELT and its state-of-the-art instruments, such as HARMONI and MICADO, will be able to peer into protoclusters and tell us about the galaxies in them in great detail. Together with ALMA’s capabilities to trace the forming ICM, this will provide a crucial glimpse into the assembly of some of the largest structures in the early Universe.



More Information

This research was presented in the paper “Forming intracluster gas in a galaxy protocluster at a redshift of 2.16” to appear in Nature (doi: 10.1038/s41586-023-05761-x)

The team is composed of Luca Di Mascolo (Astronomy Unit, University of Trieste, Italy [UT]; INAF – Osservatorio Astrofisico di Trieste, Italy [INAF Trieste]; IFPU – Institute for Fundamental Physics of the Universe, Italy [IFPU]), Alexandro Saro (UT; INAF Trieste; IFPU; INFN – Sezione di Trieste, Italy [INFN]), Tony Mroczkowski (European Southern Observatory, Germany [ESO]), Stefano Borgani (UT; INAF Trieste; IFPU; INFN), Eugene Churazov (Max-Planck-Institute für Astrophysik, Germany; Space Research Institute, Russia), Elena Rasia (INAF Trieste; IFPU), Paolo Tozzi (INAF – Osservatorio Astrofisico di Arcetri, Italy), Helmut Dannerbauer (Instituto de Astrofísica de Canarias, Spain; Universidad de La Laguna, Spain), Kaustuv Basu (Argel ander Institute for Astronomy, University of Bonn, Germany), Christopher L. Carilli (National Radio Astronomy Observatory, USA), Michele Ginolfi (ESO; Dipartimento di Fisica e Astronomia, University of Florence, Italy), George Miley (Leiden Observatory, Leiden University, Netherlands), Mario Nonino (UT), Maurilio Pannella (UT; INAF Trieste; IFPU), Laura Pentericci (INAF – Osservatorio Astronomico di Roma, Italy), Francesca Rizzo (Cosmic Dawn Center, Denmark; Niels Bohr Institute, Denmark)

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science and Technology Council (NSTC) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.




Links



Contacts:

Luca Di Mascolo
University of Trieste
Trieste, Italy
Email:
luca.dimascolo@units.it

Tony Mroczkowski
European Southern Observatory
Garching bei München, Germany
Tel: +49 89 3200 6174
Email:
tony.mroczkowski@eso.org

Alexandro Saro
University of Trieste
Trieste, Italy
Email:
asaro@units.it

Juan Carlos Muñoz Mateos
ESO Media Officer
Garching bei München, Germany
Tel: +49 89 3200 6176
Email:
press@eso.org

Source: ESA/News



Wednesday, March 29, 2023

NASA's Webb Measures the Temperature of a Rocky Exoplanet

Rocky Exoplanet TRAPPIST-1 b (Illustration)
Credits: Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)
Science: Thomas P. Greene (NASA Ames), Taylor Bell (BAERI), Elsa Ducrot (CEA), Pierre-Olivier Lagage (CEA)

Rocky Exoplanet TRAPPIST-1 b (Secondary Eclipse Light Curve)
Credits: Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)
Science: Thomas P. Greene (NASA Ames), Taylor Bell (BAERI), Elsa Ducrot (CEA), Pierre-Olivier Lagage (CEA)

Rocky Exoplanet TRAPPIST-1 b (Dayside Temperature Comparison)
Credits: Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)
Science: Thomas P. Greene (NASA Ames), Taylor Bell (BAERI), Elsa Ducrot (CEA), Pierre-Olivier Lagage (CEA)




An international team of researchers has used NASA’s James Webb Space Telescope to measure the temperature of the rocky exoplanet TRAPPIST-1 b. The measurement is based on the planet’s thermal emission: heat energy given off in the form of infrared light detected by Webb’s Mid-Infrared Instrument (MIRI). The result indicates that the planet’s dayside has a temperature of about 500 kelvins (roughly 450 degrees Fahrenheit) and suggests that it has no significant atmosphere.

This is the first detection of any form of light emitted by an exoplanet as small and as cool as the rocky planets in our own solar system. The result marks an important step in determining whether planets orbiting small active stars like TRAPPIST-1 can sustain atmospheres needed to support life. It also bodes well for Webb’s ability to characterize temperate, Earth-sized exoplanets using MIRI.

“These observations really take advantage of Webb’s mid-infrared capability,” said Thomas Greene, an astrophysicist at NASA’s Ames Research Center and lead author on the study published today in the journal Nature. “No previous telescopes have had the sensitivity to measure such dim mid-infrared light.”

Rocky Planets Orbiting Ultracool Red Dwarfs

In early 2017, astronomers reported the discovery of seven rocky planets orbiting an ultracool red dwarf star (or M dwarf) 40 light-years from Earth. What is remarkable about the planets is their similarity in size and mass to the inner, rocky planets of our own solar system. Although they all orbit much closer to their star than any of our planets orbit the Sun — all could fit comfortably within the orbit of Mercury — they receive comparable amounts of energy from their tiny star.

TRAPPIST-1 b, the innermost planet, has an orbital distance about one hundredth that of Earth’s and receives about four times the amount of energy that Earth gets from the Sun. Although it is not within the system’s habitable zone, observations of the planet can provide important information about its sibling planets, as well as those of other M-dwarf systems.

“There are ten times as many of these stars in the Milky Way as there are stars like the Sun, and they are twice as likely to have rocky planets as stars like the Sun,” explained Greene. “But they are also very active — they are very bright when they’re young, and they give off flares and X-rays that can wipe out an atmosphere.”

Co-author Elsa Ducrot from the French Alternative Energies and Atomic Energy Commission (CEA) in France, who was on the team that conducted earlier studies of the TRAPPIST-1 system, added, “It's easier to characterize terrestrial planets around smaller, cooler stars. If we want to understand habitability around M stars, the TRAPPIST-1 system is a great laboratory. These are the best targets we have for looking at the atmospheres of rocky planets.”

Detecting an Atmosphere (or Not)

Previous observations of TRAPPIST-1 b with the Hubble and Spitzer space telescopes found no evidence for a puffy atmosphere, but were not able to rule out a dense one.

One way to reduce the uncertainty is to measure the planet’s temperature. “This planet is tidally locked, with one side facing the star at all times and the other in permanent darkness,” said Pierre-Olivier Lagage from CEA, a co-author on the paper. “If it has an atmosphere to circulate and redistribute the heat, the dayside will be cooler than if there is no atmosphere.”

The team used a technique called secondary eclipse photometry, in which MIRI measured the change in brightness from the system as the planet moved behind the star. Although TRAPPIST-1 b is not hot enough to give off its own visible light, it does have an infrared glow. By subtracting the brightness of the star on its own (during the secondary eclipse) from the brightness of the star and planet combined, they were able to successfully calculate how much infrared light is being given off by the planet.

Measuring Minuscule Changes in Brightness

Webb’s detection of a secondary eclipse is itself a major milestone. With the star more than 1,000 times brighter than the planet, the change in brightness is less than 0.1%.

“There was also some fear that we’d miss the eclipse. The planets all tug on each other, so the orbits are not perfect,” said Taylor Bell, the post-doctoral researcher at the Bay Area Environmental Research Institute who analyzed the data. “But it was just amazing: The time of the eclipse that we saw in the data matched the predicted time within a couple of minutes.”

The team analyzed data from five separate secondary eclipse observations. “We compared the results to computer models showing what the temperature should be in different scenarios,” explained Ducrot. “The results are almost perfectly consistent with a blackbody made of bare rock and no atmosphere to circulate the heat. We also didn’t see any signs of light being absorbed by carbon dioxide, which would be apparent in these measurements.”

This research was conducted as part of Webb Guaranteed Time Observation (GTO) program 1177,  which is one of eight programs from Webb’s first year of science designed to help fully characterize the TRAPPIST-1 system. Additional secondary eclipse observations of TRAPPIST-1 b are currently in progress, and now that they know how good the data can be, the team hopes to eventually capture a full phase curve showing the change in brightness over the entire orbit. This will allow them to see how the temperature changes from the day to the nightside and confirm if the planet has an atmosphere or not.

“There was one target that I dreamed of having,” said Lagage, who worked on the development of the MIRI instrument for more than two decades. “And it was this one. This is the first time we can detect the emission from a rocky, temperate planet. It’s a really important step in the story of discovering exoplanets.”

The James Webb Space Telescope is the world's premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency), and CSA (Canadian Space Agency). MIRI was contributed by NASA and ESA, with the instrument designed and built by a consortium of nationally funded European Institutes (the MIRI European Consortium) and NASA’s Jet Propulsion Laboratory, in partnership with the University of Arizona.



About This Release

Credits:

Media Contact:

Margaret W. Carruthers
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland


Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents



Tuesday, March 28, 2023

Hubble Monitors Changing Weather and Seasons at Jupiter and Uranus

Jupiter (Nov. 2022 and Jan. 2023)
Credits: Science: NASA, ESA, STScI, Amy Simon (NASA-GSFC), Michael H. Wong (UC Berkeley)
Image Processing: Joseph DePasquale (STScI)

Uranus (Nov. 2014 and Nov. 2022)
Credits: Science: NASA, ESA, STScI, Amy Simon (NASA-GSFC), Michael H. Wong (UC Berkeley)
Image Processing: Joseph DePasquale (STScI)


Release Images



Ever since its launch in 1990, NASA's Hubble Space Telescope has been an interplanetary weather observer, keeping an eye on the largely gaseous outer planets and their ever-changing atmospheres. NASA spacecraft missions to the outer planets have given us a close-up look at these atmospheres, but Hubble's sharpness and sensitivity keeps an unblinking eye on a kaleidoscope of complex activities over time. In this way Hubble complements observations from other spacecraft such as Juno, currently orbiting Jupiter; the retired Cassini mission to Saturn, and the Voyager 1 and 2 probes, which collectively flew by all four giant planets between 1979 and 1989.

Inaugurated in 2014, the telescope's Outer Planet Atmospheres Legacy (OPAL) Program has been providing us with yearly views of the giant planets. Here are some recent images:

Jupiter

[left]—The forecast for Jupiter is stormy weather at low northern latitudes. A prominent string of alternating storms is visible, forming a "vortex street" as some planetary astronomers call it. This is a wave pattern of nested anticyclones and cyclones, locked together like in a machine with alternating gears moving clockwise and counterclockwise. If the storms get close enough to each other, in the very unlikely event of a merger, they could build an even larger storm, potentially rivaling the current size of the Great Red Spot. The staggered pattern of anticyclones and cyclones prevents individual storms from merging. Activity is also seen interior to these storms; in the 1990s Hubble didn't see any cyclones or anticyclones with built-in thunderstorms, but these storms have sprung up the last decade. Strong color differences indicate that Hubble is seeing different cloud heights and depths as well.

The orange moon Io photobombs this view of Jupiter's multicolored cloud tops, casting a shadow toward the planet's western limb. Hubble's resolution is so sharp that it can see Io's mottled-orange appearance, related to its numerous active volcanoes. These volcanoes were first discovered when the Voyager 1 spacecraft flew by in 1979. The moon's molten interior is overlaid by a thin crust through which the volcanoes eject material. Sulfur takes on various hues at different temperatures, which is why Io's surface is so colorful. This image was taken on November 12, 2022.

[right]—Jupiter's legendary Great Red Spot takes center stage in this view. Though this vortex is big enough to swallow Earth, it has actually shrunken to the smallest size it has ever been over observation records dating back 150 years. Jupiter's icy moon Ganymede can be seen transiting the giant planet at lower right. Slightly larger than the planet Mercury, Ganymede is the largest moon in the solar system. It is a cratered world with a mainly water-ice surface with apparent glacial flows driven by internal heat. (This image is smaller in size because Jupiter was 81,000 miles farther from Earth when the photo was taken). This image was taken on January 6, 2023.

Uranus

Planetary oddball Uranus rolls on its side around the Sun as it follows an 84-year orbit, rather than spinning in a more-vertical position as Earth does. Uranus has a weirdly tipped "horizontal" rotation axis angled just eight degrees off the plane of the planet's orbit. One recent theory proposes that Uranus once had a massive moon that gravitationally destabilized it and then crashed into it. Other possibilities include giant impacts during planetary formation, or even giant planets exerting resonant torques on each other over time. The consequences of the planet's tilt are that for stretches of time lasting up to 42 years, parts of one hemisphere are completely without sunlight. When the Voyager 2 spacecraft visited during the 1980s, the planet's south pole was pointed almost directly at the Sun. Hubble's latest view shows the northern pole now tipping toward the Sun.

[left]—This is a Hubble view of Uranus taken in 2014, seven years after northern spring equinox when the Sun was shining directly over the planet's equator, and shows one of the first images from the OPAL program. Multiple storms with methane ice-crystal clouds appear at mid-northern latitudes above the planet's cyan-tinted lower atmosphere. Hubble photographed the ring system edge-on in 2007, but the rings are seen starting to open up seven years later in this view. At this time, the planet had multiple small storms and even some faint cloud bands.

[right]—As seen in 2022, Uranus' north pole shows a thickened photochemical haze that looks similar to the smog over cities. Several little storms can be seen near the edge of the polar haze boundary. Hubble has been tracking the size and brightness of the north polar cap and it continues to get brighter year after year. Astronomers are disentangling multiple effects—from atmospheric circulation, particle properties, and chemical processes—that control how the atmospheric polar cap changes with the seasons. At the Uranian equinox in 2007, neither pole was particularly bright. As northern summer solstice approaches in 2028 the cap may grow brighter still, and will be aimed directly toward Earth, allowing good views of the rings and north pole; the ring system will then appear face-on. This image was taken on November 10, 2022.

About Hubble

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.




About This Release

Release: NASA, ESA, STScI

Media Contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Science Contract:

Amy Simon
NASA Goddard Space Flight Center, Greenbelt, Maryland

Michael H. Wong
University of California, Berkeley, Berkeley, California

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team

Related Links and Documents

Monday, March 27, 2023

Galaxy changes classification as jet changes direction


This artist's concept shows a "feeding," or active, supermassive black hole with a jet streaming outward at nearly the speed of light. Not all black holes have jets, but when they do, the jets can be pointed in any direction. If a jet happens to shine at Earth, the object is called a blazar. Credit: NASA/JPL-Caltech
Licence type
Attribution (
CC BY 4.0)

A team of international astronomers have discovered a galaxy that has changed classification due to unique activity within its core. The galaxy, named PBC J2333.9-2343, was previously classified as a radio galaxy, but the new research has revealed otherwise. The work is published in Monthly Notices of the Royal Astronomical Society.

PBC J2333.9-2343, located 656 844 372 light years away, has now been classified as a giant radio galaxy that is 4 million light years across and happens to have a blazar in its core; a blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet travelling close to the speed of light) directed towards an observer. Blazars are very high energy objects and are considered to be one of the most powerful phenomena in the Universe. The research has revealed that in PBC J2333.9-2343, the jet changed its direction drastically by an angle of up to 90 degrees, going from being in the plane of the sky, perpendicular to our line of sight, to pointing directly towards us.

A blazar jet is made of elemental charged particles like electrons or protons that move at velocities close to the speed of light. These move in circles around a strong magnetic field, causing the emission of radiation across the entire electromagnetic spectrum. In PBC J2333.9-2343, the jet is thought to originate from or close to the supermassive black hole in its centre.

With the jet pointing in our direction, the emission is strongly enhanced and can easily exceed that coming from the rest of the galaxy. This in turn drives high-intensity flares stronger than those coming from other radio galaxies, thus changing its categorisation.


A coloured image using the z/i/g filters taken from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) PS1, a system for wide-field astronomical imaging developed and operated by the Institute for Astronomy at the University of Hawaii. The galaxy PBC J2333.9-2343 is located at the centre of the image. Credit: the Institute for Astronomy at the University of Hawaii

The orientation of the jets to us determines how a galaxy is classified. When two jets point towards the plane of the sky, they are classified as a radio galaxy, but if one of the jets points towards us, then the AGN of the galaxy is known as a blazar. With jets in the plane of the sky and one directed at us, PBC J2333.9-2343 has been reclassified as a radio galaxy with a blazar at its centre.

Changes in the direction of jets have been described in the past, for example with X-shaped radio galaxies. This is the first time that such a phenomenon has been observed where it does not suggest the presence of two different phases of jet activity from its morphology observed at radio frequencies – the direction change appears to have taken place in the same nuclear outburst originating from the AGN.

To find out more about this mysterious galaxy, astronomers had to observe it across a wide range of the electromagnetic spectrum. PBC J2333.9-2343 was observed with radio, optical, infrared, x-ray, ultraviolet and gamma ray telescopes. Data was obtained from the German 100m-Radio Telescope Effelsberg at the Max Planck Institute for Radio Astronomy, the Yale University 1.3m-SMARTS optical telescope, and the Penn State Neil Gehrels Swift Observatory.

The team then compared the properties of PBC J2333.9-2343 with large samples of blazars and non-blazar galaxies provided by the ALeRCE (Automatic Learning for the Rapid Classification of Events) project in Chile with data from the Zwicky Transient Facility (ZTF) and the Asteroid Terrestrial-impact Last Alert System (ATLAS).

Using the observational data, the team concluded that this galaxy has a bright blazar in the centre, with two lobes in the outer areas of the jet. The lobes that are observed are related to the old jets and are no longer being fed by the emission from the nucleus, so these lobes are relics of past radio activity. The AGN no longer drives the lobes as seen in typical radio galaxies.

The team do not yet know what caused the drastic change in direction of the jets. They speculate that it could have been a merging event with another galaxy or any other relatively large object, or a strong burst of activity in the galactic nucleus after a dormant period.

Dr Lorena Hernández-García, lead author of the paper and researcher at the Millenium Institute of Astrophysics, says “We started to study this galaxy as it showed peculiar properties. Our hypothesis was that the relativistic jet of its supermassive black hole had changed its direction, and to confirm that idea we had to carry out a lot of observations.”

She adds, “The fact that we see the nucleus is not feeding the lobes anymore means that they are very old. They are the relics of past activity, whereas the structures located closer to the nucleus represent younger and active jets.”




Media Contacts:

Gurjeet Kahlon
Royal Astronomical Society
Mob: +44 (0)7802 877 700

press@ras.ac.uk

Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)7802 877699

press@ras.ac.uk

Makarena Estrella Pacheco
Millennium Institute of Astrophysics (MAS)

mestrellap@astrofisica.cl

Science Contacts:

Dr Lorena Hernández-García
Millennium Institute of Astrophysics (MAS) and University of Valparaiso

lorena.hernandez@uv.cl

Dr Francesca Panessa
Institute for Space Astrophysics and Planetology (INAF-IAPS)

francesca.panessa@inaf.it

Dr Gabriele Bruni
Institute for Space Astrophysics and Planetology (INAF-IAPS)

gabriele.bruni@inaf.it



Further information

The research appears in ‘Multiwavelength monitoring of the nucleus in PBC J2333.9-2343: the giant radio galaxy with a blazar-like core’, Hernández-García et al., Monthly Notices of The Royal Astronomical Society, in press.

Images and captions

Image: https://ras.ac.uk/media/1344 Caption: This artist's concept shows a "feeding," or active, supermassive black hole with a jet streaming outward at nearly the speed of light. Not all black holes have jets, but when they do, the jets can be pointed in any direction. If a jet happens to shine at Earth, the object is called a blazar. Credit: NASA/JPL-Caltech

Notes for Editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

All submissions to RAS journals undergo peer review, and their suitability for publication is assessed by appropriate specialist subject editors. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.



Friday, March 24, 2023

Featured Image: A Neutron Star Collision


When a massive star ends its life in a supernova explosion, it can leave behind a tiny, dense remnant called a neutron star. Sometimes, two neutron stars end up locked in a gravitational embrace, emitting gravitational waves as they dance toward each other over millions of years. When the pair finally meets, their collision lights up the electromagnetic spectrum and creates heavy elements like gold and platinum. In a recent research article, Luciano Combi (Argentine Institute of Radio Astronomy, Perimeter Institute for Theoretical Physics, and University of Guelph) and Daniel Siegel (Perimeter Institute for Theoretical Physics, University of Guelph, and University of Greifswald) simulated the nuclear reactions and electromagnetic radiation produced after the merger of a pair of neutron stars. The image above illustrates four stages of their simulation, from the moment before the neutron stars meet, when their mutual gravity stretches them into teardrop shapes, to the merger aftermath, when an accretion disk feeds the sole remaining star. To learn more about the simulations described above, be sure to check out the full article linked below!

Citation

“GRMHD Simulations of Neutron-star Mergers with Weak Interactions: r-process Nucleosynthesis and Electromagnetic Signatures of Dynamical Ejecta,” Luciano Combi and Daniel M. Siegel 2023 ApJ 944 28. doi:10.3847/1538-4357/acac29

By Kerry Hensley



Thursday, March 23, 2023

Portrait of a galactic jellyfish


A thin spiral galaxy is seen edge-on in the lower right. Its bulge and arms are very bright, mixing reddish and bluish light. Patchy blue trails extend below it, resembling tentacles, made from star-forming regions. Six small, reddish elliptical galaxies are scattered around. A very large elliptical galaxy with two cores sits by the top of the frame. Credit: ESA/Hubble NASA, M. Gullieuszik and the GASP team. 
Hi-res image

The galaxy JW100 features prominently in this image from the NASA/ESA Hubble Space Telescope, with streams of star-forming gas dripping from the disc of the galaxy like streaks of fresh paint. These tendrils of bright gas are formed by a process called ram pressure stripping, and their resemblance to dangling tentacles has led astronomers to refer to JW100 as a ‘jellyfish’ galaxy. It is located in the constellation Pegasus, over 800 million light-years away.

Ram pressure stripping occurs when galaxies encounter the diffuse gas that pervades galaxy clusters. As galaxies plough through this tenuous gas it acts like a headwind, stripping gas and dust from the galaxy and creating the trailing streamers that prominently adorn JW100. The bright elliptical patches in the image are other galaxies in the cluster that hosts JW100.

As well as JW100’s bright tendrils, this image also contains a remarkably bright area of diffuse light towards the top of this image which contains two bright blotches at its core. This is the core of IC 5338, the brightest galaxy in the galaxy cluster, known as a cD galaxy. It’s not unusual for cD galaxies to exhibit multiple nuclei, as they are thought to grow by consuming smaller galaxies, the nuclei of which can take a long time to be absorbed. The bright points of light studding its outer fringes are a rich population of globular clusters

This observation took advantage of the capabilities of Hubble’s Wide Field Camera 3, and is part of a sequence of observations designed to explore star formation in the tendrils of jellyfish galaxies. These tendrils represent star formation under extreme conditions, and could help astronomers understand the process of star formation elsewhere in the universe.

Link




Wednesday, March 22, 2023

NASA’s Webb Spots Swirling, Gritty Clouds on Remote Planet

VHS 1256
Credit: Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)

Exoplanet VHS 1256 b (NIRSpec and MIRI Emission Spectrum)
Credits: Image: NASA, ESA, CSA, Joseph Olmsted (STScI)
Science: Brittany Miles (University of Arizona), Sasha Hinkley (University of Exeter), Beth Biller (University of Edinburgh), Andrew Skemer (UC Santa Cruz)




Researchers observing with NASA’s James Webb Space Telescope have pinpointed silicate cloud features in a distant planet’s atmosphere. The atmosphere is constantly rising, mixing, and moving during its 22-hour day, bringing hotter material up and pushing colder material down. The resulting brightness changes are so dramatic that it is the most variable planetary-mass object known to date. The team, led by Brittany Miles of the University of Arizona, also made extraordinarily clear detections of water, methane and carbon monoxide with Webb’s data, and found evidence of carbon dioxide. This is the largest number of molecules ever identified all at once on a planet outside our solar system.

Cataloged as VHS 1256 b, the planet is about 40 light-years away and orbits not one, but two stars over a 10,000-year period. “VHS 1256 b is about four times farther from its stars than Pluto is from our Sun, which makes it a great target for Webb,” Miles said. “That means the planet’s light is not mixed with light from its stars.” Higher up in its atmosphere, where the silicate clouds are churning, temperatures reach a scorching 1,500 degrees Fahrenheit (830 degrees Celsius).

Within those clouds, Webb detected both larger and smaller silicate dust grains, which are shown on a spectrum. “The finer silicate grains in its atmosphere may be more like tiny particles in smoke,” noted co-author Beth Biller of the University of Edinburgh in Scotland. “The larger grains might be more like very hot, very small sand particles.”

VHS 1256 b has low gravity compared to more massive brown dwarfs, which means that its silicate clouds can appear and remain higher in its atmosphere where Webb can detect them. Another reason its skies are so turbulent is the planet’s age. In astronomical terms, it’s quite young. Only 150 million years have passed since it formed – and it will continue to change and cool over billions of years.

In many ways, the team considers these findings to be the first “coins” pulled out of a spectrum that researchers view as a treasure chest of data. In many ways, they’ve only begun identifying its contents. “We’ve identified silicates, but better understanding which grain sizes and shapes match specific types of clouds is going to take a lot of additional work,” Miles said. “This is not the final word on this planet – it is the beginning of a large-scale modeling effort to fit Webb’s complex data.”

Although all of the features the team observed have been spotted on other planets elsewhere in the Milky Way by other telescopes, other research teams typically identified only one at a time. “No other telescope has identified so many features at once for a single target,” said co-author Andrew Skemer of the University of California, Santa Cruz. “We’re seeing a lot of molecules in a single spectrum from Webb that detail the planet’s dynamic cloud and weather systems.”

The team came to these conclusions by analyzing data known as spectra gathered by two instruments aboard Webb, the Near-Infrared Spectrograph (NIRSpec) and the Mid-Infrared Instrument (MIRI). Since the planet orbits at such a great distance from its stars, the researchers were able to observe it directly, rather than using the transit technique or a coronagraph to take these data.

There will be plenty more to learn about VHS 1256 b in the months and years to come as this team – and others – continue to sift through Webb’s high-resolution infrared data. “There’s a huge return on a very modest amount of telescope time,” Biller added. “With only a few hours of observations, we have what feels like unending potential for additional discoveries.”

What might become of this planet billions of years from now? Since it’s so far from its stars, it will become colder over time, and its skies may transition from cloudy to clear.

The researchers observed VHS 1256 b as part of Webb’s Early Release Science program , which is designed to help transform the astronomical community’s ability to characterize planets and the disks where they form.

The team's paper, entitled “The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b,” will be published in The Astrophysical Journal Letters on March 22.

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.




About This Release

Credits:

Media Contact:

Claire Blome
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents:
 


Tuesday, March 21, 2023

First results from ESO telescopes on the aftermath of DART’s asteroid impact

PR Image eso2303a
Evolution of the cloud of debris around Dimorphos and Didymos after the DART impact

PR Image eso2303b
Artist’s impression of the aftermath of the DART impact on Dimorphos


Videos

Evolution of the cloud of debris around Dimorphos and Didymos after the DART impact
Evolution of the cloud of debris around Dimorphos and Didymos after the DART impact

How did the polarisation of light change after the DART spacecraft collided with the asteroid Dimorphos?
How did the polarisation of light change after the DART spacecraft collided with the asteroid Dimorphos?



Using ESO’s Very Large Telescope (VLT), two teams of astronomers have observed the aftermath of the collision between NASA’s Double Asteroid Redirection Test (DART) spacecraft and the asteroid Dimorphos. The controlled impact was a test of planetary defence, but also gave astronomers a unique opportunity to learn more about the asteroid’s composition from the expelled material.

On 26 September 2022 the DART spacecraft collided with the asteroid Dimorphos in a controlled test of our asteroid deflection capabilities. The impact took place 11 million kilometres away from Earth, close enough to be observed in detail with many telescopes. All four 8.2-metre telescopes of ESO’s VLT in Chile observed the aftermath of the impact, and the first results of these VLT observations have now been published in two papers.

Asteroids are some of the most basic relics of what all the planets and moons in our Solar System were created from,” says Brian Murphy, a PhD student at the University of Edinburgh in the UK and co-author of one of the studies. Studying the cloud of material ejected after DART’s impact can therefore tell us about how our Solar System formed. “Impacts between asteroids happen naturally, but you never know it in advance,” continues Cyrielle Opitom, an astronomer also at the University of Edinburgh and lead author of one of the articles. “DART is a really great opportunity to study a controlled impact, almost as in a laboratory.

Opitom and her team followed the evolution of the cloud of debris for a month with the Multi Unit Spectroscopic Explorer (MUSE) instrument at ESO’s VLT. They found that the ejected cloud was bluer than the asteroid itself was before the impact, indicating that the cloud could be made of very fine particles. In the hours and days that followed the impact other structures developed: clumps, spirals and a long tail pushed away by the Sun’s radiation. The spirals and tail were redder than the initial cloud, and so could be made of larger particles.

MUSE allowed Opitom’s team to break up the light from the cloud into a rainbow-like pattern and look for the chemical fingerprints of different gases. In particular, they searched for oxygen and water coming from ice exposed by the impact. But they found nothing. ”Asteroids are not expected to contain significant amounts of ice, so detecting any trace of water would have been a real surprise,” explains Opitom. They also looked for traces of the propellant of the DART spacecraft, but found none. ”We knew it was a long shot,” she says, “as the amount of gas that would be left in the tanks from the propulsion system would not be huge. Furthermore, some of it would have travelled too far to detect it with MUSE by the time we started observing.”

Another team, led by Stefano Bagnulo, an astronomer at the Armagh Observatory and Planetarium in the UK, studied how the DART impact altered the surface of the asteroid. 

When we observe the objects in our Solar System, we are looking at the sunlight that is scattered by their surface or by their atmosphere, which becomes partially polarised,” explains Bagnulo. This means that light waves oscillate along a preferred direction rather than randomly.  “Tracking how the polarisation changes with the orientation of the asteroid relative to us and the Sun reveals the structure and composition of its surface.

Bagnulo and his colleagues used the FOcal Reducer/low dispersion Spectrograph 2 (FORS2) instrument at the VLT to monitor the asteroid, and found that the level of polarisation suddenly dropped after the impact. At the same time, the overall brightness of the system increased. One possible explanation is that the impact exposed more pristine material from the interior of the asteroid. ”Maybe the material excavated by the impact was intrinsically brighter and less polarising than the material on the surface, because it was never exposed to solar wind and solar radiation,” says Bagnulo.

Another possibility is that the impact destroyed particles on the surface, thus ejecting much smaller ones into the cloud of debris. ”We know that under certain circumstances, smaller fragments are more efficient at reflecting light and less efficient at polarising it,” explains Zuri Gray, a PhD student also at the Armagh Observatory and Planetarium. 

The studies by the teams led by Bagnulo and Opitom show the potential of the VLT when its different instruments work together. In fact, in addition to MUSE and FORS2, the aftermath of the impact was observed with two other VLT instruments, and analysis of these data is ongoing. “This research took advantage of a unique opportunity when NASA impacted an asteroid,” concludes Opitom, “so it cannot be repeated by any future facility. This makes the data obtained with the VLT around the time of impact extremely precious when it comes to better understanding the nature of asteroids.




More Information

The research highlighted in the first part of this release was presented in the paper “Morphology and spectral properties of the DART impact ejecta with VLT/MUSE” to appear in Astronomy & Astrophysics (doi:10.1051/0004-6361/202345960). The second part of this release refers to the paper “Optical spectropolarimetry of binary asteroid Didymos-Dimorphos before and after the DART impact” to appear in Astrophysical Journal Letters (doi:10.3847/2041-8213/acb261).

The team who conducted the first study is composed of C. Opitom (Institute for Astronomy, University of Edinburgh, UK [Edinburgh]), B. Murphy (Edinburgh), C. Snodgrass (Edinburgh), S. Bagnulo (Armagh Observatory & Planetarium, UK [Armagh]), S. F. Green (School of Physical Sciences, The Open University, UK), M. M. Knight (United States Naval Academy, USA), J. de Léon (Instituto de Astrofísica de Canarias, Spain), J.-Y. Li (Planetary Science Institute, USA), and D. Gardener (Edinburgh).

The team who conducted the second study is composed of S. Bagnulo (Armagh), Z. Gray (Armagh), M. Granvik (Department of Physics, University of Helsinki, Finland [Helsinki]; Asteroid Engineering Laboratory, Luleå University of Technology, Sweden), A. Cellino (INAF – Osservatorio Astrofisico di Torino, Italy), L. Kolokolova (Department of Astronomy, University of Maryland, USA), K. Muinonen (Helsinki), O. Muñoz (Instituto de Astrofísica de Andalucía, CSIC, Spain), C. Opitom (Edinburgh), A. Penttila (Helsinki), and Colin Snodgrass (Edinburgh).

Johns Hopkins Applied Physics Lab built and operated the DART spacecraft and manages the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. LICIACube is a project of the Italian Space Agency (ASI), carried out by Argotec. For more information about the DART mission, visit https://www.nasa.gov/dart or https://dart.jhuapl.edu

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration in astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.

Cyrielle Opitom
School of Physics and Astronomy, University of Edinburgh
Edinburgh, United Kingdom
Tel: +44 (0)131 668 8350
Email:
copi@roe.ac.uk

Zuri Gray
Armagh Observatory and Planetarium
Armagh, United Kingdom
Tel: +353831185135
Email:
zuri.gray@armagh.ac.uk

Juan Carlos Muñoz Mateos
ESO Media Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org

Source: ESO/News


Monday, March 20, 2023

Messier 55

This image shows just a portion of M55, the cluster as a whole appears spherical because the stars’ intense gravitational attraction pulls them together. Hubble’s clear view above Earth’s atmosphere resolves individual stars in this cluster. Ground-based telescopes can also resolve individual stars in M55, but fewer stars are visible.  Credits: NASA, ESA, A. Sarajedini (Florida Atlantic University), and M. Libralato (STScI, ESA, JWST); Image Processing: Gladys Kober

Even the great observer Charles Messier had trouble seeing this globular cluster when building his Catalog of Nebulae and Star Clusters. It was originally spotted in 1752 by a French astronomer in what is now South Africa, but it took until 1778 for Messier to catalog it.

This is because, while Messier 55 is large and reasonably bright, it is lacking a dense core and many of its stars are quite faint, making it hard to observe in non-optimal conditions.

For northern observers M55 sits low in the sky, so the view is hampered by a thicker layer of atmosphere, as well as water vapor and light pollution. This hindered Messier’s view from his Paris observatory. When he cataloged it, Messier noted that “its light is even and does not appear to contain any star.”

Though this image shows just a portion of M55, the cluster as a whole appears spherical because the stars’ intense gravitational attraction pulls them together. Hubble’s clear view above Earth’s atmosphere resolves individual stars in this cluster. Ground-based telescopes can also resolve individual stars in M55, but fewer stars are visible.

Even in skies with low light pollution, viewed through binoculars, the cluster will only appear as a round hazy patch. Small telescopes can begin to resolve individual stars in M55, while larger aperture telescopes will pick out low magnitude stars easily. The star cluster is found in the southern part of the constellation Sagittarius and is easiest to spot in August.

The globular cluster is about 20,000 light-years away and has a diameter of about 100 light-years. It contains an estimated 100,000 stars with 55 variable stars whose brightness changes.


The smaller, ground-based image (lower left) taken by the Digital Sky Survey illustrates the area of Messier 55 that Hubble observed.Credits: NASA, ESA, A. Sarajedini (Florida Atlantic University), M. Libralato (STScI, ESA, JWST), and Digital Sky Survey; Image Processing: Gladys Kober
 
This star chart for M55 represents the view from mid-northern latitudes for the given month and time.
Credits: Image courtesy of Stellarium
Editor: Andrea Gianopoulos

Source: NASA/Hubble


Friday, March 17, 2023

The First Bubble in the Intergalactic Stew

A supercomputer simulation of a galaxy protocluster similar to costco-i that is surrounded by hot gas (yellow) boiling amid an intergalactic medium filled with much cooler gas (blue). Credit: The Three Hundred Collaboration

Maunakea, Hawaiʻi – Astrophysicists using W. M. Keck Observatory on Maunakea in Hawaiʻi have discovered a galaxy protocluster in the early universe surrounded by gas that is surprisingly hot.

This scorching gas hugs a region that consists of a giant collection of galaxies called COSTCO-I. Observed when the universe was 11 billion years younger, COSTCO-I dates back to a time when the gas that filled most of the space outside of visible galaxies, called the intergalactic medium, was significantly cooler. During this era, known as ‘Cosmic Noon,’ galaxies in the universe were at the peak of forming stars; their stable environment was full of the cold gas they needed to form and grow, with temperatures measuring around 10,000 degrees Celsius.

In contrast, the cauldron of gas associated with COSTCO-I seems ahead of its time, roasting in a hot, complex state; its temperatures resemble the present-day intergalactic medium, which sear from 100,000 to over 10 million degrees Celsius, often called the ‘Warm-Hot Intergalactic Medium’ (WHIM).

This discovery marks the first time astrophysicists have identified a patch of ancient gas showing characteristics of the modern-day intergalactic medium; it is by far the earliest known part of the universe that’s boiled up to temperatures of today’s WHIM.

The research, which is led by a team from the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, part of the University of Tokyo), is published in today’s issue of The Astrophysical Journal Letters.

A simulated visualization depicts the scenario of large-scale heating around a galaxy protocluster, using data from supercomputer simulations. This is believed to be a similar scenario to that observed in the COSTCO-I protocluster. The yellow area in the center of the picture represents a huge, hot gas blob spanning several million light years. The blue color indicates cooler gas located in the outer regions of the protocluster and the filaments connecting the hot gas with other structures. The white points embedded within the gas distribution is light emitted from stars. Simulation Credit: The THREE HUNDRED Collaboration

“If we think about the present-day intergalactic medium as a gigantic cosmic stew that is boiling and frothing, then COSTCO-I is probably the first bubble that astronomers have observed, during an era in the distant past when most of the pot was still cold,” said Khee-Gan Lee, an assistant professor at Kavli IPMU and co-author of the paper.

The team observed COSTCO-I when the universe was only a quarter of its present age. The galaxy protocluster has a total mass of over 400 trillion times the mass of our Sun and spans several million light years.

While astronomers are now regularly discovering such distant galaxy protoclusters, the team found something strange when they checked the ultraviolet spectra covering COSTCO-I’s region using Keck Observatory’s Low Resolution Imaging Spectrometer (LRIS). Normally, the large mass and size of galaxy protoclusters would cast a shadow when viewed in the wavelengths specific to neutral hydrogen associated with the protocluster gas. 

No such absorption shadow was found at the location of COSTCO-I. 

“We were surprised because hydrogen absorption is one of the common ways to search for galaxy protoclusters, and other protoclusters near COSTCO-I do show this absorption signal,” said Chenze Dong, a Master’s degree student at the University of Tokyo and lead author of the study. “The sensitive ultraviolet capabilities of LRIS on the Keck I Telescope allowed us to make hydrogen gas maps with high confidence, and the signature of COSTCO-I simply wasn’t there.”

The absence of neutral hydrogen tracing the protocluster implies the gas in the protocluster must be heated to possibly million-degree temperatures, far above the cool state expected for the intergalactic medium at that distant epoch. 


This figure compares observed hydrogen absorption in vicinity of the COSTCO-I galaxy protocluster (top panel), compared with the expected absorption given the presence of the protocluster as computed from computer simulations. Strong hydrogen absorption is shown in red, lower while weak absorption is shown in blue, and intermediate absorption is denoted as green or yellow colors. The black dots in the figure show where astronomers have detected galaxies in that area. At the position of COSTCO-I (with its center marked as a star in both panels), astronomers found that the observed hydrogen absorption is not of much different from the mean value of the universe at that epoch. This is surprising because one would expect to find extended hydrogen absorption spanning millions of light years in that region corresponding to the high observed concentration of galaxies. This figure is adapted from the Dong et al. 2023 Astrophysical Journal Letters article. Credit: Dong et al.

“The properties and origin of the WHIM remains one of the biggest questions in astrophysics right now. To be able to glimpse at one of the early heating sites of the WHIM will help reveal the mechanisms that caused the intergalactic gas to boil up into the present-day froth,” said Lee. “There are a few possibilities for how this can happen, but it might be either from gas heating up as they collide with each other during gravitational collapse, or giant radio jets might be pumping energy from supermassive black holes within the protocluster.”

The intergalactic medium serves as the gas reservoir that feeds raw material into galaxies. Hot gas behaves differently from cold gas, which determines how easily they can stream into galaxies to form stars. As such, having the ability to directly study the growth of the WHIM in the early universe enables astronomers to build up a coherent picture of galaxy formation and the lifecycle of gas that fuels it.

Source: W. M. Keck Observatory


About LRIS

The Low Resolution Imaging Spectrometer (LRIS) is a very versatile and ultra-sensitive visible-wavelength imager and spectrograph built at the California Institute of Technology by a team led by Prof. Bev Oke and Prof. Judy Cohen and commissioned in 1993. Since then it has seen two major upgrades to further enhance its capabilities: the addition of a second, blue arm optimized for shorter wavelengths of light and the installation of detectors that are much more sensitive at the longest (red) wavelengths. Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument’s high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe. LRIS was used in observing distant supernovae by astronomers who received the Nobel Prize in Physics in 2011 for research determining that the universe was speeding up in its expansion.

About W. M. Keck Observatory

The W. M. Keck Observatory telescopes are among the most scientifically productive on Earth. The two 10-meter optical/infrared telescopes atop Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometers, and world-leading laser guide star adaptive optics systems. Some of the data presented herein were obtained at Keck Observatory, which is a private 501(c) 3 non-profit organization operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain..