Monday, November 30, 2009

Black Hole Caught Zapping Galaxy into Existence?

Black hole zapping a
galaxy into existence

ESO PR Photo 46b/09
Revisiting the quasar
without a home


How do quasars get dressed?

Which come first, the supermassive black holes that frantically devour matter or the enormous galaxies where they reside? A brand new scenario has emerged from a recent set of outstanding observations of a black hole without a home: black holes may be “building” their own host galaxy. This could be the long-sought missing link to understanding why the masses of black holes are larger in galaxies that contain more stars.

“The ‘chicken and egg’ question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today,” says lead author David Elbaz. “Our study suggests that supermassive black holes can trigger the formation of stars, thus ‘building’ their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars.”

To reach such an extraordinary conclusion, the team of astronomers conducted extensive observations of a peculiar object, the nearby quasar HE0450-2958 (see ESO PR 23/05 for a previous study of this object), which is the only one for which a host galaxy has not yet been detected [1]. HE0450-2958 is located some 5 billion light-years away.

Until now, it was speculated that the quasar’s host galaxy was hidden behind large amounts of dust, and so the astronomers used a mid-infrared instrument on ESO’s Very Large Telescope for the observations [2]. At such wavelengths, dust clouds shine very brightly, and are readily detected. “Observing at these wavelengths would allow us to trace dust that might hide the host galaxy,” says Knud Jahnke, who led the observations performed at the VLT. “However, we did not find any. Instead we discovered that an apparently unrelated galaxy in the quasar’s immediate neighbourhood is producing stars at a frantic rate.”

These observations have provided a surprising new take on the system. While no trace of stars is revealed around the black hole, its companion galaxy is extremely rich in bright and very young stars. It is forming stars at a rate equivalent to about 350 Suns per year, one hundred times more than rates for typical galaxies in the local Universe.

Earlier observations had shown that the companion galaxy is, in fact, under fire: the quasar is spewing a jet of highly energetic particles towards its companion, accompanied by a stream of fast-moving gas. The injection of matter and energy into the galaxy indicates that the quasar itself might be inducing the formation of stars and thereby creating its own host galaxy; in such a scenario, galaxies would have evolved from clouds of gas hit by the energetic jets emerging from quasars.

“The two objects are bound to merge in the future: the quasar is moving at a speed of only a few tens of thousands of km/h with respect to the companion galaxy and their separation is only about 22 000 light-years,” says Elbaz. “Although the quasar is still ‘naked’, it will eventually be ‘dressed’ when it merges with its star-rich companion. It will then finally reside inside a host galaxy like all other quasars.”

Hence, the team have identified black hole jets as a possible driver of galaxy formation, which may also represent the long-sought missing link to understanding why the mass of black holes is larger in galaxies that contain more stars [3].

“A natural extension of our work is to search for similar objects in other systems,” says Jahnke.

Future instruments, such as the Atacama Large Millimeter/submillimeter Array, the European Extremely Large Telescope and the NASA/ESA/CSA James Webb Space Telescope will be able to search for such objects at even larger distances from us, probing the connection between black holes and the formation of galaxies in the more distant Universe.

Notes

[1] Supermassive black holes are found in the cores of most large galaxies; unlike the inactive and starving one sitting at the centre of the Milky Way, a fraction of them are said to be active, as they eat up enormous amounts of material. These frantic actions produce a copious release of energy across the whole electromagnetic spectrum; particularly spectacular is the case of quasars, where the active core is so overwhelmingly bright that it outshines the luminosity of the host galaxy.

[2] This part of the study is based on observations performed at mid-infrared wavelengths, with the powerful VLT spectrometer and imager for the mid-infrared (VISIR) instrument at the VLT, combined with additional data including: spectra acquired using VLT-FORS, optical and infrared images from the NASA/ESA Hubble Space Telescope, and radio observations from the Australia Telescope National Facility.

[3] Most galaxies in the local Universe contain a supermassive black hole with a mass about 1/700th the mass of the stellar bulge. The origin of this black hole mass versus stellar mass relation is one of the most debated subjects in modern astrophysics.
More Information

This research was presented in papers published in the journal Astronomy & Astrophysics: “Quasar induced galaxy formation: a new paradigm?” by Elbaz et al., and in the Astrophysical Journal “The QSO HE0450-2958: Scantily dressed or heavily robed? A normal quasar as part of an unusual ULIRG” by Jahnke et al.

The team is composed of David Elbaz (Service d’Astrophysique, CEA Saclay, France), Knud Jahnke (Max Planck Institute for Astronomy, Heidelberg, Germany), Eric Pantin (Service d’Astrophysique, CEA Saclay, France), Damien Le Borgne (Paris University 6 and CNRS, Institut d'Astrophysique de Paris, France) and Géraldine Letawe (Institut d'Astrophysique et de Géophysique, Université de Liège, Belgium).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Web page of David Elbaz: http://david.elbaz3.free.fr
Web page of Knud Jahnke: http://www.mpia.de/coevolution

Contacts

David Elbaz
CEA, Saclay, France
Phone: +33 (0)1 69 08 54 39

Knud Jahnke
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528 398


ESO La Silla - Paranal - ELT Press Officer: Henri Boffin - +49 89 3200 6222 - hboffin@eso.org
ESO Press Officer in Chile: Valeria Foncea - +56 2 463 3123 - vfoncea@eso.org

National contacts for the media: http://www.eso.org/public/outreach/eson/

Friday, November 27, 2009

Herschel Takes a Peek at the Ingredients of the Galaxies

The European Space Agency has today (25th Nov) released spectacular new observations from the Herschel Space Observatory, including the UK-led SPIRE instrument. Spectrometers on board all three Hershel instruments have been used to analyse the light from objects inside our galaxy and from other galaxies, producing some of the best measurements yet of atoms and molecules involved in the birth and death of stars.

The SPIRE Fourier Transform Spectrometer (FTS), which covers the whole submillimetre wavelength range between 194 and 672 microns, will be invaluable to astronomers in determining the composition, temperature, density and mass of interstellar material in nearby galaxies and in star-forming clouds in our own galaxy.

Professor Keith Mason, Chief Executive of the Science and Technology Facilities Council (STFC), which provides the UK funding for Herschel, said “Herschel has once again returned some spectacular indications of what is to come. This wealth of new data exists because of the dedication and skill of the scientists working on this project and will vastly expand our knowledge of the life cycle of stars.”

Professor Matt Griffin of Cardiff University, who is the SPIRE Principal Investigator, said: “Some trial observations have been made during initial testing of the spectrometer, and it is clear that the data are of excellent quality, and even these initial results are very exciting scientifically, especially our ability to trace the presence of water throughout the Universe. The spectrometer was technically very challenging to build, and the whole team is delighted that it works so well.”

Professor Glenn White, of the Open University and STFC’s Rutherford Appleton Laboratory, and an expert in the field of molecular astronomy for which the SPIRE spectrometer is designed, said: "The exquisite sensitivity and quality of these early data reveal spectacular spectroscopic signatures that show the diversity and complexity of the birth processes common to the formation of star and planets. Herschel is going to help us trace the evolution and life of stars, to map the chemistry in our galactic neighbourhood, and allow us to detect water and complex molecules in distant galaxies."

Professor Mike Barlow of University College London, who will use the SPIRE instrument to study the material ejected into space by stars near the end of their lives, said: “The unprecedented spectral range and the wealth of detail revealed by the SPIRE spectrometer, in a hitherto almost unexplored region of the spectrum, promises to revolutionise our understanding of the formation of molecules and dust particles during the final stages of the lives of stars. These dust particles go on to play a crucial role in the formation of new stars and provide the raw material for the planetesimals and planets that form around them."


Figure 1 shows part of the SPIRE spectrum of VY Canis Majoris (VY CMa), a giant star near the end of its life, which is ejecting huge amounts of gas and dust into interstellar space, including elements such as carbon, oxygen and nitrogen (which form the raw material for future planets, and eventually life). The inset is a SPIRE camera image of VY CMa, in which it appears as a bright point-source near the edge of a large extended cloud. The spectrum is amazingly rich, with prominent features from carbon monoxide (CO) and water (H2O). More than 200 other spectral features have also been identified, many due to water, showing that the star is surrounded by large quantities of hot steam. Observations like these will help to establish a detailed picture of the mass loss from stars and the complex chemistry occurring in their extended envelopes.


Figure 2 is a spectrum of one position on the Orion Bar, part of the Orion nebula in which the gas on the edge of the nebula is partly ionised by intense radiation from nearby hot young stars. The inset shows a near infrared picture from NASA’s Spitzer Space Telescope. The SPIRE spectrum has many features from CO, appearing as the dominating narrow lines, seen here for the first time together in a single spectrum. These mean that the entire spectrum is observed at the same time and calibrated together. The brightness of the spectral features will allow astronomers to estimate the temperature and density of interstellar gas. The spectrum also shows the first detection of an emission feature from the molecular ion methylidynium (CH+), a key building block for larger carbon-bearing molecules. This and similar regions are large, and the SPIRE spectrometer’s will be extremely powerful in characterising how the gas properties vary within such sources.

Figure 3 shows a SPIRE spectrum of Arp 220, a galaxy 250 million light years away from Earthwith very active star formation triggered when two large spiral galaxies collided to produce the complex object we see today. Arp 220 is an important template for understanding even more distant galaxies and galaxy formation in the early universe. The spectrum shows many emission features of CO, and H2O features are seen both in emission and absorption. The inset is an optical image of Arp 220 made with the Hubble Space Telescope.

Figure 4 shows the spectrum of Messier 82 (M82), a nearby galaxy (only 12 million light years away) with very active star formation. It is part of an interacting group of galaxies including the large spiral M81. The accompanying image (inset) is a spectacular three-colour composite picture of the two galaxies made with the SPIRE camera, showing material being stripped from M81 by the gravitational interaction with M82. The SPIRE spectrum of M82 shows strong emission lines from CO over the whole wavelength range, as well as emission lines from atomic carbon and ionized nitrogen.

The SPIRE FTS observations were carried out as part of the performance verification of the observatory. The scientific rights of some of these observations are owned by Key Programme consortia: for Arp 220 and M82, the Nearby Galaxies consortium lead by C. Wilson; for VY CMa the MESS consortium led by M. Groenewegen; for the Orion Bar, the Evolution of Interstellar Dust consortium led by A. Abergel.

Notes for editors

Images (hires) :
Figure 1 - Figure 2 - Figure 3 - Figure 4

Further details of the new observations by SPIRE, and by the other two Herschel instruments, may be found at the ESA Herschel Science Centre web site .


The SPIRE Fourier Transform Spectrometer covers the submillimetre wavelength range (194–672 microns), and provides a complete survey of the source spectrum over that whole wavelength range in a single observation, something that has never been possible with previous submillimetre instruments.

At the same time as measuring the intensities of narrow spectral features from gas atoms and molecules, the SPIRE spectrometer also accurately measures the broadband emission from dust. With its multi-pixel detector arrays, it can also produce spectral images, allowing astronomers to measure the spatial variation in the interstellar material.

Herschel and SPIRE

The European Space Agency’s Herschel satellite carries the largest telescope to be flown in space and is designed to study the Universe at far infrared wavelengths. It will reveal the early stages of star birth and galaxy formation; it will examine the composition and chemistry of comets and planetary atmospheres in the Solar System; and it will examine the star-dust ejected by dying stars into interstellar space which form the raw material for planets like the Earth.

The SPIRE instrument has been built by a consortium of 18 institutes in eight countries (UK, France, Italy, Spain, Sweden, USA, Canada and China), led by Prof. Matt Griffin of Cardiff University. The instrument was assembled at the STFC’s Rutherford Appleton Laboratory in the UK.

UK Participation in Herschel

The UK contribution to Herschel includes leadership of the international consortium that designed and built the SPIRE instrument. The UK SPIRE team is also responsible for the development of software for instrument control and processing of the scientific data, and leads the in-flight testing and operation of SPIRE. The Herschel programme in the UK is funded by the Science and Technology Facilities Council.

SPIRE comprises a three band imaging photometer and an imaging Fourier transform spectrometer and has been designed and built by a consortium of institutes including a number from the UK (Cardiff University; Imperial College, London; University College London’s Mullard Space Science Laboratory; the University of Sussex; and STFC’s Rutherford Appleton Laboratory and UK Astronomy Technology Centre). The UK is also leading the development of software for controlling the instrument from the ground and processing the data to produce scientific results. The SPIRE Operations Centre, responsible for delivering all instrument software to ESA, and for day-to-day instrument monitoring, operation, and calibration, is located at the Rutherford Appleton Laboratory with contributions from the Imperial College and Cardiff groups. The UK SPIRE institutes, together with astronomers in many other UK universities, are also strongly involved in the Herschel scientific programmes which have already been selected for the first 18 months of Herschel observations, and cover a wide range of science topics from our own solar system to the most distant galaxies.

Contacts

Julia Short
Press Officer
Science and Technology Facilities Council
Tel: +44 (0) 1793 44 2012


Mr. Chris North
UK Herschel Outreach Officer
School of Physics and Astronomy
Cardiff University
Tel: +44 (0)29 208 70537 or 76403

Prof. Matt Griffin
Herschel-SPIRE Principal Investigator
School of Physics and Astronomy
Cardiff University
Tel: +44 (0)29 2087 4203


Prof. Glenn White
Dept. of Physics & Astronomy
The Open University
Walton Hall
Milton Keynes MK7 6AA
Tel: +44 (0)1908 652 735


Prof. Mike Barlow
Department of Physics and Astronomy
University College London
Gower Street
London WC1E 6BT
Tel: +44 (0)20 7679 7160

Fermi Telescope Peers Deep into Microquasar

In Cygnus X-3, an accretion disk surrounding a black hole or neutron star orbits close to a hot, massive star. Gamma rays (purple, in this illustration) likely arise when fast-moving electrons above and below the disk collide with the star's ultraviolet light. Fermi sees more of this emission when the disk is on the far side of its orbit. Credit: NASA's Goddard Space Flight Center

Brighter colors indicate greater numbers of gamma rays detected in this Fermi LAT view of a region centered on the position of Cygnus X-3 (circled). The brightest sources are pulsars. Credit: NASA/DOE/Fermi LAT Collaboration

This image locates the view around Cygnus X-3 within Fermi's all-sky map.
Credit: NASA/DOE/Fermi LAT Collaboration

NASA's Fermi Gamma-ray Space Telescope has made the first unambiguous detection of high-energy gamma-rays from an enigmatic binary system known as Cygnus X-3. The system pairs a hot, massive star with a compact object -- either a neutron star or a black hole -- that blasts twin radio-emitting jets of matter into space at more than half the speed of light.

Astronomers call these systems microquasars. Their properties -- strong emission across a broad range of wavelengths, rapid brightness changes, and radio jets -- resemble miniature versions of distant galaxies (called quasars and blazars) whose emissions are thought to be powered by enormous black holes.

"Cygnus X-3 is a genuine microquasar and it's the first for which we can prove high-energy gamma-ray emission," said Stéphane Corbel at Paris Diderot University in France.

The system, first detected in 1966 as among the sky's strongest X-ray sources, was also one of the earliest claimed gamma-ray sources. Efforts to confirm those observations helped spur the development of improved gamma-ray detectors, a legacy culminating in the Large Area Telescope (LAT) aboard Fermi.

At the center of Cygnus X-3 lies a massive Wolf-Rayet star. With a surface temperature of 180,000 degrees F, or about 17 times hotter than the sun, the star is so hot that its mass bleeds into space in the form of a powerful outflow called a stellar wind. "In just 100,000 years, this fast, dense wind removes as much mass from the Wolf-Rayet star as our sun contains," said Robin Corbet at the University of Maryland, Baltimore County.

Every 4.8 hours, a compact companion embedded in a disk of hot gas wheels around the star. "This object is most likely a black hole, but we can't yet rule out a neutron star," Corbet noted.

Fermi's LAT detects changes in Cygnus X-3's gamma-ray output related to the companion's 4.8-hour orbital motion. The brightest gamma-ray emission occurs when the disk is on the far side of its orbit. "This suggests that the gamma rays arise from interactions between rapidly moving electrons above and below the disk and the star's ultraviolet light," Corbel explained.

When ultraviolet photons strike particles moving at an appreciable fraction of the speed of light, the photons gain energy and become gamma rays. "The process works best when an energetic electron already heading toward Earth suffers a head-on collision with an ultraviolet photon," added Guillaume Dubus at the Laboratory for Astrophysics in Grenoble, France. "And this occurs most often when the disk is on the far side of its orbit."

Through processes not fully understood, some of the gas falling toward Cygnus X-3's compact object instead rushes outward in a pair of narrow, oppositely directed jets. Radio observations clock gas motion within these jets at more than half the speed of light.

Between Oct. 11 and Dec. 20, 2008, and again between June 8 and Aug. 2, 2009, Cygnus X-3 was unusually active. The team found that outbursts in the system's gamma-ray emission preceded flaring in the radio jet by roughly five days, strongly suggesting a relationship between the two.

The findings, published today in the electronic edition of Science, will provide new insight into how high-energy particles become accelerated and how they move through the jets.

Related Links:

Fermi Telescope Caps First Year With Glimpse of Space-Time
Gamma-Rays from High-Mass X-Ray Binaries

Francis Reddy
NASA's Goddard Space Flight Center

Wednesday, November 25, 2009

Prometheus Plays Tug of War with One of Saturn's Rings

Saturn's moon Prometheus, orbiting near the streamer-channels it has created in the thin F ring, casts a shadow on the A ring in this image taken a little more than a week after the planet's August 2009 equinox. Image credit: NASA/JPL/Space Science Institute

The diminutive moon Prometheus whips gossamer ice particles out of Saturn's F ring in this image taken by the Cassini spacecraft on Aug. 21, 2009. The moon and the ring have eccentric, offset orbits, so Prometheus dips in and out of the F ring as it travels around Saturn. Its gravitational force drags the dust-sized particles at the edge of the F ring along for the ride.

The ability of the potato-shaped Prometheus to pull material out of the F ring was first theorized in the late 1990s and finally imaged by Cassini in 2004. But because these so-called "streamer-channels" have constantly shifted as Prometheus and the F ring have moved, the F ring has never looked the same twice. The gravitational pull of other moons on other rings has created waves in the edges, but nothing quite as extreme as the streamer-channels of Prometheus.

Cosmic "Dig" Reveals Vestiges of the Milky Way's Building Blocks

ESO PR Photo 45a/09
The star cluster Terzan 5

ESO PR Photo 45b/09
Around star cluster Terzan 5

ESO PR Video 45a/09
Zooming on Terzan 5

Peering through the thick dust clouds of our galaxy’s "bulge" (the myriads of stars surrounding its centre), and revealing an amazing amount of detail, a team of astronomers has unveiled an unusual mix of stars in the stellar grouping known as Terzan 5. Never observed anywhere in the bulge before, this peculiar "cocktail" of stars suggests that Terzan 5 is in fact one of the bulge's primordial building blocks, most likely the relic of a proto-galaxy that merged with the Milky Way during its very early days.

“The history of the Milky Way is encoded in its oldest fragments, globular clusters and other systems of stars that have witnessed the entire evolution of our galaxy,” says Francesco Ferraro from the University of Bologna, lead author of a paper appearing in this week’s issue of the journal Nature. “Our study opens a new window on yet another piece of our galactic past.”

Like archaeologists, who dig through the dust piling up on top of the remains of past civilisations and unearth crucial pieces of the history of mankind, astronomers have been gazing through the thick layers of interstellar dust obscuring the bulge of the Milky Way and have unveiled an extraordinary cosmic relic.

The target of the study is the star cluster Terzan 5. The new observations show that this object, unlike all but a few exceptional globular clusters, does not harbour stars which are all born at the same time — what astronomers call a “single population” of stars. Instead, the multitude of glowing stars in Terzan 5 formed in at least two different epochs, the earliest probably some 12 billion years ago and then again 6 billion years ago.

“Only one globular cluster with such a complex history of star formation has been observed in the halo of the Milky Way: Omega Centauri,” says team member Emanuele Dalessandro. “This is the first time we see this in the bulge.”

The galactic bulge is the most inaccessible region of our galaxy for astronomical observations: only infrared light can penetrate the dust clouds and reveal its myriads of stars. “It is only thanks to the outstanding instruments mounted on ESO’s Very Large Telescope,” says co-author Barbara Lanzoni, “that we have finally been able to ‘disperse the fog’ and gain a new perspective on the origin of the galactic bulge itself.”

A technical jewel lies behind the scenes of this discovery, namely the Multi-conjugate Adaptive Optics Demonstrator (MAD), a cutting-edge instrument that allows the VLT to achieve superbly detailed images in the infrared. Adaptive optics is a technique through which astronomers can overcome the blurring that the Earth’s turbulent atmosphere inflicts on astronomical images obtained from ground-based telescopes; MAD is a prototype of even more powerful, next-generation adaptive optics instruments [1].

Through the sharp eye of the VLT, the astronomers also found that Terzan 5 is more massive than previously thought: along with the complex composition and troubled star formation history of the system, this suggests that it might be the surviving remnant of a disrupted proto-galaxy, which merged with the Milky Way during its very early stages and thus contributed to form the galactic bulge.

“This could be the first of a series of further discoveries shedding light on the origin of bulges in galaxies, which is still hotly debated,” concludes Ferraro. “Several similar systems could be hidden behind the bulge’s dust: it is in these objects that the formation history of our Milky Way is written.”

Notes

[1] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (many hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star, Present AO systems can only correct the effect of atmospheric turbulence in a very small region of the sky — typically 15 arcseconds or less — the correction degrading very quickly when moving away from the reference star. Engineers have therefore developed new techniques to overcome this limitation, one of which is multi-conjugate adaptive optics. MAD uses up to three guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques (ESO PR 19/07).

More Information

This research was presented in a paper that appears in the 26 November 2009 issue of Nature , “The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge”, by F. R. Ferraro et al..

The team is composed of Francesco Ferraro, Emanuele Dalessandro, Alessio Mucciarelli and Barbara Lanzoni (Department of Astronomy, University of Bologna, Italy), Giacomo Beccari (ESA, Space Science Department, Noordwijk, Netherlands), Mike Rich (Department of Physics and Astronomy, UCLA, Los Angeles, USA), Livia Origlia, Michele Bellazzini and Gabriele Cocozza (INAF – Osservatorio Astronomico di Bologna, Italy), Robert T. Rood (Astronomy Department, University of Virginia, Charlottesville, USA), Elena Valenti (ESO and Pontificia Universidad Catolica de Chile, Departamento de Astronomia, Santiago, Chile) and Scott Ransom (National Radio Astronomy Observatory, Charlottesville, USA).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links: Science paper

Contacts

Francesco Ferraro
Università di Bologna, Italy
Phone: +39 (0)5 12 09 57 74
E-mail: francesco.ferraro3@unibo.it

ESO La Silla - Paranal - ELT Press Officer: Henri Boffin - +49 89 3200 6222 - hboffin@eso.org
ESO Press Officer in Chile: Valeria Foncea - +56 2 463 3123 - vfoncea@eso.org

National contacts for the media: http://www.eso.org/public/outreach/eson/

Tuesday, November 24, 2009

Cassini Captures Ghostly Dance Of Saturn's Northern Lights

This video, in annotated and unannotated versions, shows the tallest known auroras in the solar system, rippling high above Saturn. Image credit: NASA/JPL/Space Science Institute

PASADENA, Calif. – In the first video showing the auroras above the northern latitudes of Saturn, Cassini has spotted the tallest known "northern lights" in the solar system, flickering in shape and brightness high above the ringed planet.

The new video reveals changes in Saturn's aurora every few minutes, in high resolution, with three dimensions. The images show a previously unseen vertical profile to the auroras, which ripple in the video like tall curtains. These curtains reach more than 1,200 kilometers (750 miles) above the edge of the planet's northern hemisphere.

The new video and still images are online at: http://www.nasa.gov/cassini, http://saturn.jpl.nasa.gov and http://ciclops.org .

Auroras occur on Earth, Jupiter, Saturn and a few other planets, and the new images will help scientists better understand how they are generated.

"The auroras have put on a dazzling show, shape-shifting rapidly and exposing curtains that we suspected were there, but hadn't seen on Saturn before," said Andrew Ingersoll of the California Institute of Technology in Pasadena, who is a member of the Cassini imaging team that processed the new video. "Seeing these things on another planet helps us understand them a little better when we see them on Earth."

Auroras appear mostly in the high latitudes near a planet's magnetic poles. When charged particles from the magnetosphere -- the magnetic bubble surrounding a planet -- plunge into the planet's upper atmosphere, they cause the atmosphere to glow. The curtain shapes show the paths that these charged particles take as they flow along the lines of the magnetic field between the magnetosphere and the uppermost part of the atmosphere.

The height of the curtains on Saturn exposes a key difference between Saturn's atmosphere and our own, Ingersoll said. While Earth's atmosphere has a lot of oxygen and nitrogen, Saturn's atmosphere is composed primarily of hydrogen. Because hydrogen is very light, the atmosphere and auroras reach far out from Saturn. Earth's auroras tend to flare only about 100 to 500 kilometers (60 to 300 miles) above the surface.

The speed of the auroral changes in the video is comparable to some of those on Earth, but scientists are still working to understand the processes that produce these rapid changes. The height will also help them learn how much energy is required to light up auroras.

"I was wowed when I saw these images and the curtain," said Tamas Gombosi of the University of Michigan in Ann Arbor, who chairs Cassini's magnetosphere and plasma science working group. "Put this together with the other data Cassini has collected on the auroras so far, and you really get a new science."

Ultraviolet and infrared instruments on Cassini have captured images of and data from Saturn's auroras before, but in these latest images, Cassini's narrow-angle camera was able to capture the northern lights in the visible part of the light spectrum, in higher resolution. The movie was assembled from nearly 500 still pictures spanning 81 hours between Oct. 5 and Oct. 8, 2009. Each picture had an exposure time of two or three minutes. The camera shot pictures from the night side of Saturn.

The images were originally obtained in black and white, and the imaging team highlighted the auroras in false-color orange. The oxygen and nitrogen in Earth's upper atmosphere contribute to the colorful flashes of green, red and even purple in our auroras. But scientists are still working to determine the true color of the auroras at Saturn, whose atmosphere lacks those chemicals.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for the Science Mission Directorate at NASA Headquarters in Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team is based at the Space Science Institute, Boulder, Colo.

Jia-Rui C. Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
jia-rui.c.cook@jpl.nasa.gov

Joe Mason 720-974-5859
Space Science Institute, Boulder, Colo.
jmason@ciclops.org

Monday, November 23, 2009

Spitzer Telescope Observes Baby Brown Dwarf

This image shows two young brown dwarfs, objects that fall somewhere between planets and stars in terms of their temperature and mass. Image credit: NASA/JPL-Caltech/Calar Alto Obsv./Caltech Sub. Obsv.

This artist's rendering gives us a glimpse into a cosmic nursery as a star is born from the dark, swirling dust and gas of this cloud. Image credit: NASA/JPL-Caltech

PASADENA, Calif. -- NASA's Spitzer Space Telescope has contributed to the discovery of the youngest brown dwarf ever observed -- a finding that, if confirmed, may solve an astronomical mystery about how these cosmic misfits are formed.

Brown dwarfs are misfits because they fall somewhere between planets and stars in terms of their temperature and mass. They are cooler and more lightweight than stars and more massive (and normally warmer) than planets. This has generated a debate among astronomers: Do brown dwarfs form like planets or like stars?

Brown dwarfs are born of the same dense, dusty clouds that spawn stars and planets. But while they may share the same galactic nursery, brown dwarfs are often called "failed" stars because they lack the mass of their hotter, brighter stellar siblings. Without that mass, the gas at their core does not get hot enough to trigger the nuclear fusion that burns hydrogen -- the main component of these molecular clouds -- into helium. Unable to ignite as stars, brown dwarfs end up as cooler, less luminous objects that are more difficult to detect -- a challenge that was overcome in this case by Spitzer's heat-sensitive infrared vision.

To complicate matters, young brown dwarfs evolve rapidly, making it difficult to catch them when they are first born. The first brown dwarf was discovered in 1995 and, while hundreds have been found since, astronomers had not been able to unambiguously find them in their earliest stages of formation until now. In this study, an international team of astronomers found a so-called "proto brown dwarf" while it was still hidden in its natal star-forming region. Guided by Spitzer data collected in 2005, they focused their search in the dark cloud Barnard 213, a region of the Taurus-Auriga complex well known to astronomers as a hunting ground for young objects.

"We decided to go several steps back in the process when (brown dwarfs) are really hidden," said David Barrado of the Centro de Astrobiología in Madrid, Spain, lead author of the paper on the discovery in the Astronomy & Astrophysics journal. "During this step they would have an (opaque) envelope, a cocoon, and they would be easier to identify due to their strong infrared excesses. We have used this property to identify them. This is where Spitzer plays an important role because Spitzer can have a look inside these clouds. Without it this wouldn't have been possible."

Spitzer's longer-wavelength infrared camera penetrated the dusty natal cloud to observe a baby brown dwarf named SSTB213 J041757. The data, confirmed with near-infrared imaging from Calar Alto Observatory in Spain, revealed not one but two of what would potentially prove to be the faintest and coolest brown dwarfs ever observed.

Barrado and his team embarked on an international quest for more information about the two objects. Their overarching scientific objective was to observe and characterize the presence of this dusty envelope -- proof of the celestial womb of sorts that would indicate that these brown dwarfs were, in fact, in their earliest evolutionary stages.

The twins were observed from around the globe, and their properties were measured and analyzed using a host of powerful astronomical tools. One of the astronomers' stops was the Caltech Submillimeter Observatory in Hawaii, which captured the presence of the envelope around the young objects. That information, coupled with what they had from Spitzer, enabled the astronomers to build a spectral energy distribution -- a diagram that shows the amount of energy that is emitted by the objects in each wavelength.

From Hawaii, the astronomers made additional stops at observatories in Spain (Calar Alto Observatory), Chile (Very Large Telescopes) and New Mexico (Very Large Array). They also pulled decade-old data from the Canadian Astronomy Data Centre archives that allowed them to comparatively measure how the two objects were moving in the sky. After more than a year of observations, they drew their conclusions.

"We were able to estimate that these two objects are the faintest and coolest discovered so far," Barrado said. Barrado said the findings potentially solve the mystery about whether brown dwarfs form more like stars or planets. The answer? They form like low-mass stars. This theory is bolstered because the change in brightness of the objects at various wavelengths matches that of other very young, low-mass stars.

While further study will confirm whether these two celestial objects are in fact proto brown dwarfs, they are the best candidates so far, Barrado said. He said the journey to their discovery, while difficult, was fun. "It is a story that has been unfolding piece by piece. Sometimes nature takes its time to give up its secrets."

These observations were made before Spitzer ran out of its liquid coolant in May 2009, beginning its "warm" mission.

Crab Nebula: The Crab Nebula: A Cosmic Icon

Credit X-ray: NASA/CXC/SAO/F.Seward;
Optical: NASA/ESA/ASU/J.Hester & A.Loll;
Infrared: NASA/JPL-Caltech/Univ. Minn./R.Gehrz


A star's spectacular death in the constellation Taurus was observed on Earth as the supernova of 1054 A.D. Now, almost a thousand years later, a super dense object -- called a neutron star -- left behind by the explosion is seen spewing out a blizzard of high-energy particles into the expanding debris field known as the Crab Nebula. X-ray data from Chandra provide significant clues to the workings of this mighty cosmic "generator," which is producing energy at the rate of 100,000 suns.

This composite image uses data from three of NASA's Great Observatories. The Chandra X-ray image is shown in blue, the Hubble Space Telescope optical image is in red and yellow, and the Spitzer Space Telescope's infrared image is in purple. The X-ray image is smaller than the others because extremely energetic electrons emitting X-rays radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. Along with many other telescopes, Chandra has repeatedly observed the Crab Nebula over the course of the mission's lifetime. The Crab Nebula is one of the most studied objects in the sky, truly making it a cosmic icon.

Fast Facts for Crab Nebula:

Scale: Image is 5 arcmin across
Category: Supernovas & Supernova Remnants, Neutron Stars/X-ray Binaries
Coordinates: (J2000) RA 05h 34m 32s | Dec +22° 0.0' 52.00"
Constellation: Taurus
Observation Date: 03/14/2001 and 01/27/2004
Observation Time: 11 hours 30 minutes
Obs. ID: 1997, 4607
Color Code: X-ray: Blue; Optical: Red-Yellow; Infrared: Purple
Instrument: ACIS
References: F.Seward et al 2006, ApJ, 652, 1277
Distance Estimate: About 6,000 light years

Friday, November 20, 2009

Watching a Cannibal Galaxy Dine

The “meal” of Centaurus A

The “meal” of Centaurus A

Visible and infrared views of giant,
cannibal galaxy Centaurus A

Inside Centaurus A

A new technique using near-infrared images, obtained with ESO’s 3.58-metre New Technology Telescope (NTT), allows astronomers to see through the opaque dust lanes of the giant cannibal galaxy Centaurus A, unveiling its “last meal” in unprecedented detail — a smaller spiral galaxy, currently twisted and warped. This amazing image also shows thousands of star clusters, strewn like glittering gems, churning inside Centaurus A.

Centaurus A (NGC 5128) is the nearest giant, elliptical galaxy, at a distance of about 11 million light-years. One of the most studied objects in the southern sky, by 1847 the unique appearance of this galaxy had already caught the attention of the famous British astronomer John Herschel, who catalogued the southern skies and made a comprehensive list of nebulae.

Herschel could not know, however, that this beautiful and spectacular appearance is due to an opaque dust lane that covers the central part of the galaxy. This dust is thought to be the remains of a cosmic merger between a giant elliptical galaxy and a smaller spiral galaxy full of dust.

Between 200 and 700 million years ago, this galaxy is indeed believed to have consumed a smaller spiral, gas-rich galaxy — the contents of which appear to be churning inside Centaurus A's core, likely triggering new generations of stars.

First glimpses of the “leftovers” of this meal were obtained thanks to observations with the ESA Infrared Space Observatory , which revealed a 16 500 light-year-wide structure, very similar to that of a small barred galaxy. More recently, NASA’s Spitzer Space Telescope resolved this structure into a parallelogram, which can be explained as the remnant of a gas-rich spiral galaxy falling into an elliptical galaxy and becoming twisted and warped in the process. Galaxy merging is the most common mechanism to explain the formation of such giant elliptical galaxies.

The new SOFI images, obtained with the 3.58-metre New Technology Telescope at ESO’s La Silla Observatory, allow astronomers to get an even sharper view of the structure of this galaxy, completely free of obscuring dust. The original images, obtained by observing in the near-infrared through three different filters (J, H, K) were combined using a new technique that removes the dark, screening effect of the dust, providing a clear view of the centre of this galaxy.

What the astronomers found was surprising: “There is a clear ring of stars and clusters hidden behind the dust lanes, and our images provide an unprecedentedly detailed view toward it,” says Jouni Kainulainen, lead author of the paper reporting these results. “Further analysis of this structure will provide important clues on how the merging process occurred and what has been the role of star formation during it.”

The research team is excited about the possibilities this new technique opens: “These are the first steps in the development of a new technique that has the potential to trace giant clouds of gas in other galaxies at high resolution and in a cost-effective way,” explains co-author João Alves. “Knowing how these giant clouds form and evolve is to understand how stars form in galaxies.”

Looking forward to the new, planned telescopes, both on the ground and in space, “this technique is very complementary to the radio data ALMA will collect on nearby galaxies, and at the same time it poses interesting avenues of research for extragalactic stellar populations with the future European Extremely Large Telescope and the James Webb Space Telescope, as dust is omnipresent in galaxies,” says co-author Yuri Beletsky.

Previous observations done with ISAAC on the VLT (ESO 04/01) have revealed that a supermassive black hole lurks inside Centaurus A. Its mass is about 200 million times the mass of our Sun, or 50 times more massive than the one that lies at the centre of our Milky Way. In contrast to our own galaxy, the supermassive black hole in Centaurus A is continuously fed by material falling onto into it, making the giant galaxy a very active one. Centaurus A is in fact one of the brightest radio sources in the sky (hence the “A” in its name). Jets of high energy particles from the centre are also observed in radio and X-ray images.

The new image of Centaurus A is a wonderful example of how frontier science can be combined with aesthetic aspects. Fine images of Centaurus A have been obtained in the past with ESO’s Very Large Telescope (ESO PR Photo 05b/00) and with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at La Silla.

More Information

This research was presented in a paper in Astronomy and Astrophysics (vol. 502): “Uncovering the kiloparsec-scale stellar ring of NGC5128”, by J.T. Kainulainen et al.

The team is composed of J. T. Kainulainen (University of Helsinki, Finland, and MPIA, Germany), J. F. Alves (Calar Alto Observatory, Spain and University of Vienna, Austria), Y. Beletsky (ESO), J. Ascenso (Harvard-Smithsonian Center for Astrophysics, USA), J. M. Kainulainen (TKK/Department of Radio Science and Engineering, Finland), A. Amorim, J. Lima, F. D. Santos, and A. Moitinho (SIM-IDL, University of Lisbon, Portugal), R. Marques and J. Pinhão (University of Coimbra, Portugal), and J. Rebordão (INETI, Amadora, Portugal).

SOFI (Son of ISAAC) is an infrared spectro-imager attached to ESO's 3.58-metre New Technology Telescope (NTT) and a simplified version of the Short Wavelength arm of ISAAC on the Very Large Telescope.

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


Contacts

Jouni Kainulainen
MPIA, Germany
Phone: +49-6221-528427
E-mail: jtkainul@mpia-hd.mpg.de

Yuri Beletsky
ESO, Chile
Phone: +56 55 43 5311
E-mail: ybialets@eso.org

João Alves
Calar Alto Observatory, Spain
Phone: +34 950 632 501
E-mail: jalves@caha.es

ESO La Silla - Paranal - ELT Press Officer: Henri Boffin - +49 89 3200 6222 - hboffin@eso.org
ESO Press Officer in Chile: Valeria Foncea - +56 2 463 3123 - vfoncea@eso.org

National contacts for the media: http://www.eso.org/public/outreach/eson/

Cassini's Big Sky: The View from the Center of Our Solar System

In this illustration, the multicolored (blue and green) bubble represents the new measurements of the emission of particles known as energetic neutral atoms. Image credit: NASA/JPL/JHUAPL

NASA's Cassini spacecraft created this image of the bubble around our solar system based on emissions of particles known as energetic neutral atoms. Image credit: NASA/JPL/JHUAPL

When NASA's Cassini spacecraft began orbiting Saturn five years ago, a dozen highly-tuned science instruments set to work surveying, sniffing, analyzing and scrutinizing the Saturnian system.

But Cassini recently revealed new data that appeared to overturn the decades-old belief that our solar system resembled a comet in shape as it moves through the interstellar medium (the matter between stars in our corner of the Milky Way galaxy).

Instead, the new results suggest our heliosphere more closely resembles a bubble - or a rat - being eaten by a boa constrictor: as the solar system passes through the "belly" of the snake, the ribs, which mimic the local interstellar magnetic field, expand and contract as the rat passes. An animation is available here.

"At first I was incredulous," said Tom Krimigis, principal investigator of the Magnetospheric Imaging Instrument (MIMI) at Johns Hopkins University's Applied Physics Laboratory in Laurel, Md. "The first thing I thought was, 'What's wrong with our data?'"

Krimigis and his colleagues on the instrument team published the Cassini findings in the Nov. 13 issue of the journal Science, which featured complementary results from NASA's Interstellar Boundary Explorer (IBEX). Together, the results create the first map of the heliosphere and its thick outer layer known as the heliosheath, where solar wind streaming out from the sun gets heated and slowed as it interacts with the interstellar medium.

The Cassini data also provide a much more direct indication of the thickness of the heliosheath, whereas scientists previously had to rely on calculations from models. The new results from Cassini show that the heliosheath is about 40 to 50 astronomical units (3.7 billion to 4.7 billion miles) thick and that NASA's twin Voyager spacecraft, which are traveling through the heliosheath now, will cross into true interstellar space well before the year 2020. Estimates as far out as 2030 had been suggested.

"These new data from Cassini really redefine our sense of our home in the galaxy, and we can now do better studies of whether our solar system resembles those elsewhere," Krimigis said.

The Voyagers have sent back rich data on the heliosphere and heliosheath, but just at two locations. Scientists want more context. One way to learn about the region is to track energetic neutral atoms streaming back toward the sun from the heliosheath.

Energetic neutral atoms form when cold, neutral gas collides with electrically-charged particles in a cloud of plasma, which is a gas-like state of matter so hot that the atoms split into an ion and an electron. The positively-charged ions in plasma can't reclaim their own electrons, which are moving too fast, but they can steal an electron from the cold gas atoms. Since the resulting particles are neutrally charged, they are able to escape magnetic fields and zoom off into space. The emission of these particles often occurs in the magnetic fields surrounding planets, but also happens when the solar wind mingles with the interstellar medium.

How did Cassini, with 22,000 wire connections and 14 kilometers (8.7 miles) of cabling specifically tweaked to get the most out of its investigation of the solar system's second largest gas bag, recently end up helping to redefine how we look at our entire solar system?

Krimigis and his Cassini colleagues working with MIMI weren't sure their instrument could pick up emissions from far-out, exotic locations, such as from the boundary of our heliosphere, the region of our sun's influence.

Last year, after spending four years focused on the energetic electrons and ions trapped in the magnetic field that surrounds Saturn, as well as the offspring of these particles known as energetic neutral atoms, the team started combing through the data from the instrument's Ion and Neutral Camera, looking for particles arriving from far beyond Saturn.

"We thought we could get some hits from energetic neutral atoms from the heliosheath because Cassini has really been in an excellent position to detect these particles," said Don Mitchell, MIMI instrument scientist and a researcher at the Applied Physics Laboratory.

Cassini was farther away from the sun than previous spacecraft trying to image the heliosphere and even swung very far away from Saturn on some of its orbits, Mitchell said. The data would likely be free of much of the interference that hampered other efforts.

Mitchell, Krimigis and their team were able to stitch together data from late 2003 to the summer of 2009. They created a color-coded map of the intensity of the energetic neutral atoms and discovered a belt of hot, high-pressure particles where the interstellar wind flowed by our heliosheath bubble.

The data matched up nicely with the IBEX images of lower-energy particles and connected that data set to the Voyager data on higher-energy particles.

"I was initially skeptical because the instrument was designed for Saturn's magnetosphere," Mitchell said, "But our camera had long exposures of months to years, so we could accumulate and map each particle that streamed through the tiny aperture from the far reaches of the heliosphere. It was luck, but also a lot of hard work."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif. manages the mission for NASA's Science Mission Directorate, Washington, D.C.

Link: http://photojournal.jpl.nasa.gov/catalog/PIA12310

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.

Wednesday, November 18, 2009

Baffling boxy bulge

Still an astrophysical mystery, the evolution of the bulges in spiral galaxies led astronomers to the edge-on galaxy NGC 4710. When staring directly at the centre of the galaxy, one can detect a faint, ethereal "X"-shaped structure. Such a feature, which astronomers call a "boxy" or "peanut-shaped" bulge, is due to the vertical motions of the stars in the galaxy's bar and is only evident when the galaxy is seen edge-on. This curiously shaped puff is often observed in spiral galaxies with small bulges and open arms, but is less common in spirals with arms tightly wrapped around a more prominent bulge, such as NGC 4710. Credit: NASA E ESA


18-Nov-2009: Just as many people are surprised to find themselves packing on unexplained weight around the middle, astronomers find the evolution of bulges in the centres of spiral galaxies puzzling. A recent NASA/ESA Hubble Space Telescope image of NGC 4710 is part of a survey that astronomers have conducted to learn more about the formation of bulges, which are a substantial component of most spiral galaxies.

When targeting spiral galaxy bulges, astronomers often seek edge-on galaxies, as their bulges are more easily distinguishable from the disc. This exceptionally detailed edge-on view of NGC 4710 taken by the Advanced Camera for Surveys (ACS) aboard Hubble reveals the galaxy's bulge in the brightly coloured centre. The luminous, elongated white plane that runs through the bulge is the galaxy disc. The disc and bulge are surrounded by eerie-looking dust lanes.

When staring directly at the centre of the galaxy, one can detect a faint, ethereal "X"-shaped structure. Such a feature, which astronomers call a "boxy" or "peanut-shaped" bulge, is due to the vertical motions of the stars in the galaxy's bar and is only evident when the galaxy is seen edge-on. This curiously shaped puff is often observed in spiral galaxies with small bulges and open arms, but is less common in spirals with arms tightly wrapped around a more prominent bulge, such as NGC 4710.

NGC 4710 is a member of the giant Virgo Cluster of galaxies and lies in the northern constellation of Coma Berenices (the Hair of Queen Berenice). It is not one of the brightest members of the cluster, but can easily be seen as a dim elongated smudge on a dark night with a medium-sized amateur telescope. In the 1780s, William Herschel discovered the galaxy and noted it simply as a "faint nebula". It lies about 60 million light-years from the Earth and is an example of a lenticular or S0-type galaxy – a type that seems to have some characteristics of both spiral and elliptical galaxies.

Astronomers are scrutinising these systems to determine how many globular clusters they host. Globular clusters are thought to represent an indication of the processes that can build bulges. Two quite different processes are believed to be at play regarding the formation of bulges in spiral galaxies: either they formed rather rapidly in the early Universe, before the spiral disc and arms formed; or they built up from material accumulating from the disc during a slow and long evolution. In this case of NGC 4710, researchers have spotted very few globular clusters associated with the bulge, indicating that its assembly mainly involved relatively slow processes.

Notes for editors:

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

These observations were obtained by a team led by Paul Goudfrooij from the Space Telescope Science Institute in Baltimore, Maryland, USA.

Contacts:

Colleen Sharkey
Hubble/ESA, Garching, Germany
Tel: +49 89 3200 6306
Cell: +49 151 153 73591
E-mail:
csharkey@eso.org