Wednesday, October 24, 2018

Newborn Stars Blow Bubbles in the Cat's Paw Nebula

The Cat's Paw Nebula, imaged here by NASA's Spitzer Space Telescope using the MIPS and IRAC instruments, is a star-forming region that lies inside the Milky Way Galaxy. New stars may heat up the surrounding gas, which can expand to form "bubbles."  Credit: NASA/JPL-Caltech

The Cat's Paw Nebula, imaged here by NASA's Spitzer Space Telescope using the IRAC instrument, is a star-forming region inside the Milky Way Galaxy. The dark filament running through the middle of the nebula is a particularly dense region of gas and dust. Credit: NASA/JPL-Caltech

This image from NASA's Spitzer Space Telescope shows the Cat's Paw Nebula, so named for the large, round features that create the impression of a feline footprint. The nebula is a star-forming region in the Milky Way galaxy, located in the constellation Scorpius. Estimates of its distance from Earth range from about 4,200 to about 5,500 light-years.

Framed by green clouds, the bright red bubbles are the dominant feature in the image, which was created using data from two of Spitzer's instruments. After gas and dust inside the nebula collapse to form stars, the stars may in turn heat up the pressurized gas surrounding them, causing it to expand into space and create bubbles.

The green areas show places where radiation from hot stars collided with large molecules called "polycyclic aromatic hydrocarbons," causing them to fluoresce.

In some cases, the bubbles may eventually "burst," creating the U-shaped features that are particularly visible in the image below, which was created using data from just one of Spitzer's instruments.

Spitzer is an infrared telescope, and infrared light is useful to astronomers because it can penetrate thick clouds of gas and dust better than optical light (the kind visible to the human eye). The black filaments running horizontally through the nebula are regions of gas and dust so dense, not even infrared light can pass through them. These dense regions may soon be sites where another generation of stars will form.

The Cat's Paw star-forming region is estimated to be between 24 and 27 parsecs (80 and 90 light years) across. It extends beyond the left side of these images and intersects with a similar-sized star-forming region, NGC 6357. That region is also known as the Lobster Nebula - an unlikely companion for a cat.

The top image was compiled using data from the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) aboard Spitzer. MIPS collects an additional "color" of light in the infrared range, which reveals the red-colored features, created by dust that has been warmed by the hot gas and the light from nearby stars. The second image is based on data from IRAC alone, so this dust is not visible.

The images were pulled from data collected for the Galactic Legacy Mid-Plane Survey Extraordinaire project (GLIMPSE). Using data from Spitzer, GLIMPSE created the most accurate map ever of the large central bar of the galaxy and showed that the galaxy is riddled with gas bubbles like those seen here.


News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov




Tuesday, October 23, 2018

Super-slow pulsar challenges theory

Artist’s conception of the newly discovered 23.5-second pulsar. Radio pulses originating from a source in the constellation Cassiopeia are seen travelling towards the core of the LOFAR telescope array. This source is a highly magnetised radio pulsar, shown in the inset image. The pulses and sky image are derived from the actual LOFAR data. Credit: Danielle Futselaar and ASTRON.  Hi-res image


An international team of astronomers have discovered the slowest-spinning radio pulsar yet known. The neutron star spins around only once every 23.5 seconds and is a challenge for theory to explain. The researchers, including astronomers at the University of Manchester, ASTRON and the University of Amsterdam, carried out their observations with the LOFAR telescope, whose core is located in the Netherlands. Their findings will soon appear in the Astrophysical Journal.

Pulsars are rapidly rotating neutron stars that produce electromagnetic radiation in beams that emanate from their magnetic poles. These “cosmic lighthouses” are born when a massive star explodes in a supernova. Thereafter, a super-dense ball of material is left behind – rapidly spinning, and with a diameter of only about 20 kilometers. The fastest-spinning pulsar rotates once each 1.4 milliseconds. Until now, the slowest-spinning pulsar known had a period of 8.5 seconds. Now researchers have discovered a much slower, 23.5-second, pulsar, which is located in the constellation Cassiopeia.

“It is incredible to think that this pulsar spins more than 15.000 times more slowly than the fastest spinning pulsar known.” said Chia Min Tan a PhD Student at the University of Manchester who discovered the pulsar. “We hope that there are more to be found with LOFAR”.

The astronomers discovered this new pulsar during the LOFAR Tied-Array All-Sky Survey. This survey is searching for pulsars in the Northern sky. Each survey snapshot of the sky lasts for one hour. This is much longer compared to previous surveys, and gave the sensitivity needed to discover this surprising pulsar. Not only did the astronomers 'hear' the regular ticks of the pulsar signal, they could also 'see' the pulsar in LOFAR’s imaging survey. Co-author Cees Bassa (ASTRON): “This pulsar spins so remarkably slowly that we could see it blinking on and off in our LOFAR radio images. With faster pulsars that’s not possible.”

The pulsar is approximately 14 million years old, but still has a strong magnetic field. Co-author Jason Hessels (ASTRON and University of Amsterdam): “This pulsar was completely unexpected. We’re still a bit shocked that a pulsar can spin so slowly and still create radio pulses. Apparently radio pulsars can be slower than we expected. This challenges and informs our theories for how pulsars shine.”

Moving forward, the astronomers are continuing their LOFAR survey for new pulsars. They are also planning to observe their new find with the XMM-Newton space telescope. This telescope is designed to detect X-rays. If the super-slow pulsar is detected as a source of X-rays, then this will give important insights into its history and origin.


Reference: 

LOFAR discovery of a 23.5-second radio pulsar. By: C.M. Tan (1), C.G. Bassa (2), S. Cooper (1), T.J. Dijkema (2), P. Esposito (3,4), J.W.T. Hessels (2,3), V.I. Kondratiev (2,5), M. Kramer (6,1), D. Michilli (3,2), S. Sanidas (1), T.W. Shimwell (2), B.W. Stappers (1), J. van Leeuwen (2,3), I. Cognard (7,8), J.-M. Grießmeier (7,8), A. Karastergiou (9,10,11), E.F. Keane (12), C. Sobey (13,14), P. Weltevrede (1). (preprint)




Monday, October 22, 2018

Measuring the Age of the Universe


An artist's visualization of the merger of a binary neutron star. Gravitational waves from the mergers of binary neutron stars and binary black holes have recently been detected by the LIGO and Virgo facilities. These measurements can be used to calculate the age of the universe in a way that is independent of the two conventional methods previously used. Astronomers have calculated that in the next five years it is probable that fifty such events will be detected; their statistics will enable able an age determination with a precision of 2%, enough to also resolve the current incompatibility between the other two estimates. Credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet. Low Resolution (jpg)


Cambridge, MA - The single most important puzzle in today's cosmology (the study of the universe as a whole) can be summarized in one question: How old is it? For nearly a century -- since the discoveries by Einstein, Hubble, LeMaitre and others led to the big bang model of creation -- we have known the answer. It is about 13.8 billion years old (using current data). But in just the past decade the two alternative measurement methods have narrowed the uncertainties in their results to a few percent to reach a stunning conclusion: The two do not agree with each other. Since both methods are based on exactly the same model and equations, our understanding of the universe is somehow wrong -- perhaps fundamentally so.

Enter the most exciting technical achievement in astronomy for decades, the detection of gravitational waves (GW) caused by the mergers of black holes or neutron stars with each other by LIGO-Virgo, soon to be joined by other similar GW detection facilities in other countries. The solution to the cosmological dilemma is likely to be settled soon by these instruments according to a new Nature paper by Hsin-Yu Chen of Harvard's Black Hole Initiative, Maya Fishbach and Daniel E. Holz of the University of Chicago. The authors describe how upcoming detections of GW will have enough statistics to settle the question of age, forcing either one or the other (or perhaps even both) methods to re-think their basic understanding, or possibly even forcing a new variation of the When and How of the creation.

The two currently conflicting methods rely on observations of vastly different parts of the cosmic order. The first method measures and models the cosmic microwave background radiation (the CMBR method) produced by the universe when, after about 380,000 years, it cooled down and allowed neutral hydrogen atoms to form and light to propagate without scattering. The second method, the one used by Hubble and interpreted by LeMaitre, measures galaxies. This method takes advantage of the expansion of the universe to correlate a galaxy’s distance with its recession velocity, the so-called Hubble-LeMaitre Law, and to derive the Hubble-LeMaitre parameter which describes how long these galaxies have been in motion, related to the age of the universe. All astronomers today rely on this expression to obtain the distances to galaxies too far away to measure directly but whose velocities are easily seen in the Doppler shifts (the redshift) of their spectral lines. While the most familiar use of the parameter is to obtain the age of the universe, its value influences all the other parameters in the cosmological model (about nine of them) which together also explain the shape and expansion character of the universe.

Hubble calibrated his set of distances with nearby galaxies, but today we are capable of seeing galaxies so remote their light has been traveling to us for over ten billion years. Supernovae (SN), or at least those whose brightness is thought to be well understood, can be seen at great distances and so have been used to bootstrap the distance scale calibration outward from Hubble’s original neighborhood. There are subtle complexities in SN that are not well understood, however, resulting in an uncertainty that has been getting smaller as our understanding of them has improved. Today those uncertainties are small enough to exclude the comparable result from CMBR measurements.

The GW method of distance measurement is completely independent of both galaxy and CMBR methods. General relativity alone provides the intrinsic strength of the GW signal from its peculiar ringing signal, and its observed strength provides a direct measure of its distance. (The velocity information is obtained from the redshift of atomic lines in the host galaxy). Dr. Chen and her colleagues simulated 90,000 merger events in binary black hole or binary neutron star systems, including the host galaxy properties, and included likely selection effects and other complexities. The GW strength, for example, depends on our viewing angle of inclination of the merger, while the number of events to expect is only roughly constrained by the detections so far. Including these and similar uncertainties, the astronomers conclude that within the next five years it is likely that the GW method will fix the Hubble-LeMaitre parameter (that is, the age of the universe) to a precision of 2%, and to 1% in a decade, good enough to exclude one or even both of the other methods. The new paper's conclusions are bolstered by the fact that one paper using the GW method to estimate an age has already appeared. It had an uncertainty of between 11.9 billion years to 15.7 billion years, spanning both the current CMBR and galaxy values. But the new paper shows that in five years another roughly fifty GW events will be detected and these should be enough to settle the matter … and usher in a new era in precision cosmology.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.


For more information, contact:

Tyler Jump
Public Affairs
Harvard-Smithsonian Center for Astrophysics
+1 617-495-7462
tyler.jump@cfa.harvard.edu



Sunday, October 21, 2018

Superflares From Young Red Dwarf Stars Imperil Planets

Violent outbursts of seething gas from young red dwarf stars may make conditions uninhabitable on fledgling planets. In this artist's rendering, an active, young red dwarf (right) is stripping the atmosphere from an orbiting planet (left). Scientists found that flares from the youngest red dwarfs they surveyed — approximately 40 million years old — are 100 to 1,000 times more energetic than when the stars are older. They also detected one of the most intense stellar flares ever observed in ultraviolet light — more energetic than the most powerful flare ever recorded from our Sun. Credits: NASA, ESA and D. Player (STScI)


The word "HAZMAT" describes substances that pose a risk to the environment, or even to life itself. Imagine the term being applied to entire planets, where violent flares from the host star may make worlds uninhabitable by affecting their atmospheres.

NASA's Hubble Space Telescope is observing such stars through a large program called HAZMAT — Habitable Zones and M dwarf Activity across Time.

"M dwarf" is the astronomical term for a red dwarf star — the smallest, most abundant and longest-lived type of star in our galaxy. The HAZMAT program is an ultraviolet survey of red dwarfs at three different ages: young, intermediate, and old.

Stellar flares from red dwarfs are particularly bright in ultraviolet wavelengths, compared with Sun-like stars. Hubble's ultraviolet sensitivity makes the telescope very valuable for observing these flares. The flares are believed to be powered by intense magnetic fields that get tangled by the roiling motions of the stellar atmosphere. When the tangling gets too intense, the fields break and reconnect, unleashing tremendous amounts of energy.

The team has found that the flares from the youngest red dwarfs they surveyed — just about 40 million years old — are 100 to 1,000 times more energetic than when the stars are older. This younger age is when terrestrial planets are forming around their stars.

Approximately three-quarters of the stars in our galaxy are red dwarfs. Most of the galaxy's "habitable-zone" planets — planets orbiting their stars at a distance where temperatures are moderate enough for liquid water to exist on their surface — likely orbit red dwarfs. In fact, the nearest star to our Sun, a red dwarf named Proxima Centauri, has an Earth-size planet in its habitable zone.

However, young red dwarfs are active stars, producing ultraviolet flares that blast out so much energy that they could influence atmospheric chemistry and possibly strip off the atmospheres of these fledgling planets.

"The goal of the HAZMAT program is to help understand the habitability of planets around low-mass stars," explained Arizona State University's Evgenya Shkolnik, the program's principal investigator. "These low-mass stars are critically important in understanding planetary atmospheres."

The results of the first part of this Hubble program are being published in The Astrophysical Journal. This study examines the flare frequency of 12 young red dwarfs. "Getting these data on the young stars has been especially important, because the difference in their flare activity is quite large as compared to older stars," said Arizona State University's Parke Loyd, the first author on this paper.

The observing program detected one of the most intense stellar flares ever observed in ultraviolet light. Dubbed the "Hazflare," this event was more energetic than the most powerful flare from our Sun ever recorded.

"With the Sun, we have a hundred years of good observations," Loyd said. "And in that time, we've seen one, maybe two, flares that have an energy approaching that of the Hazflare. In a little less than a day's worth of Hubble observations of these young stars, we caught the Hazflare, which means that we're looking at superflares happening every day or even a few times a day."

Could super-flares of such frequency and intensity bathe young planets in so much ultraviolet radiation that they forever doom chances of habitability? According to Loyd, "Flares like we observed have the capacity to strip away the atmosphere from a planet. But that doesn't necessarily mean doom and gloom for life on the planet. It just might be different life than we imagine. Or there might be other processes that could replenish the atmosphere of the planet. It's certainly a harsh environment, but I would hesitate to say that it is a sterile environment."

The next part of the HAZMAT study will be to study intermediate-aged red dwarfs that are 650 million years old. Then the oldest red dwarfs will be analyzed and compared with the young and intermediate stars to understand the evolution of the ultraviolet radiation environment of low-mass planets around these low-mass stars. The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.



Ann Jenkins / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4488 / 410-338-4514
jenkins@stsci.edu / villard@stsci.edu

Evgenya Shkolnik
Arizona State University, Tempe, Arizona 808-292-9088
shkolnik@asu.edu

Parke Loyd
Arizona State University, Tempe, Arizona
parke@asu.edu

Editor: Karl Hille


Source: NASA/Hubble

Saturday, October 20, 2018

How to Weigh a Black Hole Using NASA’s Webb Space Telescope

The spiral galaxy NGC 4151 has a bright, active core powered by a supermassive black hole. Webb will weigh the black hole by measuring the motions of stars at the galaxy’s center. Credits: NASA, ESA, and J. DePasquale (STScI). Hi-res image


Webb will use an innovative instrument called an integral field unit to capture images and spectra at the same time.
Credits: NASA, ESA, CSA, and L. Hustak (STScI)


At first glance, the galaxy NGC 4151 looks like an average spiral. Examine its center more closely, though, and you can spot a bright smudge that stands out from the softer glow around it. That point of light marks the location of a supermassive black hole weighing about 40 million times as much as our Sun.

Astronomers will use NASA’s James Webb Space Telescope to measure that black hole’s mass. The result might seem like a piece of trivia, but its mass determines how a black hole feeds and affects the surrounding galaxy. And since most galaxies contain a supermassive black hole, learning about this nearby galaxy will improve our understanding of many galaxies across the cosmos.

“Some central questions in astrophysics are: How does a galaxy’s central black hole grow with time; how does the galaxy itself grow with time; and how do they affect each other? This project is a step toward answering those questions,” explained Misty Bentz of Georgia State University, Atlanta, the principal investigator of the project.

Probing a galaxy’s core

There are several methods of weighing supermassive black holes. One technique relies on measuring the motions of stars in the galaxy’s core. The heavier the black hole, the faster nearby stars will move under its gravitational influence.

NGC 4151 represents a challenging target, because it contains a particularly active black hole that is feeding voraciously. As a result, the material swirling around the black hole, known as an accretion disk, shines brightly. The light from the accretion disk threatens to overwhelm the fainter light from stars in the region.

“With Webb’s beautifully shaped mirrors and sharp ‘vision,’ we should be able to probe closer to the galaxy’s center even though there’s a really bright accretion disk there,” said Bentz.

The team expects to be able to investigate the central 1,000 light-years of NGC 4151, and be able to resolve stellar motions on a scale of about 15 light-years.

A thousand spectra at once

To achieve this feat, the team will use Webb’s Near-Infrared Spectrograph (NIRSpec) integral field unit, or IFU. It will be the first IFU flown in space, and it has a unique capability.

Webb’s IFU takes the light from every location in an image and splits it into a rainbow spectrum. To do this it employs almost 100 mirrors, each of them precision crafted to a specific shape, all squeezed into an instrument the size of a shoebox. Those mirrors effectively slice a small square of the sky into strips, then spread the light from those strips out both spatially and in wavelength.

In this way a single image yields 1,000 spectra. Each spectrum tells astronomers not only about the elements that make up the stars and gas at that exact point of the sky, but also about their relative motions. Despite Webb’s exquisite resolution, the team won’t be able to measure the motions of individual stars. Instead, they will get information about groups of stars very close to the center of the galaxy. They will then apply computer models to determine the gravitational field affecting the stars, which depends on the size of the black hole.

“Our computer code generates a bunch of mock stars – tens of thousands of stars, mimicking the motions of real stars in the galaxy. We put in a variety of different black holes and see what matches the observations the best,” said Monica Valluri of the University of Michigan, a co-investigator on the project.

The result of this technique will be compared with a second one that focuses on the gas at the galaxy’s center, rather than the stars.

“We should get the same answer, no matter what technique we use, if we’re looking at the same black hole,” said Bentz. “NGC 4151 is one of the best targets for making that comparison.”

These observations will be taken as part of the Director’s Discretionary-Early Release Science program. The DD-ERS program provides time to selected projects enabling the astronomical community to quickly learn how best to use Webb’s capabilities, while also yielding robust science.

The James Webb Space Telescope will be the world's premier space science observatory. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

For more information about Webb, visit www.nasa.gov/webb


By Christine Pulliam
Space Telescope Science Institute, Baltimore, Md.

Editor: Lynn Jenner



Friday, October 19, 2018

Kes 75: Milky Way's Youngest Pulsar Exposes Secrets of Star's Demise


Kes 75
Credit X-ray: NASA/CXC/NCSU/S. Reynolds; 
Optical: PanSTARRS Release Date October 18, 2018




Scientists have confirmed the identity of the youngest known pulsar in the Milky Way galaxy using data from NASA's Chandra X-ray Observatory. This result could provide astronomers new information about how some stars end their lives.

After some massive stars run out of nuclear fuel, then collapse and explode as supernovas, they leave behind dense stellar nuggets called "neutron stars". Rapidly rotating and highly magnetized neutron stars produce a lighthouse-like beam of radiation that astronomers detect as pulses as the pulsar's rotation sweeps the beam across the sky.

Since Jocelyn Bell Burnell, Antony Hewish, and their colleagues first discovered pulsars through their radio emission in the 1960s, over 2,000 of these exotic objects have been identified. However, many mysteries about pulsars remain, including their diverse range of behaviors and the nature of stars that form them.

New data from Chandra are helping address some of those questions. A team of astronomers has confirmed that the supernova remnant Kes 75, located about 19,000 light years from Earth, contains the youngest known pulsar in the Milky Way galaxy.

The rapid rotation and strong magnetic field of the pulsar have generated a wind of energetic matter and antimatter particles that flow away from the pulsar at near the speed of light . This pulsar wind has created a large, magnetized bubble of high-energy particles called a pulsar wind nebula, seen as the blue region surrounding the pulsar.

In this composite image of Kes 75, high-energy X-rays observed by Chandra are colored blue and highlight the pulsar wind nebula surrounding the pulsar, while lower-energy X-rays appear purple and show the debris from the explosion. A Sloan Digital Sky Survey optical image reveals stars in the field.

The Chandra data taken in 2000, 2006, 2009, and 2016 show changes in the pulsar wind nebula with time. Between 2000 and 2016, the Chandra observations reveal that the outer edge of the pulsar wind nebula is expanding at a remarkable 1 million meters per second, or over 2 million miles per hour.

This high speed may be due to the pulsar wind nebula expanding into a relatively low-density environment. Specifically, astronomers suggest it is expanding into a gaseous bubble blown by radioactive nickel formed in the explosion and ejected as the star exploded. This nickel also powered the supernova light, as it decayed into diffuse iron gas that filled the bubble. If so, this gives astronomers insight into the very heart of the exploding star and the elements it created.

The expansion rate also tells astronomers that Kes 75 exploded about five centuries ago as seen from Earth. (The object is some 19,000 light years away, but astronomers refer to when its light would have arrived at Earth.) Unlike other supernova remnants from this era such as Tycho and Kepler, there is no known evidence from historical records that the explosion that created Kes 75 was observed.

Why wasn't Kes 75 seen from Earth? The Chandra observations along with previous ones from other telescopes indicate that the interstellar dust and gas that fill our Galaxy are very dense in the direction of the doomed star. This would have rendered it too dim to be seen from Earth several centuries ago.

The brightness of the pulsar wind nebula has decreased by 10% from 2000 to 2016, mainly concentrated in the northern area, with a 30% decrease in a bright knot. The rapid changes observed in the Kes 75 pulsar wind nebula, as well as its unusual structure, point to the need for more sophisticated models of the evolution of pulsar wind nebulas.

A paper describing these results appeared in The Astrophysical Journal and is available online. The authors are Stephen Reynolds, Kazimierz Borokowski, and Peter Gwynne from North Carolina State University. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.



Fast Facts for Kes 75:


Category: Supernovas & Supernova Remnants
Coordinates (J2000): RA 18h 46m 25.0s | Dec -02° 58' 30.3"
Constellation: Aquila
Observation Date: 4 pointings between 05/06/2006 - 12/06/2006 and 2 pointings 06/08/16-06/11/16
Observation Time: 83 hours 31 min (3 days 11 hours 31 min)
Obs. ID: 6686, 7337, 7338, 7339, 18030, 18866
Instrument: ACIS
References: Reynolds, S. et al, 2018, ApJ,856,133; arXiv:1803.09128
Color Code: X-ray: Pink & Purple: 0.5 keV-2.1keV Cyan: 1.6keV-2.1keV; Optical: Red/Green/Blue
Distance Estimate: About 19,000 light years 




Thursday, October 18, 2018

Largest Galaxy Proto-Supercluster Found

 PR Image eso1833a
The Hyperion Proto-Supercluster 

PR Image eso1833b
Comparison of the Hyperion Proto-Supercluster and a standard massive galaxy cluster

Wide-field view of the COSMOS field



Videos

ESOcast 179 Light: Largest Galaxy Proto-Supercluster Found (4K UHD)

The Hyperion Proto-Supercluster
The Hyperion Proto-Supercluster




Astronomers using ESO’s Very Large Telescope uncover a cosmic titan lurking in the early Universe

An international team of astronomers using the VIMOS instrument of ESO’s Very Large Telescope have uncovered a titanic structure in the early Universe. This galaxy proto-supercluster — which they nickname Hyperion — was unveiled by new measurements and a complex examination of archive data. This is the largest and most massive structure yet found at such a remote time and distance — merely 2 billion years after the Big Bang.

A team of astronomers, led by Olga Cucciati of Istituto Nazionale di Astrofisica (INAF) Bologna, have used the VIMOS instrument on ESO’s Very Large Telescope (VLT) to identify a gigantic proto-supercluster of galaxies forming in the early Universe, just 2.3 billion years after the Big Bang. This structure, which the researchers nicknamed Hyperion, is the largest and most massive structure to be found so early in the formation of the Universe [1]. The enormous mass of the proto-supercluster is calculated to be more than one million billion times that of the Sun. This titanic mass is similar to that of the largest structures observed in the Universe today, but finding such a massive object in the early Universe surprised astronomers.

This is the first time that such a large structure has been identified at such a high redshift, just over 2 billion years after the Big Bang,” explained the first author of the discovery paper, Olga Cucciati [2]. “Normally these kinds of structures are known at lower redshifts, which means when the Universe has had much more time to evolve and construct such huge things. It was a surprise to see something this evolved when the Universe was relatively young!

Located in the COSMOS field in the constellation of Sextans (The Sextant), Hyperion was identified by analysing the vast amount of data obtained from the VIMOS Ultra-deep Survey led by Olivier Le Fèvre (Aix-Marseille Université, CNRSCNES). The VIMOS Ultra-Deep Survey provides an unprecedented 3D map of the distribution of over 10 000 galaxies in the distant Universe.
The team found that Hyperion has a very complex structure, containing at least 7 high-density regions connected by filaments of galaxies, and its size is comparable to nearby superclusters, though it has a very different structure.

Superclusters closer to Earth tend to a much more concentrated distribution of mass with clear structural features,” explains Brian Lemaux, an astronomer from University of California, Davis and LAM, and a co-leader of the team behind this result. “But in Hyperion, the mass is distributed much more uniformly in a series of connected blobs, populated by loose associations of galaxies.

This contrast is most likely due to the fact that nearby superclusters have had billions of years for gravity to gather matter together into denser regions — a process that has been acting for far less time in the much younger Hyperion.

Given its size so early in the history of the Universe, Hyperion is expected to evolve into something similar to the immense structures in the local Universe such as the superclusters making up the Sloan Great Wall or the Virgo Supercluster that contains our own galaxy, the Milky Way. “Understanding Hyperion and how it compares to similar recent structures can give insights into how the Universe developed in the past and will evolve into the future, and allows us the opportunity to challenge some models of supercluster formation,” concluded Cucciati. “Unearthing this cosmic titan helps uncover the history of these large-scale structures.



Notes

[1] The moniker Hyperion was chosen after a Titan from Greek mythology, due to the immense size and mass of the proto-supercluster. The inspiration for this mythological nomenclature comes from a previously discovered proto-cluster found within Hyperion and named Colossus. The individual areas of high density in Hyperion have been assigned mythological names, such as Theia, Eos, Selene and Helios, the latter being depicted in the ancient statue of the Colossus of Rhodes.

The titanic mass of Hyperion, one million billion times that of the Sun, is 1015 solar masses in scientific notation.

[2] Light reaching Earth from extremely distant galaxies took a long time to travel, giving us a window into the past when the Universe was much younger. This wavelength of this light has been stretched by the expansion of the Universe over its journey, an effect known as cosmological redshift. More distant, older objects have a correspondingly larger redshift, leading astronomers to often use redshift and age interchangeably. Hyperion’s redshift of 2.45 means that astronomers observed the proto-supercluster as it was 2.3 billion years after the Big Bang.



More Information

This research is published in the paper “The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS”, which will appear in the journal Astronomy & Astrophysics.

The team behind this result was composed of O. Cucciati (INAF-OAS Bologna, Italy), B. C. Lemaux (University of California, Davis, USA and LAM - Aix Marseille Université, CNRS, CNES, France), G. Zamorani (INAF-OAS Bologna, Italy), O.Le Fèvre (LAM - Aix Marseille Université, CNRS, CNES, France), L. A. M. Tasca (LAM - Aix Marseille Université, CNRS, CNES, France), N. P. Hathi (Space Telescope Science Institute, Baltimore, USA), K-G. Lee (Kavli IPMU (WPI), The University of Tokyo, Japan, & Lawrence Berkeley National Laboratory, USA), S. Bardelli (INAF-OAS Bologna, Italy), P. Cassata (University of Padova, Italy), B. Garilli (INAF–IASF Milano, Italy), V. Le Brun (LAM - Aix Marseille Université, CNRS, CNES, France), D. Maccagni (INAF–IASF Milano, Italy), L. Pentericci (INAF–Osservatorio Astronomico di Roma, Italy), R. Thomas (European Southern Observatory, Vitacura, Chile), E. Vanzella (INAF-OAS Bologna, Italy), E. Zucca (INAF-OAS Bologna, Italy), L. M. Lubin (University of California, Davis, USA), R. Amorin (Kavli Institute for Cosmology & Cavendish Laboratory, University of Cambridge, UK), L. P. Cassarà (INAF–IASF Milano, Italy), A. Cimatti (University of Bologna & INAF-OAS Bologna, Italy), M. Talia (University of Bologna, Italy), D. Vergani (INAF-OAS Bologna, Italy), A. Koekemoer (Space Telescope Science Institute, Baltimore, USA), J. Pforr (ESA ESTEC, the Netherlands), and M. Salvato (Max-Planck-Institut für Extraterrestrische Physik, Garching bei München, Germany).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a strategic partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Links



Contacts

Olga Cucciati
INAF Fellow – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna
Bologna, Italy
Email: olga.cucciati@inaf.it

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Email: pio@eso.org


Source: ESO/News


Wednesday, October 17, 2018

Magnetic Fields May Be the Key to Black Hole Activity

Artist’s conception of the core of Cygnus A, including the dusty donut-shaped surroundings, called a torus, and jets launching from its center. Magnetic fields are illustrated trapping the dust in the torus. These magnetic fields could be helping power the black hole hidden in the galaxy’s core by confining the dust in the torus and keeping it close enough to be gobbled up by the hungry black hole. Credits: NASA/SOFIA/Lynette Cook

Two images of Cygnus A layered over each other to show the galaxy’s jets glowing with radio radiation (shown in red). Quiescent galaxies, like our own Milky Way, do not have jets like this, which may be related to magnetic fields. The yellow image shows background stars and the center of the galaxy shrouded in dust when observed with visible light. The area SOFIA observed is inside the small red dot in the center.  Credits: Optical Image: NASA/STSiC Radio Image: NSF/NRAO/AUI/VLA

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their surroundings and launching jets at ultra-high speeds, while others are quiescent, even dormant. Why are some black holes feasting and others starving? Recent observations from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, are shedding light on this question.

SOFIA data indicate that magnetic fields are trapping and confining dust near the center of the active galaxy, Cygnus A, and feeding material onto the supermassive black hole at its center.

The unified model, which attempts to explain the different properties ­of active galaxies, states that the core is surrounded by a donut-shaped dust cloud, called a torus. How this obscuring structure is created and sustained has never been clear, but these new results from SOFIA indicate that magnetic fields may be responsible for keeping the dust close enough to be devoured by the hungry black hole. In fact, one of the fundamental differences between active galaxies like Cygnus A and their less active cousins, like our own Milky Way, may be the presence or absence of a strong magnetic field around the black hole.

Although celestial magnetic fields are notoriously difficult to observe, astronomers have used polarized light — optical light from scattering and radio light from accelerating electrons — to study magnetic fields in galaxies. But optical wavelengths are too short and the radio wavelengths are too long to observe the torus directly. The infrared wavelengths observed by SOFIA are just right, allowing scientists, for the first time, to target and isolate the dusty torus.

SOFIA’s new instrument, the High-resolution Airborne Wideband Camera-plus (HAWC+), is especially sensitive to the infrared emission from aligned dust grains. This has proven to be a powerful technique to study magnetic fields and test a fundamental prediction of the unified model: the role of the dusty torus in the active-galaxy phenomena.

“It’s always exciting to discover something completely new,” noted Enrique Lopez-Rodriguez, a scientist at the SOFIA Science Center, and the lead author on the report of this new discovery. “These observations from HAWC+ are unique. They show us how infrared polarization can contribute to the study of galaxies.”

Recent observations of the heart of Cygnus A made with HAWC+ show infrared radiation dominated by a well-aligned dusty structure. Combining these results with archival data from the Herschel Space Observatory, the Hubble Space Telescope and the Gran Telescopio Canarias, the research team found that this powerful active galaxy, with its iconic large-scale jets, is able to confine the obscuring torus that feeds the supermassive black hole using a strong magnetic field.

The results of this study were published in the July 10th issue of The Astrophysical Journal Letters.

Cygnus A is in the perfect location to learn about the role magnetic fields play in confining the dusty torus and channeling material onto the supermassive black hole because it is the closest and most powerful active galaxy. More observations of different types of galaxies are necessary to get the full picture of how magnetic fields affect the evolution of the environment surrounding supermassive black holes. If, for example, HAWC+ reveals highly polarized infrared emission from the centers of active galaxies but not from quiescent galaxies, it would support the idea that magnetic fields regulate black hole feeding and reinforce astronomers’ confidence in the unified model of active galaxies.

SOFIA is a Boeing 747SP jetliner modified to carry a 106-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is maintained and operated from NASA’s Armstrong Flight Research Center Hangar 703, in Palmdale, California.


Editor: Kassandra Bell


Tuesday, October 16, 2018

All in the Family: Kin of Gravitational-Wave Source Discovered

GRB 150101B
Credit X-ray: NASA/CXC/GSFC/UMC/E. Troja et al.; 
Optical and infrared: NASA/STScI




A distant cosmic relative to the first source that astronomers detected in both gravitational waves and light may have been discovered, as reported in our latest press release. This object, called GRB 150101B, was first detected by identified as a gamma ray burst (GRB) by NASA's Fermi Gamma-ray Space Telescope in January 2015.

This image shows data from NASA’s Chandra X-ray Observatory (purple in the inset boxes) in context with an optical image of GRB 150101B from the Hubble Space Telescope.

The detection and follow-up observations with Chandra, Hubble, the Discovery Channel Telescope, the Neil Gehrels Swift Observatory, and other telescopes show GRB 150101B shares remarkable similarities to the neutron star merger and gravitational wave source discovered by Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) and its European counterpart Virgo in 2017 known as GW170817. In this view of GRB 150101B and its host galaxy, the Chandra field of view is outlined as a box on an optical and infrared image from the Hubble Space Telescope. Chandra images are included from two different times (labeled in the insets) to show how the X-ray source faded with time.

The latest study concludes that these two separate objects may, in fact, be related. The discovery suggests that events like GW170817 and GRB 150101B could represent a whole new class of erupting objects that turn on and off in X-rays and might actually be relatively common.

The researchers think both GRB 150101B and GW170817 were most likely produced by the same type of event: the merger of two neutron stars, a catastrophic coalescence that generated a narrow jet, or beam, of high-energy particles. The jet produced a short, intense burst of gamma rays (known as a short GRB), a high-energy flash that can last only seconds. GW170817 proved that these events may also create ripples in space-time itself called gravitational waves.


While there are many commonalities between GRB 150101B and GW170817, there are two very important differences. One is their location. GW170817 is about 130 million light years from Earth, while GRB 150101B lies about 1.7 billion light years away. Even if Advanced LIGO had been operating in early 2015, it would very likely not have detected gravitational waves from GRB 150101B because of its greater distance.

It is possible that a few mergers like the ones seen in GW170817 and GRB 150101B had been detected as short GRBs before but had not been identified with other telescopes. Without detections at longer wavelengths like X-rays or optical light, GRB positions are not accurate enough to determine what galaxy they are located in.

In the case of GRB 150101B, astronomers thought at first that the counterpart was an X-ray source detected by Swift in the center of the galaxy, likely from material falling into a supermassive black hole. However, follow-up observations with Chandra, with its sharp X-ray resolution, detected the true counterpart away from the center of the host galaxy. This can be seen in the Chandra images. Not only has the source dimmed dramatically, it is clearly outside the center of the galaxy, which appears as the constant brighter source to the upper right.

A paper describing this result by Eleonora Troja (Goddard Space Flight Center and the University of Maryland at College Park) and colleagues appears in the October 16, 2018, issue of the journal Nature Communications and is available online. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.



Fast Facts for GRB 150101B:
Scale: Full field image:~41 arcmin across (300,000 light years across) Inset: ~12 arcsec across( 90,000 light years across)
Category: Supernovas & Supernova Remnants, Neutron Stars/X-ray Binaries
Coordinates (J2000): RA 12h 32m 04.96s | Dec -10° 56' 00.7"
Constellation: Virgo
Observation Date: Jan 9 & Feb 10, 2015
Observation Time: 20 hours 39 minutes
Obs. ID: 17586 & 17594
Instrument: ACIS
References: E. Troja et al., 2018, Nature Communications (in press); arXiv:1806.10624
Color Code: X-ray (purple); Optical/IR (red/green)
Distance Estimate: About 1.7 billion light years (z=0.1341)




Friday, October 12, 2018

Dying Star Emits a Whisp

The three panels represent moments before, during, and after the faint supernova iPTF14gqr, visible in the middle panel, appeared in the outskirts of a spiral galaxy located 920 million light years away. The massive star that died in the supernova left behind a neutron star in a very tight binary system. These dense stellar remnants will ultimately spiral into each other and merge in a spectacular explosion, giving off gravitational and electromagnetic waves. Credit: SDSS/Caltech/Keck


The death of a massive star and the birth of a compact neutron star binary


A Caltech-led team of researchers has observed the peculiar death of a massive star that exploded in a surprisingly faint and rapidly fading supernova. These observations suggest that the star has an unseen companion, gravitationally siphoning away the star's mass to leave behind a stripped star that exploded in a quick supernova. The explosion is believed to have resulted in a dead neutron star orbiting around its dense and compact companion, suggesting that, for the first time, scientists have witnessed the birth of a compact neutron star binary system.

The research was led by graduate student Kishalay De and is described in a paper appearing in the October 12 issue of the journal Science. The work was done primarily in the laboratory of Mansi Kasliwal (MS '07, PhD '11), assistant professor of astronomy. Kasliwal is the principal investigator of the Caltech-led Global Relay of Observatories Watching Transients Happen (GROWTH) project.

When a massive star—at least eight times the mass of the sun—runs out of fuel to burn in its core, the core collapses inwards upon itself and then rebounds outward in a powerful explosion called a supernova. After the explosion, all of the star's outer layers have been blasted away, leaving behind a dense neutron star—about the size of a small city but containing more mass than the sun. A teaspoon of a neutron star would weigh as much as a mountain.

During a supernova, the dying star blasts away all of the material in its outer layers. Usually, this is a few times the mass of the sun. However, the event that Kasliwal and her colleagues observed, dubbed iPTF 14gqr, ejected matter only one fifth of the mass of the sun.

"We saw this massive star's core collapse, but we saw remarkably little mass ejected," Kasliwal says. 
"We call this an ultra-stripped envelope supernova and it has long been predicted that they exist. This is the first time we have convincingly seen core collapse of a massive star that is so devoid of matter."

The fact that the star exploded at all implies that it must have previously been enveloped in lots of material, or its core would never have become heavy enough to collapse. But where, then, was the missing mass?

The researchers inferred that the mass must have been stolen—the star must have some kind of dense, compact companion, either a white dwarf, neutron star, or black hole—close enough to gravitationally siphon away its mass before it exploded. The neutron star that was left behind from the supernova must have then been born into orbit with that dense companion. Observing iPTF 14gqr was actually observing the birth of a compact neutron star binary. Because this new neutron star and its companion are so close together, they will eventually merge in a collision similar to the 2017 eventthat produced both gravitational waves and electromagnetic waves. 

Not only is iPTF 14gqr a notable event, the fact that it was observed at all was fortuitous since these phenomena are both rare and short-lived. Indeed, it was only through the observations of the supernova's early phases that the researchers could deduce the explosion's origins as a massive star.

"You need fast transient surveys and a well-coordinated network of astronomers worldwide to really capture the early phase of a supernova," says De. "Without data in its infancy, we could not have concluded that the explosion must have originated in the collapsing core of a massive star with an envelope about 500 times the radius of the sun."

The event was first seen at Palomar Observatory as part of the intermediate Palomar Transient Factory (iPTF), a nightly survey of the sky to look for transient, or short-lived, cosmic events like supernovae. Because the iPTF survey keeps such a close eye on the sky, iPTF 14gqr was observed in the very first hours after it had exploded. As the earth rotated and the Palomar telescope moved out of range, astronomers around the world collaborated to monitor iPTF 14gqr, continuously observing its evolution with a number of telescopes that today form the GROWTH network of observatories.

The Zwicky Transient Facility, the successor of iPTF at Palomar Observatory, is examining the sky even more broadly and frequently in the hopes of catching more of these rare events, which make up only one percent of all observed explosions. Such surveys, in partnership with coordinated follow-up networks like GROWTH, will enable astronomers to better understand how compact binary systems evolve from binary massive stars. 

The research was primarily funded by the National Science Foundation under the PIRE GROWTH project. A full list of funding sources and co-authors can be found in the Science study, titled "A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary." In addition to De and Kasliwal, other Caltech co-authors are Gary Doran of the Jet Propulsion Laboratory; graduate student Gina Duggan; Shri Kulkarni, George Ellery Hale Professor of Astronomy and Planetary Science; and Russ Laher and Frank Masci of Caltech's Infrared Processing and Analysis Center.

For more about GROWTH, visit: http://growth.caltech.edu.

Written by Lori Dajose


Contact: 

Whitney Clavin
(626) 395-1856 wclavin@caltech.edu

Source: Caltech/News


Wednesday, October 10, 2018

‘Pulsar in a Box’ Reveals Surprising Picture of a Neutron Star’s Surroundings

Electrons (blue) and positrons (red) from a computer-simulated pulsar. These particles become accerlated to extreme energies in a pulsar's powerful magnetic and electric fields; lighter tracks show particles with higher energies. Each particle seen here actually represents trillions of electrons or positrons. Better knowledge of the particle environment around neutron stars will help astronomers understand how they behave like cosmic lighthouses, producing precisely timed radio and gamma-ray pulses. Credit: NASA's Goddard Space Flight Center

An international team of scientists studying what amounts to a computer-simulated “pulsar in a box” are gaining a more detailed understanding of the complex, high-energy environment around spinning neutron stars, also called pulsars. The model traces the paths of charged particles in magnetic and electric fields near the neutron star, revealing behaviors that may help explain how pulsars emit gamma-ray and radio pulses with ultraprecise timing. 

“Efforts to understand how pulsars do what they do began as soon as they were discovered in 1967, and we’re still working on it,” said Gabriele Brambilla, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Milan who led a study of the recent simulation. “Even with the computational power available today, tracking the physics of particles in the extreme environment of a pulsar is a considerable challenge
.”
A pulsar is the crushed core of a massive star that ran out of fuel, collapsed under its own weight and exploded as a supernova. Gravity forces more mass than the Sun’s into a ball no wider than Manhattan Island in New York City while also revving up its rotation and strengthening its magnetic field. Pulsars can spin thousands of times a second and wield the strongest magnetic fields known.
 Source: NASA/Pulsar


Tuesday, October 09, 2018

A Pristine Star

Pristine_221.8781+9.7844 and its surroundings
Credits: N. Martin and the Pristine collaboration, DECam Legacy Survey, Aladin Sky Atlas."

The spectrum observed with the William Herschel Telescope on La Palma for Pristine_221.8781+9.7844, compared to the spectrum of the Sun. As can be seen, the spectrum of Pristine_221.8781+9.7844 contains far fewer feature. Only hydrogen (the large dips) and a small amount of Calcium (the small dip) can be seen in the spectrum of Pristine_221.8781+9.7844. This tells us that the star is ultra metal-poor, it has an unusual lack of heavy elements in its atmosphere, which means that it belongs to an early generation of stars formed in the Galaxy. Credits: E. Starkenburg and the Pristine collaboration.


An international team of researchers using Megacam at the Canada-France-Hawaii Telescope discovered a star that is among the least polluted by heavy elements. Such stars are extremely rare survivors of the early ages of the universe, when the gas stars are formed from hadn't yet been contaminated by the remnants of successive generations of dead stars. This new discovery opens a window onto star formation at the beginning of our universe.

For the study of the early universe, astronomers have different methods at their disposal. One is to look far into the Universe and back in time, to see the first stars and galaxies growing. Another option is to examine the oldest surviving stars of our home galaxy, the Milky Way, for information from the early universe. The "Pristine" survey, led by Nicolas Martin (CNRS/INSU, University of Strasbourg) and Else Starkenburg (Leibniz Institute for Astrophysics, Potsdam) is looking for exactly these pristine stars.

The early universe contained almost exclusively hydrogen and helium. Throughout the life of any star, the thermonuclear reactions takes place at their core create elements heavier than helium (carbon, oxygen, calcium, iron, etc.) from the hydrogen and helium making up the vast majority of their gas. When these stars explode at the end of their lifetime, they enrich the surrounding gas of with these “heavy” elements. This newly enriched gas serves as the birthplace for the next generation of stars. Each subsequent generation becomes more and more enriched with heavy elements created by their ancestors. Our sun, for example, is made up of about 2% of these heavy elements. On the contrary, very old stars contain very small quantities of heavy elements. They are however extremely rare and extremely difficult to find in our cosmic neighborhood.

The discovery of the star unveiled by the "Pristine" team was made possible thanks to a new mapping of the night sky conducted at the Canada-France-Hawaii Telescope, located in Hawaii. The Pristine team uses Megacam at CFHT to observea small part of the ultra-violet light that is very sensitive to the abundance in heavy elements and enables a discrimination of the rare, pristine stars from the much more common stars polluted in heavy elements. The team estimates that less than one star in a million is as pristine as the newly discovered star. Follow up observations with spectrographs of the Isaac Newton Group, located in Spain, and the European Southern Observatory, located in Chile, confirmed that star Pristine_221.8781+9.7844 is almost void of heavy elements, with the concentration of heavy elements being 10,000 to 100,000 times lower than those found in the atmosphere of our sun.

This star, whose discovery is presented in a publication of the Monthly Notices of the Royal Astronomical Society, Oxford University Press, brings strongly needed constraints on star formation models of the very first stars and opens a window onto an epoch that is still poorly understood. The discovery of Pristine_221.8781+9.7844 at the start of the "Pristine" project bodes well for the discovery of many such stars in the years to come.


Additional information

Link to the Paper

Contact Information:

Media contacts

Mary Beth Laychak, Outreach manager
Canada-France-Hawaii Telescope
mary@cfht.hawaii.edu

Science contacts

Else Starkenburg
Leibniz-Institut fur Astrophysik Potsdam
estarkenburg@aip.de

Nicolas Martin
Observatory Astrononomy de Strasbourg
nicolas.martin@astro.unistra.fr