Showing posts with label GW170817. Show all posts
Showing posts with label GW170817. Show all posts

Monday, July 17, 2023

Understanding neutron star mergers

Numerical-relativistic simulation of a binary neutron star merger
The neutron stars have masses of 1.2 and 1.5 solar masses, respectively, which is consistent with the parameters of the merger observed in August 2017 (GW170817). The data was generated during a one second-long general-relativistic neutrino-radiation magnetohydrodynamic simulation. The visualization shows the electron fraction on the left, the density in the center, and the magnetic field strength (1015 Gauss) on the right. ©K. Hayashi, K. Kiuchi (Max Planck Institute for Gravitational Physics & Kyoto University). Video YouTube

One second-long numerical-relativistic simulation of a binary neutron star merger
One second-long numerical-relativistic simulation of a binary neutron star merger The neutron stars have masses of 1.2 and 1.5 solar masses, respectively, which is consistent with the parameters of the merger observed in August 2017 (GW170817). The visualization shows profiles for rest-mass density (top-left), magnetic-field strength (top-second from left), magnetization parameter (top-second from right), unboundedness defined by the Bernoulli criterion (top-right), electron fraction (bottom-left), temperature (bottom-second from left), entropy per baryon (bottom-second from right), and Shakura-Sunyaev αM parameter (bottom-right). ©K. Hayashi, K. Kiuchi (Max Planck Institute for Gravitational Physics & Kyoto University).. Video YouTube



Complex numerical simulation sheds light on an extreme cosmic process

Scientists from the Max Planck Institute for Gravitational Physics in Potsdam and from the Universities of Kyoto and Toho have succeeded for the first time in studying the entire process of two neutron stars orbiting and merging with each other in a long numerical-relativistic simulation. Until now, only simulations describing about 0.1 seconds of the entire process were feasible for such binary systems. The new modeling, which took the Japanese high-performance computer Fugaku 200 days to compute, maps a time span ten times longer and provides new insights into the formation of heavy elements. The study has now appeared in the journal Physical Review Letters.

When in August 2017 gravitational waves from two merging neutron stars were detected, it was a scientific sensation and the beginning of multimessenger astronomy, which combines measurements from gravitational-wave detectors with observations from telescopes that pick up signals in the electromagnetic range. However, it is still not known what exactly happens during and after such a merger. To learn more about neutron stars, which typically have 40% more mass than our Sun at a diameter of about 20 kilometers, highly accurate theoretical computations are needed. The two neutron stars in the simulation published today had 1.2 and 1.5 solar masses, respectively, which is consistent with the parameters of the merger observed in August 2017.

Scientists expect to observe coalescing neutron stars also during the recently started fourth observation run of the gravitational-wave detectors. For the interpretation of such signals, reliable theoretical predictions are crucial, which are now available for the first time. "Until now, it has always been necessary to combine different methods to model the complete process of the inspiral, merger and the post-merger phase," explains Kenta Kiuchi, group leader in the Computational Relativistic Astrophysics Department at the Max Planck Institute for Gravitational Physics and first author of the paper. "In addition, previous studies included a lot of assumptions that were not always physically motivated. Our study, on the other hand, is self-consistent and making only a few assumptions. It is the first complete computation of the entire process and provides an accurate picture of the mass ejection during and shortly after the binary neutron star merger."

The formation of heavy elements

The study took 72 million CPU hours on the Japanese high-performance computer Fugaku to simulate one crucial second of the entire process: the last five orbits, the merger itself, and the phase afterwards. "With this long simulation, we have learned a lot about the physics of neutron star coalescences," says Masaru Shibata, director of the Computational Relativistic Astrophysics Department. "It's becoming more and more clear that the elements heavier than iron are in fact synthesized in such extremely energetic processes when matter is ejected from the system during and after the merger."

The researchers closely studied the ejection of mass from the system and found that matter is ejected starting about 10 milliseconds after the merger. After 40 milliseconds, this dynamic mass ejection peaks, then flattens out, and about 300 milliseconds after the merger, matter is again ejected – this time from the torus that formed during the merger. While the dynamic mass ejection is due to tidal forces and shock heating during the merger, ejection of matter after the merger results from turbulence in the torus as the scientists have now been able to self-consistently show for the first time.
 



Media contact:

Dr. Elke Müller
Press Officer AEI
Potsdam, Scientific Coordinator
tel.+49 331 567-7303
tel.+49 331 567-7298

elke.mueller@aei.mpg.de

Science contacts:

Dr. Kenta Kiuchi
Group Leader
tel.+49 331 567-7320

kenta.kiuchi@aei.mpg.de

Prof. Masaru Shibata
Director
tel.+49 331 567-7222
tel.+49 331 567-7298

masaru.shibata@aei.mpg.de

Publication:

Kenta Kiuchi, Sho Fujibayashi, Kota Hayashi, Koutarou Kyutoku, Yuichiro Sekiguchi, Masaru Shibata
Self-consistent picture of the mass ejection from a one second-long binary neutron star merger leaving a short-lived remnant in general-relativistic neutrino-radiation magnetohydrodynamic simulation

Phys. Rev. Lett. 131, 011401 (2023)

Source | DOI


Friday, November 25, 2022

Tracing the Origins of Rare, Cosmic Explosions

A typical star-forming host galaxy where a short gamma-ray burst originated from.
Credit: W. M. Keck Observatory/Adam Makarenko



Astronomers Produce the Most Robust Catalog to Date of Short Gamma-Ray Burst Hosts


Maunakea, Hawaiʻi A team of astronomers led by Northwestern University has created the most extensive inventory yet of the galaxies where short gamma-ray bursts (sGRBs) come from. Using several highly sensitive instruments at W. M. Keck Observatory on Maunakea, Hawaiʻi and other large observatories, combined with some of the most sophisticated galaxy modeling ever used in the field, the researchers pinpointed the galactic homes of 84 sGRBs.

“This is the largest catalog of sGRB host galaxies to ever exist, so we expect it to be the gold standard for many years to come,” said Anya Nugent, an astronomy graduate student at Northwestern University who led the research, observational efforts with Keck Observatory, and one of two publications about the study.

As an homage to the fact that sGRBs are among the brightest explosions in the universe, the team calls their catalog BRIGHT (Broadband Repository for Investigating Gamma-ray burst Host Traits) with all of their data and modeling products online for community use.

SGRBs are momentary flashes of intense gamma-ray light emitted when two neutron stars collide. While the gamma-rays last only seconds, the optical light can continue for hours before fading below detection, called an afterglow. SGRBs are some of the most luminous explosions in the universe with, at most, a dozen detected and pinpointed each year.




An artistic rendition of the diversity of short gamma-ray burst (sGRB) host environments, in large part discovered and characterized by Keck Observatory. SGRBs may occur in actively star-forming or dead galaxies, nearby or deep into the universe, and close or far from their host’s centers. All data is publicly available on the BRIGHT website (bright.ciera.northwestern.edu). Credit: W. M. Keck Observatory/Adam Makarenko


Since the discovery of sGRB afterglows in 2005 by NASA’s Neil Gehrels Swift Observatory, astronomers have spent the last 17 years trying to find out which galaxies these powerful bursts originated from, as the stars within a galaxy can give insight into the environmental conditions needed to produce these events and can connect them to their neutron star merger origins. Indeed, only one sGRB, GRB 170817A, has a confirmed neutron star merger origin, as it was detected just seconds after gravitational wave detectors observed the binary neutron star merger, GW170817.

“In a decade, the next generation of gravitational wave observatories will be able to detect neutron star mergers out to the same distances as we do sGRBs today. Thus, our catalog will serve as a benchmark for comparison to future detections of neutron star mergers,” said Wen-fai Fong, assistant professor of astronomy and physics at Northwestern University and lead author of one of the publications.

“Building this catalog and finally having enough host galaxies to see patterns and draw significant conclusions is exactly what the field needed to push our understanding of these fantastic events and what happens to stars after they die,” said Nugent.

Learning about sGRB host galaxies is crucial to understanding the blasts themselves and offers clues about the types of stars that created them as well as their distance from Earth. Since neutron star mergers create heavy elements like gold and platinum, the data will also deepen scientists’ understanding of when precious metals were first created in the universe.

The first paper in the study, which is published in The Astrophysical Journal, found that sGRBs occur at higher redshifts, or earlier times in the universe, than previously thought—and with greater distances from their hosts’ centers than understood before. Surprisingly, several of these explosions were found just outside their host galaxies as if they were “kicked out,” raising questions as to how they were able to travel that far.

Published in the same journal, the second research paper in the study probed the characteristics of 69 of the identified sGRB host galaxies. The findings suggest about 85 percent of them are young, actively star-forming galaxies — a stark contrast to earlier studies that characterized the population of sGRB host galaxies as relatively old and approaching death. This means neutron star systems may form in a broad range of environments and many of them have quick formation-to-merger timescales.

Keck Observatory’s Low Resolution Imaging Spectrometer (LRIS), DEep Imaging and Multi-Object Spectrograph (DEIMOS), and Multi-Object Spectrograph for Infrared Exploration (MOSFIRE) were crucial instruments in creating the catalog. Together, they allowed the team to capture deep imaging and spectroscopy of some of the faintest galaxies identified in the survey of sGRB hosts.

“It would simply not be possible to obtain distances to some of these galaxies, or even detect them at all, without the Keck Observatory,” Fong said. “In many cases, Keck enabled the first detection of a very faint host galaxy and ensured we did not misidentify any host galaxies.”

Many questions remain about how neutron stars merge and how long the process takes. But observing sGRBs and their host galaxies provides one of the best perspectives to answer them and can offer more data about neutron star mergers and their hosts at much farther distances, and more frequently, than current gravitational wave detectors. This new sGRB host catalog will therefore serve as a vital reference point in the coming decade to understand the full evolution of these systems over cosmic time. “The catalog can really make impacts beyond just a single class of transients like sGRBs,” said co-author Yuxin “Vic” Dong, an astronomy PhD student at Northwestern University. “With the wealth of data and results presented in the catalog, I believe a variety of research projects will make use of it, maybe even in ways we have yet not thought of.”

“I started observations for this project 10 years ago and it was so gratifying to be able to pass the torch onto the next generation of researchers,” said Fong. “It is one of my career’s greatest joys to see years of work come to life in this catalog, thanks to the young researchers who really took this study to the next level.”

The James Webb Space Telescope (JWST) is poised to further advance our understanding of neutron star mergers and how far back in time they began, as it will be able to detect the faintest host galaxies that exist at very early times in the universe.
 
“I’m most excited about the possibility of using JWST to probe deeper into the source of these rare, explosive events,” said Nugent. “JWST’s ability to observe faint galaxies in the universe could uncover more sGRB host galaxies that are currently evading detection, perhaps even revealing a missing population and a link to the early universe!”





About LRIS

The Low Resolution Imaging Spectrometer (LRIS) is a very versatile and ultra-sensitive visible-wavelength imager and spectrograph built at the California Institute of Technology by a team led by Prof. Bev Oke and Prof. Judy Cohen and commissioned in 1993. Since then, it has seen two major upgrades to further enhance its capabilities: the addition of a second, blue arm optimized for shorter wavelengths of light and the installation of detectors that are much more sensitive at the longest (red) wavelengths. Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument’s high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe. LRIS was used in observing distant supernovae by astronomers who received the Nobel Prize in Physics in 2011 for research determining that the universe was speeding up in its expansion.

About DEIMOS

The DEep Imaging and Multi-Object Spectrograph (DEIMOS) boasts the largest field of view (16.7arcmin by 5 arcmin) of any of the Keck Observatory instruments, and the largest number of pixels (64 Mpix). It is used primarily in its multi-object mode, obtaining simultaneous spectra of up to 130 galaxies or stars. Astronomers study fields of distant galaxies with DEIMOS, efficiently probing the most distant corners of the universe with high sensitivity.

About MOSFIRE

The Multi-Object Spectrograph for Infrared Exploration (MOSFIRE), gathers thousands of spectra from objects spanning a variety of distances, environments and physical conditions. What makes this large, vacuum-cryogenic instrument unique is its ability to select up to 46 individual objects in the field of view and then record the infrared spectrum of all 46 objects simultaneously. When a new field is selected, a robotic mechanism inside the vacuum chamber reconfigures the distribution of tiny slits in the focal plane in under six minutes. Eight years in the making with First Light in 2012, MOSFIRE’s early performance results range from the discovery of ultra-cool, nearby substellar mass objects, to the detection of oxygen in young galaxies only two billion years after the Big Bang. MOSFIRE was made possible by funding provided by the National Science Foundation.  
 
About W. M. Keck Observatory

The W. M. Keck Observatory telescopes are among the most scientifically productive on Earth. The two 10-meter optical/infrared telescopes atop Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometers, and world-leading laser guide star adaptive optics systems. Some of the data presented herein were obtained at Keck Observatory, which is a private 501(c) 3 non-profit organization operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.


Thursday, October 13, 2022

Hubble Spots Ultra-Speedy Jet Blasting from Star Crash

Superluminal Motion Relativistic Jet
This is an artist's impression of two neutron stars colliding. The smashup between two dense stellar remnants unleashes the energy of 1,000 standard stellar nova explosions. In the aftermath of the collision a blowtorch jet of radiation is ejected at nearly the speed of light. The jet is directed along a narrow beam confined by powerful magnetic fields. The roaring jet plowed into and swept up material in the surrounding interstellar medium. Credits: Artwork: Elizabeth Wheatley (STScI). Release Images

Astronomers using NASA's Hubble Space Telescope have made a unique measurement that indicates a jet, plowing through space at speeds greater than 99.97% the speed of light, was propelled by the titanic collision between two neutron stars.

The explosive event, named GW170817, was observed in August 2017. The blast released the energy comparable to that of a supernova explosion. It was the first combined detection of gravitational waves and gamma radiation from a binary neutron star merger.

This was a major watershed in the ongoing investigation of these extraordinary collisions. The aftermath of this merger was collectively seen by 70 observatories around the globe and in space, across a broad swath of the electromagnetic spectrum in addition to the gravitational wave detection. This heralded a significant breakthrough for the emerging field of Time Domain and Multi-Messenger Astrophysics, the use of multiple "messengers" like light and gravitational waves to study the universe as it changes over time.

Scientists quickly aimed Hubble at the site of the explosion just two days later. The neutron stars collapsed into a black hole whose powerful gravity began pulling material toward it. That material formed a rapidly-spinning disk that generated jets moving outward from its poles. The roaring jet smashed into and swept up material in the expanding shell of explosion debris. This included a blob of material through which a jet emerged.

While the event took place in 2017, it has taken several years for scientists to come up with a way to analyze the Hubble data and data from other telescopes to paint this full picture.

The Hubble observation was combined with observations from multiple National Science Foundation radio telescopes working together for very long baseline interferometry (VLBI). The radio data were taken 75 days and 230 days after the explosion.

"I'm amazed that Hubble could give us such a precise measurement, which rivals the precision achieved by powerful radio VLBI telescopes spread across the globe," said Kunal P. Mooley of Caltech in Pasadena, California, lead author of a paper being published in the October 13 journal of Nature magazine.

The authors used Hubble data together with data from ESA's (the European Space Agency) Gaia satellite, in addition to VLBI, to achieve extreme precision. "It took months of careful analysis of the data to make this measurement," said Jay Anderson of the Space Telescope Science Institute in Baltimore, Maryland.

By combining the different observations, they were able to pinpoint the explosion site. The Hubble measurement showed the jet was moving at an apparent velocity of seven times the speed of light. The radio observations show the jet later had decelerated to an apparent speed of four times faster than the speed of light.

In reality, nothing can exceed the speed of light, so this "superluminal" motion is an illusion. Because the jet is approaching Earth at nearly the speed of light, the light it emits at a later time has a shorter distance to go. In essence the jet is chasing its own light. In actuality more time has passed between the jet's emission of the light than the observer thinks. This causes the object's velocity to be overestimated — in this case seemingly exceeding the speed of light.

"Our result indicates that the jet was moving at least at 99.97% the speed of light when it was launched," said Wenbin Lu of the University of California, Berkeley.

The Hubble measurements, combined with the VLBI measurements, announced in 2018 , greatly strengthen the long-presumed connection between neutron star mergers and short-duration gamma-ray bursts. That connection requires a fast-moving jet to emerge, which has now been measured in GW170817.

This work paves the way for more precision studies of neutron star mergers, detected by the LIGO, Virgo and KAGRA gravitational wave observatories. With a large enough sample over the coming years, relativistic jet observations might provide another line of inquiry into measuring the universe's expansion rate, associated with a number known as the Hubble constant.

At present there is a discrepancy between Hubble constant values as estimated for the early universe and nearby universe — one of the biggest mysteries in astrophysics today. The differing values are based on extremely precise measurements of Type Ia supernovae by Hubble and other observatories, and Cosmic Microwave Background measurements by ESA's Planck satellite. More views of relativistic jets could add information for astronomers trying to solve the puzzle.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.



Credits:

Release: NASA, ESA, STScI

Media Contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Science Contact:

Kunal P. Mooley
California Institute of Technology, Pasadena, California


Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents:



Monday, February 28, 2022

GW170817: The Unfolding Story of a Kilonova Told in X-rays

GW170817
Credit: X-ray: NASA/CXC/Northwestern Univ./A. Hajela et al.; Illustration: NASA/CXC/M.Weiss

JPEG (667.2 kb) - Large JPEG (9.5 MB) - Tiff (111.2 MB) -  More Images

Tour of GW170817 - More Animations



An artist’s conception illustrates the aftermath of a "kilonova," a powerful event that happens when two neutron stars merge. As described in our press release, NASA’s Chandra X-ray Observatory has been collecting data on the kilonova associated with GW170817 since shortly after it was first detected in gravitational waves by the Laser Interferometry Gravitational-wave Observatory (LIGO) and Virgo on August 17, 2017.

GW170817 was the first — and thus far the only — cosmic event where both gravitational waves and electromagnetic radiation, or light, were detected. This combination provides scientists with critical information about the physics of neutron star mergers and related phenomena, using observations at many different parts of the electromagnetic spectrum. Chandra is the only observatory still able to detect light from this extraordinary cosmic collision more than four years after the original event.

X-ray Credit: NASA/CXC/Northwestern Univ./A. Hajela et al.

Astronomers think that after neutron stars merge, the debris generates visible and infrared light from the decay of radioactive elements like platinum and gold formed in the debris from the merger. This burst of light is called a kilonova. Indeed, visible light and infrared emission were detected from GW170817 several hours after the gravitational waves.

Initially the neutron star merger likely produced a jet of high-energy particles that was not pointed directly at Earth, explaining an initial lack of X-rays seen by Chandra. The jet then slowed down and widened upon impact with surrounding gas and dust. These changes caused an increase in X-rays observed by Chandra followed by a decline in early 2018. However, since the end of 2020, the X-rays detected by Chandra have remained at a nearly constant level. The Chandra image from data taken in December 2020 and January 2021 shows X-ray emission from GW170817 and from the center of its host galaxy, NGC 4993.

A research team studying the Chandra data think this steadying of the X-ray emission comes from a shock — like a sonic boom from an airplane — as the merger debris responsible for the kilonova strikes gas around GW170817. Material heated by such a shock would glow steadily in X-rays giving a "kilonova afterglow", like Chandra has observed. The artist’s illustration shows the merger debris responsible for the kilonova in blue surrounded by a shock depicted in orange and red.

There is also an alternative explanation suggesting that the X-rays come from material falling towards a black hole that formed after the neutron stars merged. This material is depicted by a small disk in the center of the illustration. To avoid a coincidence, it is likely that only one of the two options — the kilonova afterglow or matter falling onto a black hole — is a significant source of the detected X-rays.

The two blue glowing arcs of material above and below the kilonova show where material from the now-faded jet has struck surrounding material.

To distinguish between the two explanations astronomers will keep monitoring GW170817 in X-rays and radio waves. If it is a kilonova afterglow, the radio emission is expected to get brighter over time and be detected again in the next few months or years. If the explanation involves matter falling onto a newly-formed black hole, then the X-ray output should stay steady or decline rapidly and no radio emission will be detected over time.

Researchers recently announced a source was detected in new Chandra observations performed in December 2021. Analysis of that data is ongoing. No radio detection has yet been reported.

A paper describing these results appears in the latest issue of The Astrophysical Journal Letters and is available online [link]. The authors are Aprajita Hajela (Northwestern University), Rafella Marguitti (University of California at Berkeley), Joe Bright (Berkeley), Kate Alexander (Northwestern), Brian Metzger (Columbia University), Vsevovold Nedora (University of Jena, Germany), Adithan Kathirgamarju (Berkeley), Ben Margalit (Berkeley), David Radice (Penn State University), Cristiano Guidorzi (University of Ferrara, Italy), Edo Berger (Center for Astrophysics I Harvard & Smithsonian (CfA)), Andrew MacFadyen (New York University), Dimitrios Giannios (Purdue University), Ryan Chornock (Berkeley), Ian Heywood (University of Oxford, UK), Lorenzo Sironi (Columbia), Ore Gottlieb (Tel Aviv University, Israel), Deanne Coppjans (Northwestern), Tanmoy Laskar (University of Bath, UK), Yvette Cendes (CfA), Rodolfo Barniol Duran (California State University, Sacramento), Tarraneh Eftekhari (CfA), Wen-fai Fong (Northwestern), Austin McDowell (NYU), Matt Nicholl (University of Birmingham, UK), Zhengtong Xie (University of Southampton, UK), Jonathan Zrake (Clemson University), Sebastiano Bernuzzi (University of Jena), Floor Broekgaarden (CfA), Charlie Kilpatrick (Northwestern), Giacomo Terreran (Northwestern), Ashley Villar (Columbia), Peter Blanchard (Northwestern), Sebastian Gomez (CfA), Griffin Hosseinzadeh (University of Arizona), David Jacob Matthews (Berkeley), and Jillian Rastinejad (Northwestern).

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Fast Facts for GW170817:

Scale: Inset image is 30 arcsec across (19,000 light-years)
Category: Neutron Stars/X-ray Binaries
Coordinates (J2000): RA 13h 09m 48.1s | Dec -23° 22´ 53.4
Constellation: Hydra
Observation Date: 7 observations from Dec 9, 2020-Jan 27, 2021
Observation Time: 53 hours
Obs. ID: 22677, 24887-24889, 23870, 24923, 24924
Instrument:
ACIS
References: Hajela, A. et al., 2022, ApJL, accepted; arXiv:2104.02070
Color Code: X-ray: Purple
Distance Estimate: About 130 million light years


Tuesday, July 13, 2021

Science with a Single Merger Event


Artist’s impression of a binary neutron star merger
Credits: National Science Foundation/LIGO/Sonoma State University/A. Simonnet



Images of the galaxy NGC 4993 showing the electromagnetic counterpart to the gravitational wave-event GW170817. The image was taken by the Dark Energy Camera (DECam) on Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. Credit: Adapted from M. Soares-Santos et al. 2017


Gravitational-wave events have allowed us to measure distances in space in a way that’s independent of previous techniques. By extension, we can also make independent measurements of the universe’s rate of expansion, expressed as the Hubble constant. Current measurements of the Hubble constant from gravitational-wave events still rely on electromagnetic information, but with new observatories on the horizon, it may be possible to make measurements of the Hubble constant with just a single gravitational-wave event.

Ways to Use Gravitational-Wave Events

The gravitational-wave event GW170817 was the first observation of a binary neutron star merger. With concurrent electromagnetic observations, we were able to use information from GW170817 to make an independent measurement of the Hubble constant. This measurement coupled the distance to the event host galaxy (as determined from the gravitational-wave event) with the redshift of the host galaxy, which is derived from electromagnetic information.

While the uncertainty on this measurement of the Hubble constant is relatively large, higher precision measurements will be possible in the near future with more advanced observatories. However, our interpretation of the gravitational-wave signal in this case is very dependent on the inclination of the merging system and the distance to the merger host galaxy as measured by electromagnetic observations — and we’re currently unable to separate the influence of these two quantities.

But what if we could disentangle these influences with a single gravitational-wave event? A recent study led by Juan Calderón Bustillo (Universidade de Santiago de Compostela, Spain) explores how we could use future observations of neutron star mergers like GW170817 to make higher precision measurements of the Hubble constant.


The spectrum of gravitational-wave signals from face-on and edge-on merging systems, with certain signal components highlighted. The black line shows the sensitivity of the planned Neutron star Extreme Matter Observatory (NEMO). Credits: Adapted from Bustillo et al. 2021


Picking Up Subtle Signals

Like most signals, a gravitational-wave signal can be broken down into multiple simpler signals. In the case of a neutron star merger, the components of a gravitational-wave signal are dependent on properties of the merging system, such as stellar mass and the orientation of the system relative to the observer.

With current observatories, we don’t have the ability to pick up the subtler component signals in a gravitational wave, including those that appear after the merger. But if we did — and we eventually will — Bustillo and collaborators show that we could use those subtle signals to disentangle the influences of system inclination and host galaxy distance. Then, we would also be able to make more precise measurements of the Hubble constant. Most notably, being able to pick up these subtler signals would allow us to make measurements of the Hubble constant with just a single merger event!

Future Prospects

The ability to make measurements of the Hubble constant based on single events enables us to test an interesting hypothesis: what if the universe’s rate of expansion is sensitive to direction? While those particular measurements are still a few decades in the future, Bustillo and collaborators show that their method will eventually be limited by our electromagnetic observing capabilities, rather than our ability to observe gravitational-wave signals!

Citation

“Mapping the Universe Expansion: Enabling Percent-level Measurements of the Hubble Constant with a Single Binary Neutron-star Merger Detection,” Juan Calderón Bustillo et al 2021 ApJL 912 L10. doi:10.3847/2041-8213/abf502




Thursday, June 03, 2021

Metal-poor Stars Shed Light on the Origin of Gold


Neutron star mergers produce rare heavy elements like gold. It is not yet clear whether collapsing stars also produce such elements. ESO / L. Calçada / M. Kornmesser
 
Explosions of massive stars might have produced gold and other rare heavy elements observed in metal-poor stars in our galaxy’s halo.

“We finally know where gold comes from!” announced the headlines in 2017 following the detection of gravitational waves from the neutron star collision known as GW170817.

But do we really?

The recipe to make elements heavier than iron sounds simple enough: Bombard a lighter nucleus with neutrons and watch it grow. But there’s a catch — to produce heavy elements like gold, platinum, and uranium, a nucleus has to grow really fast, otherwise it decays into lighter elements before it reaches a stable form. This rapid process produces about half of all elements heavier than iron.

The cosmic origin of these rapid-process, or r-process elements has long been subject to debate. The fortuitous case of GW170817 precipitated a great leap forward. Short-lived visible and infrared light accompanying the neutron star merger carried clear signatures of r-process elements. While only one element, namely strontium, has been identified in the data, scientists nonetheless estimated that this event alone likely produced between 3 and 13 Earth masses’ worth of gold.

But while there’s no doubt that neutron star mergers produce r-process elements, the jury is still out on how important these events are in the grand scheme of things. After all, other cosmic events might produce these elements, too. For example, the violent deaths of massive stars could also play a role. In a recent study to appear in The Astrophysical Journal (preprint available here), a team of scientists shows that we shouldn't discount supernovae just yet. 

History, as Told by Metal-poor Star

“There are a lot of problems with neutron star mergers as a source of heavy elements in the early universe,” explains Kaley Brauer (Massachusetts Institute of Technology), who led the new study.

One long-standing issue concerns metal-poor stars found in the galactic halo. These sparse stars surround the galaxy’s spiral disk and formed a long time ago from nearly pristine gas that was barely touched by earlier generations of stars. Yet these metal-poor stars have a relatively high amount of r-process elements in their atmospheres. How did these elements get into the gas from which the stars were born?

It usually takes billions of years for two stars in a binary system to become neutron stars, spiral toward each other, and merge. By the time the merger seeds the surrounding gas with r-process elements, the metal-poor star had already been born.

The collapse of a massive star nearing the end of its brief life could also create conditions conducive to the formation of r-process elements, but on shorter time scales than that of a binary merger. The idea works in theory but hasn't been proven directly.

Brauer and her colleagues decided to test whether the collapsing star scenario could account for the abundances of r-process elements, in particular the europium observed in metal-poor stars. “We started with a simple assumption,” says Brauer. “What if you said all heavy elements were formed in this way in the early universe?” 

Europium, Barium & Nanodiamonds

The team constructed a simple yet self-consistent model of a galaxy, represented by a giant ball of gas in which a number of stars collapse. Each stellar explosion enriches the gas with metals like iron, and some of these supernovae also produce r-process elements. The model successfully reproduces the relative abundances of europium and iron in metal-poor stars.

One key question is, how many supernovae have to explode to account for the observed abundances of r-process elements? “[The researchers] come to some interesting conclusions,” says Darach Watson (University of Copenhagen). “They find frequencies which are similar to those of long gamma-ray bursts.” Such gamma-ray bursts are associated with the most extreme explosions of giant stars. The result implies that not every supernova would be producing r-process elements, only the most extreme ones.


This illustration of a gamma-ray burst coming from the collapse of a massive star, which might be the type of collapsing star most likely to produce r-process elements.   NASA / GSFC

Despite the promising results, it’s too early to draw strong conclusions. “The team looks only at one element, europium, but it could also be possible to use barium, for example,” says Watson. Barium is relatively easy to detect in the metal-poor stars and could help constrain the model. Furthermore, Brauer is already studying how the complex mixing of elements in the gas from which the stars are born affects the results.

Watson also draws attention to another often-overlooked line of evidence: nanodiamonds. Some of these tiny, sub-micron diamonds found in meteorites contain traces of r-process elements.  “The question is, where is that coming from?” asks Watson. “Probably from a core-collapse supernova, but who knows?”

Ultimately, scientists will have to tackle the complex question of the origin of r-process elements from different angles. The way things stand now, it seems that more than one type of cosmic source contributes to the overall abundance of gold and related elements in the universe.

 By: Jure Japelj

Source: Sky & Telescope/Stellar Science


Monday, March 15, 2021

Gravitational Waves Shed Light on How Heavy a Neutron Star Can Be

This still comes from a simulation of two neutron stars merging. Observations of collisions like these may help us determine the maximum mass a neutron star can attain. Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

Artist’s impression of a strongly magnetized neutron star.
Credit:NASA/Penn State University/Casey Reed

Probability distribution function for the maximum mass of a non-rotating neutron star, as estimated by the authors’ genetic algorithm (blue curve) and in a previous study of GW170817 (purple curve). Credit: Nathanail et al. 2021 

What’s the largest mass that a neutron star — the dense, collapsed core of a massive star — can grow to before further collapsing into a black hole? Recent gravitational-wave events are providing new insight.

Finding the Maximum

Neutron stars consist almost entirely of neutrons packed together at the density of atomic nuclei. This extreme mass in such a small space results in an extraordinary inward gravitational pull that increases as more neutrons are packed in. When the crushing gravitational force exceeds the combined quantum and nuclear forces pushing outward, the star collapses to form a black hole.

What is the maximum mass limit above which a neutron star collapses? Theory suggests that, for a non-rotating neutron star, it’s somewhere around 2 or 3 times the mass of the Sun — but the precise value relies on the unknown state of matter inside the neutron star. To get around this missing information, we need observational constraints to help us pin down how heavy a neutron star can be.

Collisional Clues

In recent years, gravitational waves have provided valuable new insight. Two particular mergers of compact objects have tempted us with clues:

  1. GW170817
    In this event, two neutron stars in the range of 1.1–1.6 solar masses merged to form a larger object, which we think collapsed into a black hole shortly after merger. The gravitational-wave and electromagnetic observations of this process point to a maximum neutron star mass that’s less than 2.3 solar masses.
  2. GW190814
    In this event, a black hole of more than 20 solar masses merged with an object of just 2.5–2.7 solar masses — but we don’t know whether that smaller object was a black hole or a neutron star. If it was a non-rotating neutron star, then this would imply that the upper limit for neutron star mass is above 2.5 solar masses.

Can we reconcile these two potentially conflicting pieces of information? A study led by Antonios Nathanail (Institute for Theoretical Physics, Germany) presents new analysis that further explores what these mergers tell us about neutron star limits.

Probability distribution function for the maximum mass of a non-rotating neutron star, as estimated by the authors’ genetic algorithm (blue curve) and in a previous study of GW170817 (purple curve). Credit: Nathanail et al. 2021

A Lower Upper Limit

Nathanail and collaborators analyzed these two mergers by employing a genetic algorithm — an algorithm that explores a large parameter space and looks for optimized solutions by mimicking the process of natural selection. Using this algorithm, the authors identified which maximum mass solutions are consistent with gravitational-wave and electromagnetic observations of GW170817 and GW190814 and numerical simulations of mergers.

From their systematic investigation, the authors show that a large maximum neutron star mass — like the 2.5 solar masses required if GW190814’s secondary was a non-rotating neutron star — doesn’t mesh with our observations of GW170817 or with expectations from numerical simulations of gravitational wave production.

Instead, the authors find that a maximum neutron star mass of about 2.2 solar masses neatly reproduces the observations of GW170817 and is consistent with numerical simulations. This upper limit implies that GW190814’s secondary was too large to have been a non-rotating neutron star. Instead, GW190814 was likely the merger of two unequal-mass black holes.

Citation

“GW170817 and GW190814: Tension on the Maximum Mass,” Antonios Nathanail et al 2021 ApJL 908 L28.doi:10.3847/2041-8213/abdfc6

By

 

 Source: American Astronomical Society (AAS NOVA)


Tuesday, December 15, 2020

A Radio Flare from Colliding Stars?

When neutron stars collide, the shell of expanding ejecta can interact with the surrounding interstellar medium, producing long-lived radio flaring. [NASA's Goddard Space Flight Center/CI Lab].Hi-res image

When a pair of neutron stars collide, they emit a fireworks show. Could some of the low-energy light produced in these mergers be detectable years later? A team of scientists thinks so — and they’re pretty sure they’ve found an example.

A Rainbow of Signals

In addition to gravitational waves, a slew of electromagnetic radiation is produced in the merger of two neutron stars, spanning the spectrum from gamma rays to radio waves.

In 2017, the now-famous neutron star collision GW170817 gave us a first look at this expected emission: it revealed a short gamma-ray burst, infrared and optical light from ejecta in a kilonova, and relatively short-lived X-ray and radio afterglows caused by high-speed outflows.

But there’s one expected type of emission that was missing from GW170817, and it’s never before been spotted in any neutron star collision: radio flaring.

Illustration of radio emission from a neutron star merger. During the merger, some neutron star matter is flung outward. This ejecta interacts with the interstellar gas, producing a years-long radio flare. [Lee et al. 2020].Hi-res image

Radio Secrets revealed 

Models of neutron star mergers predict that when ejecta are flung out from the stellar collision, they’ll expand into space, eventually running into the surrounding medium of interstellar gas and dust. The subsequent interaction of the ejecta with the interstellar medium should produce radio flaring.

The emission from these radio flares is expected to be quite long-lived — lasting for years or even decades — which means we could hope to find these signals long after the time of the explosion that produced them. But radio flares are also likely to be relatively faint, so we could only expect to spot flares from nearby collisions (within ~650 million light-years). Additionally, only mergers that occur in environments with dense surrounding gas and dust will light up brightly enough for us to spot.

With these constraints, it’s perhaps not surprising that we haven’t found any radio flares marking past mergers yet. But a team of scientists led by Kyung-hwan Lee (University of Florida) recently waded through decades of radio data from the Very Large Array — and in a recent publication, they’re announcing that one transient may be the first identified radio flare from a stellar collision.

Observational data for FIRST J1419+3940 and best-fit radio light curves at three different frequencies. The data are better fit by the neutron-star-merger model (solid lines) than the long-gamma-ray-burst model (dashed lines). [Lee et al. 2020] . Hi-res image

A Decade-Old Collisions

FIRST J141918.9+394036 is a radio transient located in a dwarf galaxy 280 million light-years away. Lee and collaborators compile survey data on this source spanning 23 years and evaluate possible explanations for the radio emission.

While this source could potentially be explained as a long-gamma-ray-burst afterglow — light from an off-axis jet produced by a collapsing star — the radio data aren’t fit best by this picture. Instead, the authors show via models that this transient’s light curve is best described as the decay of a radio flare, just as predicted from a neutron star merger. This means that FIRST J141918.9+394036 likely marks a decades-old collision of two stars.

Within a few years, further observations of FIRST J141918.9+394036 will allow us to better distinguish between models and confirm its nature. And as we find more signals like this one, we can use these observations to further understand the origin and physics of neutron star mergers — potentially illuminating everything from the formation channel of binaries to the equation of state for neutron stars.

Citation

“FIRST J1419+3940 as the First Observed Radio Flare from a Neutron Star Merger,” K. H. Lee et al 2020 ApJL 902 L23. doi:10.3847/2041-8213/abbb8a

 

Source: American Astronomical Society - NOVA


Tuesday, May 12, 2020

Signs of Collisions to Come

Artist’s impression of a neutron star threaded with a dipole magnetic field.
Credit:[ESO/L.Calçada].
Hi-res Image

Artist’s impression of the collision and merger of two neutron stars.
Credit:[NSF/LIGO/Sonoma State University/A. Simonnet].
Hi-res Image

We know that when two neutron stars — the dense, compact cores of evolved stars — collide, they produce signals that span the electromagnetic spectrum. But could these binaries also flare before they merge, as well?

A Broad Range of Signals

The discovery and follow-up of the gravitational-wave event GW170817, a collision of two neutron stars, provided the first direct evidence of the many forms of light that are emitted in these mergers. Between the instant of collision and the months that followed, observatories around the world recorded everything from high-energy gamma rays to late-time radio emission.

But emission might not be restricted to during and after the merger! A new study conducted by two researchers from the Flatiron Institute, Elias R. Most (also of Goethe University Frankfurt, Germany) and Alexander Philippov, explores the possibility that neutron star binaries may also produce flares of emission in the time leading up to their final impact.

This plot of the out-of-plane magnetic field density indicates the twist in flux tubes connecting the two neutron stars seen at the center of the plot. Here, an electromagnetic flare is launched from the binary after a significant twist has built up due to relative rotation of the right star. [Most & Philippov 2020].
Hi-res Image

What About Magnetic Fields?

In particular, Most and Philippov focus on how the magnetospheres of the two neutron stars — the magnetized environment surrounding each body — interact shortly before the objects collide.

The authors conduct special-relativistic force-free simulations of orbiting pairs of neutron stars in which each star is threaded with the strong dipole magnetic field expected for these bodies. The simulations then track how the stars’ magnetic fields evolve, twist, and interact as the bodies orbit each other.

A Twisted Fate


Most and Philippov find that dramatic releases of magnetic energy are a common outcome if the neutron stars orbit close enough to one another that their magnetospheres interact.

The authors show that the brightness of the flare luminosity depends only on how far apart the neutron stars are in the simulation: the smaller the separation, the brighter the flare. This dependence demonstrates that the flaring events are driven primarily by the energy stored in the twisted tube of magnetic flux that forms connecting the two neutron stars.

When the two neutron stars spin at different speeds, the magnetic field loop that forms between the stars becomes progressively more twisted — until this stored rotational energy is abruptly ejected. And even if neither neutron star is spinning, the authors show that magnetic flux twist still builds up and releases as a result of the binary’s orbital motion, assuming that the magnetic fields of the two stars are not aligned.

Here, the twisted flux tube and resultant flaring is caused by orbital motion of 45° misaligned magnetic fields, rather than by one star spinning. The bottom panel shows a 3D visualization of the field line configuration at the time of flaring. [Most & Philippov 2020].
Hi-res Image

Look for Radio Clues


So can we observe these sudden releases of energy? Most and Philippov argue that we should be able to spot the drama in radio emission: a radio afterglow will be produced behind the magnetized bubble that’s ejected from the twisted loop, and additional radio emission can be produced when the bubble collides with surrounding plasma.

Future work on this topic will explore the impacts of the neutron stars’ inspiral, and how the interactions of the magnetospheres change when the neutron stars carry unequal charge. The current study, however, indicates it’s worth keeping a radio eye out to see if we can spot signs of collisions to come!

Citation

“Electromagnetic Precursors to Gravitational-wave Events: Numerical Simulations of Flaring in Pre-merger Binary Neutron Star Magnetospheres,” Elias R. Most and Alexander A. Philippov 2020 ApJL 893 L6. doi:10.3847/2041-8213/ab8196

Tuesday, February 25, 2020

LIGO-Virgo Network Catches Another Neutron Star Collision

GW190425 : Artist's impression of the binary neutron star merger observed by LIGO Livingston on April 25, 2019. Image credit: National Science FounGW190425 : Artist's impression of the binary neutron star merger observed by LIGO Livingston on April 25, 2019. Image credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet. dation/LIGO/Sonoma State University/A. Simonnet.

On April 25, 2019, the LIGO Livingston Observatory picked up what appeared to be gravitational ripples from a collision of two neutron stars. LIGO Livingston is part of a gravitational-wave network that includes LIGO (the Laser Interferometer Gravitational-wave Observatory), funded by the National Science Foundation (NSF), and the European Virgo detector. Now, a new study confirms that this event was indeed likely the result of a merger of two neutron stars. This would be only the second time this type of event has ever been observed in gravitational waves.

The first such observation, which took place in August of 2017, made history as the first joint observation of the same cosmic event in both gravitational waves and light. The April 25 merger, by contrast, did not result in any light being detected. However, through an analysis of the gravitational-wave data alone, researchers have learned that the objects involved in this collision were unusually massive given the expectations for neutron star binaries.

"From conventional observations with light, we already knew of 17 binary neutron star systems in our own galaxy and we have estimated the masses of these stars", says Ben Farr, a LIGO team member based at the University of Oregon. "What's surprising is that the combined mass of this binary is much higher than what was expected."

"We have detected a second event consistent with a binary neutron star system and this is an important confirmation of the August 2017 event that marked an exciting new beginning for multi-messenger astronomy two years ago", says Jo van den Brand, Virgo Spokesperson and professor at Maastricht University, and Nikhef and VU University Amsterdam in the Netherlands. Multi-messenger astronomy occurs when different types of signals are witnessed simultaneously, such as those based on gravitational waves and light.

The study, accepted for publication in The Astrophysical Journal Letters, is authored by an international team comprised of the LIGO Scientific Collaboration and the Virgo Collaboration, the latter of which is associated with the Virgo gravitational-wave detector in Italy.

Neutron stars are the remnants of dying stars that undergo catastrophic explosions as they collapse at the end of their lives. When two neutron stars spiral together, they undergo a violent merger that sends gravitational shudders through the fabric of space and time.

LIGO became the first observatory to directly detect gravitational waves in 2015; in that instance, the waves were generated by the violent collision of two black holes. Since then, LIGO and Virgo have registered dozens of additional candidate black hole mergers.

“Just as the first gravitational wave detection revealed a binary of unexpectedly massive black holes, this detection again reveals an unexpected member of the ‘cosmological ecosystem’ ”, says Nathan Johnson-McDaniel from the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge. “It is yet another illustration of the great discovery potential of gravitational wave observations.”

GW190425 FactSheet

The April 2019 event was first identified in data from the LIGO Livingston detector alone. The LIGO Hanford detector was temporarily offline at the time, and, at a distance of more than 500 million light-years, the event was extremely faint in Virgo's data. Using the Livingston data, combined with information derived from Virgo’s data, the team narrowed the location of the event to a patch of sky more than 8,200 square degrees in size, or about 20 percent of the sky. For comparison, the August 2017 event was narrowed to a region of just 16 square degrees, or 0.04 percent of the sky.

“But what was the fate of this merger, what type of remnant did it leave behind?”, wonders Michalis Agathos, researcher at DAMTP and the Kavli Institute for Cosmology in Cambridge. “To answer this we can make use of information on the properties of neutron-star matter, that we had gained from the first event back in 2017. And we infer that the binary of this second event seems to be massive enough to immediately collapse upon merger, forming a black hole. Hence we should not expect a strong electromagnetic afterglow.”

The LIGO data reveal that the combined mass of the merged bodies is about 3.4 times the mass of our Sun. In our galaxy, known binary neutron star systems have combined masses up to only 2.9 times that of the Sun. One possibility for the unusually high mass is that the collision took place not between two neutron stars, but a neutron star and a black hole (black holes can be heavier than neutron stars). In this case, however, the black hole would be too light to match astrophysical observations and theoretical expectations. Therefore, the scientists believe it is much more likely that LIGO witnessed a merger of two neutron stars.

“When you look at the black holes and neutron stars observed so far, however, there is a gap in their mass distributions”, says Ulrich Sperhake head of the Cambridge LIGO group at DAMTP. “You have the black holes on the heavy end, the neutron stars on the light end and seemingly no objects in between with about 2.5 to 5 solar masses. This detection may give us the first clues whether and how this gap is filled.”

“This second event was consistent with matter properties extracted from the first binary neutron star observation, GW170817, but was not as loud”, said Charalampos Markakis from the University of Cambridge. “Future events and detector upgrades will allow us to measure properties of matter at extreme densities, beyond the reach of terrestrial laboratories, expanding our understanding of high-energy physics.”

Neutron star pairs are thought to form in two possible ways. They might form from binary systems of massive stars that each end their lives as neutron stars, or they might arise when two separately formed neutron stars come together within a dense stellar environment. The LIGO data for the April 25 event do not indicate which of these scenarios is more likely, but they do suggest that more data and new models are needed to explain the merger’s unexpectedly high mass.



Additional information about the gravitational-wave observatories:

LIGO is funded by the NSF and operated by Caltech and MIT, which conceived of LIGO and lead the project. Financial support for the Advanced LIGO project was led by the NSF with Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council) and Australia (Australian Research Council-OzGrav) making significant commitments and contributions to the project. Approximately 1,300 scientists from around the world participate in the effort through the LIGO Scientific Collaboration, which includes the GEO Collaboration. A list of additional partners is available at https://my.ligo.org/census.php.

The Virgo Collaboration is currently composed of approximately 520 members from 99 institutes in 11 different countries including Belgium, France, Germany, Hungary, Italy, the Netherlands, Poland, and Spain. The European Gravitational Observatory (EGO) hosts the Virgo detector near Pisa in Italy, and is funded by Centre National de la Recherche Scientifique (CNRS) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, and Nikhef in the Netherlands. A list of the Virgo Collaboration groups can be found at http://public.virgo-gw.eu/the-virgo-collaboration/. More information is available on the Virgo website at http://www.virgo-gw.eu.



Friday, October 25, 2019

First identification of a heavy element born from neutron star collision

Artist’s impression of strontium emerging from a neutron star merger

X-shooter spectra montage of kilonova in NGC 4993

The galaxy NGC 4993 in the constellation of Hydra

The sky around the galaxy NGC 4993


Videos

ESOcast 210 Light: First identification of a heavy element born from neutron star collision
ESOcast 210 Light: First identification of a heavy element born from neutron star collision

Neutron star merger animation and elements formed in these events

Animation of spectra of kilonova in NGC 4993
Animation of spectra of kilonova in NGC 4993



For the first time, a freshly made heavy element, strontium, has been detected in space, in the aftermath of a merger of two neutron stars. This finding was observed by ESO’s X-shooter spectrograph on the Very Large Telescope (VLT) and is published today in Nature. The detection confirms that the heavier elements in the Universe can form in neutron star mergers, providing a missing piece of the puzzle of chemical element formation.


In 2017, following the detection of gravitational waves passing the Earth, ESO pointed its telescopes in Chile, including the VLT, to the source: a neutron star merger named GW170817. Astronomers suspected that, if heavier elements did form in neutron star collisions, signatures of those elements could be detected in kilonovae, the explosive aftermaths of these mergers. This is what a team of European researchers has now done, using data from the X-shooter instrument on ESO’s VLT.


Following the GW170817 merger, ESO’s fleet of telescopes began monitoring the emerging kilonova explosion over a wide range of wavelengths. X-shooter in particular took a series of spectra from the ultraviolet to the near infrared. Initial analysis of these spectra suggested the presence of heavy elements in the kilonova, but astronomers could not pinpoint individual elements until now. 

“By reanalysing the 2017 data from the merger, we have now identified the signature of one heavy element in this fireball, strontium, proving that the collision of neutron stars creates this element in the Universe,” says the study’s lead author Darach Watson from the University of Copenhagen in Denmark. On Earth, strontium is found naturally in the soil and is concentrated in certain minerals. Its salts are used to give fireworks a brilliant red colour. 

Astronomers have known the physical processes that create the elements since the 1950s. Over the following decades they have uncovered the cosmic sites of each of these major nuclear forges, except one. “This is the final stage of a decades-long chase to pin down the origin of the elements,” says Watson. “We know now that the processes that created the elements happened mostly in ordinary stars, in supernova explosions, or in the outer layers of old stars. But, until now, we did not know the location of the final, undiscovered process, known as rapid neutron capture, that created the heavier elements in the periodic table.”

Rapid neutron capture is a process in which an atomic nucleus captures neutrons quickly enough to allow very heavy elements to be created. Although many elements are produced in the cores of stars, creating elements heavier than iron, such as strontium, requires even hotter environments with lots of free neutrons. Rapid neutron capture only occurs naturally in extreme environments where atoms are bombarded by vast numbers of neutrons.

“This is the first time that we can directly associate newly created material formed via neutron capture with a neutron star merger, confirming that neutron stars are made of neutrons and tying the long-debated rapid neutron capture process to such mergers,” says Camilla Juul Hansen from the Max Planck Institute for Astronomy in Heidelberg, who played a major role in the study.

Scientists are only now starting to better understand neutron star mergers and kilonovae. Because of the limited understanding of these new phenomena and other complexities in the spectra that the VLT’s X-shooter took of the explosion, astronomers had not been able to identify individual elements until now.

“We actually came up with the idea that we might be seeing strontium quite quickly after the event. However, showing that this was demonstrably the case turned out to be very difficult. This difficulty was due to our highly incomplete knowledge of the spectral appearance of the heavier elements in the periodic table,” says University of Copenhagen researcher Jonatan Selsing, who was a key author on the paper. 

The GW170817 merger was the fifth detection of gravitational waves, made possible thanks to the NSF's Laser Interferometer Gravitational-Wave Observatory (LIGO) in the US and the Virgo Interferometer in Italy. Located in the galaxy NGC 4993, the merger was the first, and so far the only, gravitational wave source to have its visible counterpart detected by telescopes on Earth. 


With the combined efforts of LIGO, Virgo and the VLT, we have the clearest understanding yet of the inner workings of neutron stars and their explosive mergers.



More Information

This research was presented in a paper to appear in Nature on 24 October 2019.

The team is composed of D. Watson (Niels Bohr Institute & Cosmic Dawn Center, University of Copenhagen, Denmark), C. J. Hansen (Max Planck Institute for Astronomy, Heidelberg, Germany), J. Selsing (Niels Bohr Institute & Cosmic Dawn Center, University of Copenhagen, Denmark), A. Koch (Center for Astronomy of Heidelberg University, Germany), D. B. Malesani (DTU Space, National Space Institute, Technical University of Denmark, & Niels Bohr Institute & Cosmic Dawn Center, University of Copenhagen, Denmark), A. C. Andersen (Niels Bohr Institute, University of Copenhagen, Denmark), J. P. U. Fynbo (Niels Bohr Institute & Cosmic Dawn Center, University of Copenhagen, Denmark), A. Arcones (Institute of Nuclear Physics, Technical University of Darmstadt, Germany & GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany), A. Bauswein (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany & Heidelberg Institute for Theoretical Studies, Germany), S. Covino (Astronomical Observatory of Brera, INAF, Milan, Italy), A. Grado (Capodimonte Astronomical Observatory, INAF, Naples, Italy), K. E. Heintz (Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Reykjavík, Iceland & Niels Bohr Institute & Cosmic Dawn Center, University of Copenhagen, Denmark), L. Hunt (Arcetri Astrophysical Observatory, INAF, Florence, Italy), C. Kouveliotou (George Washington University, Physics Department, Washington DC, USA & Astronomy, Physics and Statistics Institute of Sciences), G. Leloudas (DTU Space, National Space Institute, Technical University of Denmark, & Niels Bohr Institute, University of Copenhagen, Denmark), A. Levan (Department of Physics, University of Warwick, UK), P. Mazzali (Astrophysics Research Institute, Liverpool John Moores University, UK & Max Planck Institute for Astrophysics, Garching, Germany), E. Pian (Astrophysics and Space Science Observatory of Bologna, INAF, Bologna, Italy).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Links



Contacts

Darach Watson
Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Cell: +45 24 80 38 25
Email: darach@nbi.ku.dk

Camilla J. Hansen
Max Planck Institute for Astronomy
Heidelberg, Germany
Tel: +49 6221 528-358
Email: hansen@mpia.de

Jonatan Selsing
Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Cell: +45 61 71 43 46
Email: jselsing@nbi.ku.dk

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Email: pio@eso.org