Thursday, April 18, 2024

Most massive stellar black hole in our galaxy found

PR Image eso2408a
Artist’s impression of the system with the most massive stellar black hole in our galaxy

PR Image eso2408b
Comparison of several stellar black holes in our galaxy

PR Image eso2408c
Wide-field view around the BH3 black hole 



Videos

Record-breaking stellar black hole found nearby | ESO News
PR Video eso2408a
Record-breaking stellar black hole found nearby | ESO News

Artist’s animation of the system with the most massive stellar black hole in our galaxy
PR Video eso2408b
Artist’s animation of the system with the most massive stellar black hole in our galaxy

Zooming into the BH3 black hole system
Zooming into the BH3 black hole system

Comparison of several stellar black holes in our galaxy
Comparison of several stellar black holes in our galaxy

Animation showing the locations and distances to some of our galaxy’s black holes
PR Video eso2408e
Animation showing the locations and distances to some of our galaxy’s black holes



Astronomers have identified the most massive stellar black hole yet discovered in the Milky Way galaxy. This black hole was spotted in data from the European Space Agency’s Gaia mission because it imposes an odd ‘wobbling’ motion on the companion star orbiting it. Data from the European Southern Observatory’s Very Large Telescope (ESO’s VLT) and other ground-based observatories were used to verify the mass of the black hole, putting it at an impressive 33 times that of the Sun.

Stellar black holes are formed from the collapse of massive stars and the ones previously identified in the Milky Way are on average about 10 times as massive as the Sun. Even the next most massive stellar black hole known in our galaxy, Cygnus X-1, only reaches 21 solar masses, making this new 33-solar-mass observation exceptional [1].

Remarkably, this black hole is also extremely close to us — at a mere 2000 light-years away in the constellation Aquila, it is the second-closest known black hole to Earth. Dubbed Gaia BH3 or BH3 for short, it was found while the team were reviewing Gaia observations in preparation for an upcoming data release. “No one was expecting to find a high-mass black hole lurking nearby, undetected so far,” says Gaia collaboration member Pasquale Panuzzo, an astronomer from the National Centre for Scientific Research (CNRS) at the Observatoire de Paris - PSL, France. "This is the kind of discovery you make once in your research life."

To confirm their discovery, the Gaia collaboration used data from ground-based observatories, including from the Ultraviolet and Visual Echelle Spectrograph (UVES) instrument on ESO’s VLT, located in Chile’s Atacama Desert [2]. These observations revealed key properties of the companion star, which, together with Gaia data, allowed astronomers to precisely measure the mass of BH3.

Astronomers have found similarly massive black holes outside our galaxy (using a different detection method), and have theorised that they may form from the collapse of stars with very few elements heavier than hydrogen and helium in their chemical composition. These so-called metal-poor stars are thought to lose less mass over their lifetimes and hence have more material left over to produce high-mass black holes after their death. But evidence directly linking metal-poor stars to high-mass black holes has been lacking until now.

Stars in pairs tend to have similar compositions, meaning that BH3’s companion holds important clues about the star that collapsed to form this exceptional black hole. UVES data showed that the companion was a very metal-poor star, indicating that the star that collapsed to form BH3 was also metal-poor — just as predicted.

The research study, led by Panuzzo, is published today in Astronomy & Astrophysics. “We took the exceptional step of publishing this paper based on preliminary data ahead of the forthcoming Gaia release because of the unique nature of the discovery,” says co-author Elisabetta Caffau, also a Gaia collaboration member and CNRS scientist from the Observatoire de Paris - PSL. Making the data available early will let other astronomers start studying this black hole right now, without waiting for the full data release, planned for late 2025 at the earliest.

Further observations of this system could reveal more about its history and about the black hole itself. The GRAVITY instrument on ESO’s VLT Interferometer, for example, could help astronomers find out whether this black hole is pulling in matter from its surroundings and better understand this exciting object.

Source: ESO/News



Notes

[1] This is not the most massive black hole in our galaxy — that title belongs to Sagittarius A*, the supermassive black hole at the Milky Way’s centre, which has about four million times the mass of the Sun. But Gaia BH3 is the most massive black hole known in the Milky Way that formed from the collapse of a star.

[2] Aside from UVES on ESO’s VLT, the study relied on data from: the HERMES spectrograph at the Mercator Telescope operated at La Palma (Spain) by Leuven University, Belgium, in collaboration with the Observatory of the University of Geneva, Switzerland; and the SOPHIE high-precision spectrograph at the Observatoire de Haute-Provence – OSU Institut Pythéas.




More information

This research was presented in a paper entitled “Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry” to appear in Astronomy & Astrophysics (https://aanda.org/10.1051/0004-6361/202449763).

The paper, by P. Panuzzo et al., is authored by the Gaia collaboration, which involves over 300 authors from around the world, including Austria, Belgium, Czechia, Finland, France, Germany, Italy, Netherlands, Poland, Portugal, Spain, Sweden, Switzerland, United Kingdom, Chile and Australia.

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.




Links



Contacts

Pasquale Panuzzo
Observatoire de Paris - PSL/CNRS
Paris, France
Tel: +33 1 45 07 78 42
Email:
pasquale.panuzzo@observatoiredeparis.psl.eu

Elisabetta Caffau
Observatoire de Paris - PSL/CNRS
Paris, France
Tel: +33 1 45 07 78 73
Email:
elisabetta.caffau@observatoiredeparis.psl.eu

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org


Wednesday, April 17, 2024

Inexplicable Flying Fox found in Hydra Galaxy Cluster

GMRT radio image of the central region of the Hydra Cluster. The “head” of the Flying Fox discovered this time points to the south-west (lower right). The Flying Fox has a “wingspan” of 220,000 light years. The white contours in the background show the X-ray surface brightness as observed by ESA’s XMM-Newton satellite.(Credit: Kohei Kurahara). Download image (631KB

High sensitivity radio observations have discovered a cloud of magnetized plasma in the Hydra galaxy cluster. The odd location and shape of this plasma defy all conventional explanations. Dubbed the Flying Fox based on its silhouette, this plasma will remain a mystery until additional observations can provide more insight.

A team led by Kohei Kurahara at the National Astronomical Observatory of Japan analyzed observations from the Giant Metrewave Radio Telescope (GMRT) targeting the Hydra galaxy cluster, located over 100 million light years away in the direction of the constellation Hyrda. By applying recent analysis techniques to the GMRT (Giant Metrewave Radio Telescope) data archive, the team was able to discover a cloud of magnetized plasma shaped like a flying fox which has never been reported before.

Radio/optical/IR/X-ray images failed to find a host galaxy at the center of the Flying Fox. This combined with its elongated shape, has left astronomers scratching their heads; the Flying Fox does not fit the model for any known class of objects. New observing facilities, like the Square Kilometre Array currently under construction, are expected to study the Flying Fox and provide new insights into the nature and history of this unusual object.




Detailed Article(s)

Inexplicable Flying Fox found in Hydra Galaxy Cluster
NAOJ Mizusawa



Release Information

Researcher(s) Involved in this Release
Kohei Kurahara (Mizusawa VLBI Observatory, National Astronomical Observatory of Japan)
Takuya Akahori (Mizusawa VLBI Observatory, National Astronomical Observatory of Japan)Yuki Omiya (Department of Physics, Nagoya University)
Kazuhiro Nakazawa (Department of Physics, Nagoya University / Kobayashi-Maskawa Institute for the Origin of Particles and the Universe)




Coordinated Release Organization(s)

National Astronomical Observatory of Japan
Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University




Paper(s)

Kohei Kurahara et al. “Discovery of Diffuse Radio Source in Abell
1060”, in Publications of the Astronomical Society of Japan,
DOI: 10.1093/pasj/psae011



Related Link(s)


Tuesday, April 16, 2024

DESI Looks 11 Billion Years Into the Past to Reveal Most Detailed View Ever of the Expanding Universe

PR Image noirlab2408a
Artistic Composition of DESI Year-One Data Slice Above the Nicholas U. Mayall 4-meter Telescope

PR Image noirlab2408b
DESI Year-One Data Slice

PR Image noirlab2408c
DESI Year-One Data Slice (annotated)

PR Image noirlab2408d
DESI Uses Distant Quasars to Map the Cosmic Web

PR Image noirlab2408e
How Baryon Acoustic Oscillations Are Used to Measure the Expanding Universe

PR Image noirlab2408f
DESI Year-One Data Slice with Cone

PR Image noirlab2408g
The Dark Energy Spectroscopic Instrument Installed on the Nicholas U. Mayall 4-meter Telescope



Videos


Cosmoview Episode 78: DESI Looks 11 Billion Years Into the Past to Reveal Most Detailed View Ever of the Expanding Universe

Cosmoview Episodio 78: Revelan detallada panorámica de 11 mil millones de años hacia el pasado del Universo
PR Video noirlab2408h
Cosmoview Episodio 78: Revelan detallada panorámica de 11 mil millones de años hacia el pasado del Universo

DESI Slice Fly-through
PR Video noirlab2408b
DESI Slice Fly-through

DESI Slice Rotation
PR Video noirlab2408c
DESI Slice Rotation

Baryon Acoustic Oscillations Left Over From the Nascent Universe
PR Video noirlab2408d
Baryon Acoustic Oscillations Left Over From the Nascent Universe

Nicholas U. Mayall 4-meter Telescope Interior
PR Video noirlab2408e
Nicholas U. Mayall 4-meter Telescope Interior

Fulldome DESI Slice Fly-through
PR Video noirlab2408f
Fulldome DESI Slice Fly-through

SOS/Equirectangular DESI Slice Fly-through
PR Video noirlab2408g
SOS/Equirectangular DESI Slice Fly-through



Using first-year data from the Dark Energy Spectroscopic Instrument Survey, astronomers have reported unprecedented measurements of dark energy and its effect on the expanding Universe

The Dark Energy Spectroscopic Instrument is conducting a five-year survey to create the largest 3D map of the Universe ever. Astronomers are now performing initial analysis of the survey’s first-year data. Using spectra of nearby galaxies and distant quasars, astronomers report that they have measured the expansion history of the Universe with the highest precision ever, providing an unprecedented look at the nature of dark energy and its effect on the Universe's large-scale structure.

Since beginning its survey of the sky in 2021 the Dark Energy Spectroscopic Instrument (DESI) has observed a new set of 5000 galaxies every 20 minutes, totalling more than 100,000 galaxies per night, in its quest to create the largest 3D map of the Universe ever. Using the survey’s first-year data, which contains the largest extragalactic spectroscopic sample ever collected, astronomers report that they have measured the Universe’s expansion history over the last 11 billion years with a precision better than 1%. These measurements confirm the basics of our best model of the Universe, while also uncovering some tantalizing areas to explore with more data.

DESI is an international science collaboration of more than 900 researchers from over 70 institutions around the world. DESI is managed by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (LBNL) with primary funding from the Department’s Office of Science. The instrument is mounted on the U.S. National Science Foundation Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory, a Program of NSF NOIRLab.

To map the cosmos, DESI collects light from millions of galaxies across more than a third of the entire sky. By breaking down the light from each galaxy into its spectrum of colors, DESI can determine how much the light has been redshifted, or stretched to a longer wavelength, by the expansion of the Universe during the billions of years it traveled before reaching Earth. In general, the higher the redshift the further away the galaxy is.

Equipped with 5000 tiny robotic ‘eyes,’ DESI is able to perform this measurement at an unprecedented rate. In its first year alone DESI surpassed all previous surveys of its kind in terms of quantity and quality. With incredible depth and precision, DESI has brought new insight to one of the biggest mysteries in physics: dark energy — the unknown ingredient causing the expansion of our Universe to accelerate [1].

“The DESI instrument has transformed the Mayall Telescope into the world’s premier cosmic cartography machine,” says Pat McCarthy, Director of NOIRLab. “The DESI team has set a new standard for studies of large-scale structure in the Universe. These first-year data are only the beginning of DESI’s quest to unravel the expansion history of the Universe and they hint at the extraordinary science to come."

DESI’s first-year data have allowed astronomers to measure the expansion rate of the Universe out to 11 billion years in the past, when the Universe was only a quarter of its current age, using a feature of the large-scale structure of the Universe called Baryon Acoustic Oscillations (BAO).

BAO are the leftover imprint of pressure waves that permeated the early Universe when it was nothing but a hot, dense soup of subatomic particles. As the Universe expanded and cooled the waves stagnated, freezing the ripples in place and seeding future galaxies in the dense areas. This pattern, resembling the rippling surface of a pond after a handful of pebbles is tossed in, can be seen in DESI’s detailed map, which shows strands of galaxies clustered together, separated by voids where there are fewer objects.

At a certain distance, the BAO pattern becomes too faint to detect using typical galaxies. So instead astronomers look at the ‘shadow’ of the pattern as it’s backlit by extremely distant, bright galactic cores known as quasars. As the quasars’ light travels across the cosmos it gets absorbed by intergalactic clouds of gas, allowing astronomers to map the pockets of dense matter. To implement this technique, researchers used 450,000 quasars — the largest set ever collected for this type of study.

With DESI’s unique ability to map millions of objects both near and far, the BAO pattern can be used as a cosmic ruler. By mapping nearby galaxies and distant quasars, astronomers can measure the spread of the ripples across several periods of cosmic history to see how dark energy has stretched the scale over time.

“We’re incredibly proud of the data, which have produced world-leading cosmology results,” said Michael Levi, DESI director and LBNL scientist. “So far we’re seeing basic agreement with our best model of the Universe, but we’re also seeing some potentially interesting differences that could indicate dark energy is evolving with time.”

While the expansion history of the Universe may be more complex than previously imagined, confirmation of this must await the completion of the DESI project. By the end of its five-year survey DESI plans to map over 3 million quasars and 37 million galaxies. As more data are released, astronomers will further improve their results.

“This project is addressing some of the biggest questions in astronomy, like the nature of the mysterious dark energy that drives the expansion of the Universe,” says Chris Davis, NSF program director for NOIRLab. “The exceptional and continuing results yielded by the NSF Mayall telescope with DOE DESI will undoubtedly drive cosmology research for many years to come.”

“We are delighted to see cosmology results from DESI's first year of operations," said Gina Rameika, associate director for High Energy Physics at the Department of Energy. "DESI continues to amaze us with its stellar performance and how it is shaping our understanding of dark energy in the Universe."

Data from DESI’s survey will work harmoniously with future sky surveys conducted by Vera C. Rubin Observatory and the Nancy Grace Roman Space Telescope, with each instrument’s strength complementing the others. The DESI collaboration is currently investigating potential upgrades to the instrument and planning to expand their cosmological exploration into a second phase, DESI-II, as recommended in a recent report by the U.S. Particle Physics Project Prioritization Panel.

While the DESI year-one data are not yet publicly available, researchers can access the early data release as searchable databases of catalogs and spectra via the Astro Data Lab and SPARCL at the Community Science and Data Center, a Program of NSF NOIRLab.




Notes

[1] As an organization, NOIRLab has committed decades of research to dark matter and dark energy measurements, with multiple NOIRLab-operated telescopes, including the Nicholas U. Mayall 4-meter Telescope, contributing to ground-breaking discoveries in these areas, one of which received the 2011 Nobel Prize in Physics




More information

Researchers shared the analysis of their first year of collected data in several papers that will be posted today on the arXiv and in talks at the American Physical Society Meeting in the U.S. and the Rencontres de Moriond in Italy.

DESI is supported by the DOE Office of Science and by the National Energy Research Scientific Computing Center, a DOE Office of Science user facility. Additional support for DESI is provided by the U.S. National Science Foundation, the Science and Technology Facilities Council of the United Kingdom, the Gordon and Betty Moore Foundation, the Heising-Simons Foundation, the French Alternative Energies and Atomic Energy Commission (CEA), the National Council of Science and Technology of Mexico, the Ministry of Science and Innovation of Spain, and by the DESI member institutions.

The DESI collaboration is honored to be permitted to conduct scientific research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham Nation.


NSF NOIRLab (U.S. National Science Foundation National Optical-Infrared Astronomy Research Laboratory), the U.S. center for ground-based optical-infrared astronomy, operates the International Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on I’oligam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O’odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.




Links
Contacts

Arjun Dey
NSF NOIRLab
Email:arjun.dey@noirlab.edu

Nathalie Palanque-Delabrouille
Lawrence Berkeley National Laboratory
DESI Co-spokesperson
Email:npalanque-delabrouille@lbl.gov

Kyle Dawson
University of Utah
DESI Co-spokesperson
Email: kdawson@astro.utah.edu

Eric Linder
Lawrence Berkeley National Laboratory
DESI Press Committee Chair
Email:evlinder@lbl.gov

Josie Fenske
Jr. Public Information Officer
NSF NOIRLab
Email:josie.fenske@noirlab.edu

Lauren Biron
Lawrence Berkeley National Laboratory
Science Communication and Media Relations Specialist
Email:LBiron@lbl.gov


Monday, April 15, 2024

Beautiful nebula, violent history: clash of stars solves stellar mystery

PR Image eso2407a
The nebula (NGC 6164/6165) surrounding HD 148937 as seen in visible light

PR Image eso2407b
Artist's impression: the violent history of stellar pair HD 148937

PR Image eso2407c
Wide-field view of the region of the sky around the nebula NGC 6164/6165

PR Image eso2407d
The nebula NGC 6164/6165 in the constellation of Norma



Videos

Clash of stars solves stellar mystery | ESO News
PR Video eso2407a
Clash of stars solves stellar mystery | ESO News

Artist's animation: the violent history of stellar pair HD 148937
PR Video eso2407b
Artist's animation: the violent history of stellar pair HD 148937

Zooming in on the NGC 6164/6165 nebula surrounding the HD 148937 stellar pair
PR Video eso2407c
Zooming in on the NGC 6164/6165 nebula surrounding the HD 148937 stellar pair

3D view of the NGC 6164/6165 nebula surrounding the HD 148937 stellar pair
PR Video eso2407d
3D view of the NGC 6164/6165 nebula surrounding the HD 148937 stellar pair



When astronomers looked at a stellar pair at the heart of a stunning cloud of gas and dust, they were in for a surprise. Star pairs are typically very similar, like twins, but in HD 148937, one star appears younger and, unlike the other, is magnetic. New data from the European Southern Observatory (ESO) suggest there were originally three stars in the system, until two of them clashed and merged. This violent event created the surrounding cloud and forever altered the system’s fate.

“When doing background reading, I was struck by how special this system seemed,” says Abigail Frost, an astronomer at ESO in Chile and lead author of the study published today in Science. The system, HD 148937, is located about 3800 light-years away from Earth in the direction of the Norma constellation. It is made up of two stars much more massive than the Sun and surrounded by a beautiful nebula, a cloud of gas and dust. “A nebula surrounding two massive stars is a rarity, and it really made us feel like something cool had to have happened in this system. When looking at the data, the coolness only increased.”

“After a detailed analysis, we could determine that the more massive star appears much younger than its companion, which doesn't make any sense since they should have formed at the same time!” Frost says. The age difference — one star appears to be at least 1.5 million years younger than the other — suggests something must have rejuvenated the more massive star.

Another piece of the puzzle is the nebula surrounding the stars, known as NGC 6164/6165. It is 7500 years old, hundreds of times younger than both stars. The nebula also shows very high amounts of nitrogen, carbon and oxygen. This is surprising as these elements are normally expected deep inside a star, not outside; it is as if some violent event had set them free.

To unravel the mystery, the team assembled nine years' worth of data from the PIONIER and GRAVITY instruments, both on ESO’s Very Large Telescope Interferometer (VLTI), located in Chile’s Atacama Desert. They also used archival data from the FEROS instrument at ESO’s La Silla Observatory.

“We think this system had at least three stars originally; two of them had to be close together at one point in the orbit whilst another star was much more distant,” explains Hugues Sana, a professor at KU Leuven in Belgium and the principal investigator of the observations. “The two inner stars merged in a violent manner, creating a magnetic star and throwing out some material, which created the nebula. The more distant star formed a new orbit with the newly merged, now-magnetic star, creating the binary we see today at the centre of the nebula.”

“The merger scenario was already in my head back in 2017 when I studied nebula observations obtained with the European Space Agency’s Herschel Space Telescope,” adds co-author Laurent Mahy, currently a senior researcher at the Royal Observatory of Belgium. “Finding an age discrepancy between the stars suggests that this scenario is the most plausible one and it was only possible to show it with the new ESO data.”

This scenario also explains why one of the stars in the system is magnetic and the other is not — another peculiar feature of HD 148937 spotted in the VLTI data.

At the same time, it helps solve a long-standing mystery in astronomy: how massive stars get their magnetic fields. While magnetic fields are a common feature of low-mass stars like our Sun, more massive stars cannot sustain magnetic fields in the same way. Yet some massive stars are indeed magnetic.

Astronomers had suspected for some time that massive stars could acquire magnetic fields when two stars merge. But this is the first time researchers find such direct evidence of this happening. In the case of HD 148937, the merger must have happened recently. “Magnetism in massive stars isn't expected to last very long compared to the lifetime of the star, so it seems we have observed this rare event very soon after it happened,” Frost adds.

ESO’s Extremely Large Telescope (ELT), currently under construction in the Chilean Atacama Desert, will enable researchers to work out what happened in the system in more detail, and perhaps reveal even more surprises.

Source: ESO/News



More information

This research was presented in a paper entitled “A magnetic massive star has experienced a stellar merger” to appear in Science (www.science.org/doi/10.1126/science.adg7700). The paper will be published by Science in print on Friday, 12 April 2024, and will be released online at 14:00 U.S. Eastern Time Thursday (20:00 CEST), 11 April 2024. For the final version of the embargoed paper, please check https://www.eurekalert.org/press/scipak/ or contact scipak@aaas.org while the embargo lasts.

It has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 772225: MULTIPLES; PI: Hugues Sana).

The team is composed of A. J. Frost (European Southern Observatory, Santiago, Chile [ESO Chile] and Institute of Astronomy, KU Leuven, Belgium [KU Leuven]), H. Sana (KU Leuven), L. Mahy (Royal Observatory of Belgium, Belgium and KU Leuven), G. Wade (Department of Physics & Space Science, Royal Military College of Canada, Canada [RMC Space Science]), J. Barron (Department of Physics, Engineering & Astronomy, Queen’s University, Canada and RMC Space Science), J.-B. Le Bouquin (Université Grenoble Alpes, Centre national de la Recherche Scientifique, Institute de Planétologie et d’Astrophyisique de Grenoble, France), A. Mérand (European Southern Observatory, Garching, Germany [ESO]), F. R. N. Schneider (Heidelberger Institut für Theoretische Studien, Germany and Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Germany), T. Shenar (The School of Physics and Astronomy, Tel Aviv University, Israel and KU Leuven), R. H. Barbá (Departamento de Física y Astronomía, Universidad de La Serena, Chile), D. M. Bowman (School of Mathematics, Statistics and Physics, Newcastle University, UK and KU Leuven), M. Fabry (KU Leuven), A. Farhang (School of Astronomy, Institute for Research in Fundamental Sciences, Iran), P. Marchant (KU Leuven), N. I. Morrell (Las campanas Observatory, Carnegie Observatories, Chile) and J. V. Smoker (ESO Chile and UK Astronomy Technology centre, Royal Observatory, UK).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.




Links



Contacts

Abigail Frost
European Southern Observatory
Santiago, Chile
Tel: +44 79 8353 9292
Email:
Abigail.Frost@eso.org

Hugues Sana
KU Leuven
Leuven, Belgium
Tel: +32 479 50 46 73
Email:
hugues.sana@kuleuven.be

Laurent Mahy
Royal Observatory of Belgium
Brussels, Belgium
Tel: +32 476 23 60 06
Email:
laurent.mahy@oma.be

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org

Lê Binh San PHAM
Communication Officer, Royal Observatory of Belgium
Brussels, Belgium
Email:
lebinhsan.pham@oma.be


Sunday, April 14, 2024

Probing Cold Gas with the Resonance Doublet of Singly Ionized Magnesium

Figure 1: Schematic illustration of resonance doublets: the energy levels of resonance doublets are shown on the left, some example atoms and ions with one valence electron on the right. © MPA

Traditional studies of the gas around galaxies rely in particular on absorption and emission features of neutral hydrogen, the simplest and most abundant element in the universe. MPA researchers have now investigated alternative tracers, in particular the resonance doublet of singly ionized magnesium and found that analyzing this emission can lead to significant advances in studying the circum-galactic medium. They showed the potential of the magnesium doublet as an alternative to Lyman-alpha emission through a new radiative transfer code and suggest that the magnesium doublet ratio could even be used as a tracer of the Lyman-continuum escape.

Light, and in particular how it interacts with the atoms of various elements, plays a pivotal role in unveiling the secrets of the universe. At the heart of this interaction lies the resonance line, the transition between the ground state and the first excited state in an atom. This transition is significant and interesting for atoms and ions with just one electron in their outermost shell. Considering the fine structure of these atoms, the resonance line manifests as a doublet, the K and H lines. The most renowned example of such a resonance doublet is the hydrogen Lyman-alpha (Lyα) line at 1216 Å. Although the two lines of Lyman-alpha are not distinguishable due to a too small energy gap, other metal doublets are observed as separated doublets.

In astrophysical spectra, the resonance doublets stand out as prominent absorption lines since the abundant electrons in the ground state easily interact with photons near the line center. In addition to absorption features in astrophysical spectra, the doublets also appear as emission lines, acting as one of the main coolants of shock and ionized gas. The atomic physics of the resonance doublet dictates that the scattering cross-section of the K line is always two times higher than that of the H line. This also translates into the ratio of K and H emission from collisional excitation and recombination, which is generally two. Furthermore, due to their resonant nature, photons of the doublet emission suffer scattering with the electrons in the ground state, by which the physical properties of the gas are imprinted on their emission features. The study of resonance doublets, therefore, opens a window into the complexities of astrophysical environments, making it a cornerstone of astrophysical spectroscopy.

Figure 2: These diagrams show the magnesium (left) and Lyman-alpha (right) spectra for various column densities (different color hues). The black dashed line represents the intrinsic Gaussian profile. For magnesium, the doublet is clearly separated, while the energy gap is too small for hydrogen. With larger densities, the asymmetry of the lines becomes more pronounced. © MPA

Studying CGM with Resonance Doublets

The circumgalactic medium (CGM), the diffuse halo of multiphase gas that envelopes galaxies, is a key to understanding the mysteries of galaxy formation, evolution, and the flow of matter around galaxies. While traditional studies of the CGM have relied on analyzing the absorption features of the resonance lines observed in quasar spectra, this approach offers a view constrained by singular lines of sight. The evolution of observational technology, with instruments like MUSE on the VLT, KCWI on Keck, and HETDEX, has opened new windows into the CGM through the direct observation of spatially extended emissions such as Lyman-alpha and resonance doublets of heavier elements.

The Lyman-alpha emission is central to these advances and a powerful tool for probing the cold CGM (with temperatures up to 10000K) and studying the early universe (at redshift z from 2 to 5). However, observing Lyman-alpha faces significant challenges: it is obscured by Earth’s atmosphere at z < 2 and becomes difficult to detect beyond z > 6 due to the optically thick universe in the epoch of reionization. These limitations highlight the necessity for alternative tracers of cold gas within the CGM across different cosmic epochs.

Figure 3: The projected images of surface brightness in Mg II (top left) and Lyman-alpha (top right), the Mg II doublet ratio (bottom left), and the degree of polarization of Mg II (bottom right). All quantities are given for optically thin (left) and thick (right) environments in magnesium. © MPA

Resonance Doublet of Singly Ionized Magnesium as a New Tracer of Cold Gas

The resonance doublet of singly ionized magnesium (Mg II) at 2796 Å and 2803 Å presents such an alternative. Due to its resonance nature and with a similar ionization energy to atomic hydrogen, the Mg II emission can trace cold gas properties through scattering processes like Lyman-alpha. In this work, we developed a new 3D Monte Carlo radiative transfer code to investigate the escape of both emission lines through homogeneous and clumpy multiphase media. Our new code allows for exploring gas in arbitrary 3D geometries via both Lyman-alpha and metal resonance doublets, significantly enhancing our understanding of the cold gas environment surrounding galaxies.

One of the key findings of this research is the distinct behavior of Mg II emissions compared to Lyman-alpha, despite similarities in atomic physics. Lyman-alpha emission is more spatially extended via scattering than Mg II due to a small fraction of magnesium in the gas. Furthermore, the Mg II escape fraction generally exceeds that of Lyman-alpha, offering a clearer view through the cosmic dust that often obscures Lyman-alpha emissions. This makes Mg II an invaluable alternative for tracing cold gas, particularly in environments where Lyman-alpha emission is weak or unobservable.

Figure 4: The Mg II doublet ratio for various outflow/inflow velocities. While the doublet ratio is insensitive to velocities blow the separation velocity of the two lines (700 km/s), a clear distinction can be sees for larger velocities. © MPA

Magnesium Doublet Ratio

The escape of the Lyman continuum (LyC) or its leakage is particularly significant for understanding the mechanisms behind galaxy evolution and the reionization of the universe. The Mg II doublet ratio, which is the flux ratio of the two doublet lines, is one of the new promising indicators of the LyC leakage.

Our study investigates the Mg II doublet ratio in various environments. We found that the doublet ratio indicates a strong outflow/inflow. The double ratio of Mg II from stellar continuum becomes ~ 1 for high column densities of Mg II. In addition, we tested the doublet ratio as a leakage indicator of LyC and tracer of the LyC escape fraction.

The Mg II spectrum in the halo is composed of only scattered photons, and the physical properties of cold gas are clearly imprinted on it. We explored this and derived the analytic solution of LyC escape using the halo doublet ratio. These insights not only expand our methodologies in studying the CGM but also pave new pathways for future observation and theory.

Figure 5: Left: Schematic illustration for the relation between the Mg II doublet ratio and the Lyman-continuum (LyC) escape. Right: the Mg II doublet ratio in the halo, which is the flux ratio of Mg II K and H lines, as a function of Mg II column density. Both LyC escape fraction and the doublet ratio decrease with increasing Mg II column density. When the gas is optically thick for LyC, the Mg II doublet ratio in the halo, which is the flux ratio of Mg II K and H lines, is less than 2. On the other hand, the doublet ratio is higher than 2. Hence, the halo doublet ratio can be a tracer of LyC escape. © MPA

Potential of Metal Resonance Doublets

Moreover, our research opens the door to exploring the emission features of other metal resonance doublets as tracers of the CGM. The success of the Mg II doublet in providing new insights into cold gas properties and the escape of ionizing photons suggests the potential for similar analyses for other elements. For example, the C IV doublet can be a good indicator of the galactic wind. Other metal doublets, such as O VI, N V, and Si IV, share similar atomic physics and could trace the CGM at different temperatures. This avenue of research holds promise for broadening our understanding of the multiphase CGM, offering a richer, more nuanced view of the processes that govern galaxy evolution and the cosmic web.




Author:

Seok-Jun Chang
Postdoc
tel:2009

sjchang@mpa-garching.mpg.de

Original publication

Seok-Jun Chang & Max Gronke

Probing cold gas with Mg II and Lyα radiative transfer
submitted to MNRAS


Source


Saturday, April 13, 2024

How NASA's Roman Telescope Will Measure Ages of Stars

Sunspots
Credits: Image: NASA

Simulated Light Curve for Star with Starspots
Credits: Image: NASA, Ralf Crawford (STScI)





Guessing your age might be a popular carnival game, but for astronomers it’s a real challenge to determine the ages of stars. Once a star like our Sun has settled into steady nuclear fusion, or the mature phase of its life, it changes little for billions of years. One exception to that rule is the star’s rotation period – how quickly it spins. By measuring the rotation periods of hundreds of thousands of stars, NASA’s Nancy Grace Roman Space Telescope promises to bring new understandings of stellar populations in our Milky Way galaxy after it launches by May 2027.

Stars are born spinning rapidly. However, stars of our Sun’s mass or smaller will gradually slow down over billions of years. That slowdown is caused by interactions between a stream of charged particles known as the stellar wind and the star’s own magnetic field. The interactions remove angular momentum, causing the star to spin more slowly, much like an ice skater will slow down when they extend their arms.

This effect, called magnetic braking, varies depending on the strength of the star’s magnetic field. Faster-spinning stars have stronger magnetic fields, which causes them to slow down more rapidly. Due to the influence of these magnetic fields, after about one billion years stars of the same mass and age will spin at the same rate. Therefore, if you know a star’s mass and rotation rate, you potentially can estimate its age. By knowing the ages of a large population of stars, we can study how our galaxy formed and evolved over time.

Measuring Stellar Rotation

How do astronomers measure the rotation rate of a distant star? They look for changes in the star’s brightness due to starspots. Starspots, like sunspots on our Sun, are cooler, darker patches on a star’s surface. When a starspot is in view, the star will be slightly dimmer than when the spot is on the far side of the star.

If a star has a single, large spot on it, it would experience a regular pattern of dimming and brightening as the spot rotated in and out of view. (This dimming can be differentiated from a similar effect caused by a transiting exoplanet.) But a star can have dozens of spots scattered across its surface at any one time, and those spots vary over time, making it much more difficult to tease out periodic signals of dimming from the star’s rotation.

Applying Artificial Intelligence

A team of astronomers at the University of Florida is developing new techniques to extract a rotation period from measurements of a star’s brightness over time, through a program funded by NASA's Nancy Grace Roman Space Telescope project.

They are using a type of artificial intelligence known as a convolutional neural network to analyze light curves, or plots of a star’s brightness over time. To do this, the neural network first must be trained on simulated light curves. University of Florida postdoctoral associate Zachary Claytor, the science principal investigator on the project, wrote a program called “butterpy” to generate such light curves.

“This program lets the user set a number of variables, like the star’s rotation rate, the number of spots, and spot lifetimes. Then it will calculate how spots emerge, evolve, and decay as the star rotates and convert that spot evolution to a light curve – what we would measure from a distance,” explained Claytor.

The team has already applied their trained neural network to data from NASA's TESS (Transiting Exoplanet Survey Satellite). Systematic effects make it more challenging to accurately measure longer stellar rotation periods, yet the team’s trained neural network was able to accurately measure these longer rotation periods using the TESS data.

Roman’s Star Survey

The upcoming Roman Space Telescope will gather data from hundreds of millions of stars through its Galactic Bulge Time Domain Survey, one of three core community surveys it will conduct. Roman will look toward our galaxy’s center – a region crowded with stars – to measure how many of these stars change in brightness over time. These measurements will enable multiple science investigations, from searching for distant exoplanets to determining the stars’ rotation rates.

The specific survey design is still being developed by the astronomical community. The NASA-funded study on stellar rotation promises to help inform potential survey strategies.

“We can test which things matter and what we can pull out of the Roman data depending on different survey strategies. So when we actually get the data, we’ll already have a plan,” said Jamie Tayar, assistant professor of astronomy at the University of Florida and the program's principal investigator.

“We have a lot of the tools already, and we think they can be adapted to Roman,” she added.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA's Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are Ball Aerospace and Technologies Corporation in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.




About This Release

Credits:

Media Contact:

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Science: Jamie Tayar (University of Florida), Zachary Claytor (University of Florida)

Permissions: Content Use Policy

Related Links and Documents


Friday, April 12, 2024

NASA's Webb Probes an Extreme Starburst Galaxy

M82 (Hubble and Webb)
Credit: Image: NASA, ESA, CSA, STScI, Alberto Bolatto (UMD)

M82 (NIRCam Image)
Credit: Image: NASA, ESA, CSA, STScI, Alberto Bolatto (UMD)

M82 (NIRCam Image)
Credit: Image: NASA, ESA, CSA, STScI, Alberto Bolatto (UMD)




A team of astronomers has used NASA’s James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82). Located 12 million light-years away in the constellation Ursa Major, this galaxy is relatively compact in size but hosts a frenzy of star formation activity. For comparison, M82 is sprouting new stars 10 times faster than the Milky Way galaxy.

Led by Alberto Bolatto at the University of Maryland, College Park, the team directed Webb’s NIRCam (Near-Infrared Camera) instrument toward the starburst galaxy’s center, attaining a closer look at the physical conditions that foster the formation of new stars.

“M82 has garnered a variety of observations over the years because it can be considered as the prototypical starburst galaxy,” said Bolatto, lead author of the study. “Both NASA’s Spitzer and Hubble space telescopes have observed this target. With Webb’s size and resolution, we can look at this star-forming galaxy and see all of this beautiful, new detail.”

A Vibrant Community of Stars

Star formation continues to maintain a sense of mystery because it is shrouded by curtains of dust and gas, creating an obstacle in observing this process. Fortunately, Webb’s ability to peer in the infrared is an asset in navigating these murky conditions. Additionally, these NIRCam images of the very center of the starburst were obtained using an instrument mode that prevented the very bright source from overwhelming the detector.

While dark brown tendrils of heavy dust are threaded throughout M82’s glowing white core even in this infrared view, Webb’s NIRCam has revealed a level of detail that has historically been obscured. Looking closer toward the center, small specks depicted in green denote concentrated areas of iron, most of which are supernova remnants. Small patches that appear red signify regions where molecular hydrogen is being lit up by a nearby young star’s radiation.

“This image shows the power of Webb,” said Rebecca Levy, second author of the study at the University of Arizona in Tucson. “Every single white dot in this image is either a star or a star cluster. We can start to distinguish all of these tiny point sources, which enables us to acquire an accurate count of all the star clusters in this galaxy.”

Finding Structure in Lively Conditions

Looking at M82 in slightly longer infrared wavelengths, clumpy tendrils represented in red can be seen extending above and below the galaxy’s plane. These gaseous streamers are a galactic wind rushing out from the core of the starburst.

One area of focus for this research team was understanding how this galactic wind, which is caused by the rapid rate of star formation and subsequent supernovae, is being launched and influencing its surrounding environment. By resolving a central section of M82, scientists could examine where the wind originates, and gain insight on how hot and cold components interact within the wind.

Webb’s NIRCam instrument was well-suited to trace the structure of the galactic wind via emission from sooty chemical molecules known as polycyclic aromatic hydrocarbons (PAHs). PAHs can be considered as very small dust grains that survive in cooler temperatures but are destroyed in hot conditions.

Much to the team’s surprise, Webb’s view of the PAH emission highlights the galactic wind’s fine structure – an aspect previously unknown. Depicted as red filaments, the emission extends away from the central region where the heart of star formation is located. Another unanticipated find was the similar structure between the PAH emission and that of hot, ionized gas.

“It was unexpected to see the PAH emission resemble ionized gas,” said Bolatto. “PAHs are not supposed to live very long when exposed to such a strong radiation field, so perhaps they are being replenished all the time. It challenges our theories and shows us that further investigation is required.”

Lighting a Path Forward

Webb’s observations of M82 in near-infrared light spur further questions about star formation, some of which the team hopes to answer with additional data gathered with Webb, including that of another starburst galaxy. Two other papers from this team characterizing the stellar clusters and correlations among wind components of M82 are almost finalized.

In the near future, the team will have spectroscopic observations of M82 from Webb ready for their analysis, as well as complementary large-scale images of the galaxy and wind. Spectral data will help astronomers determine accurate ages for the star clusters and provide a sense of timing for how long each phase of star formation lasts in a starburst galaxy environment. On a broader scale, inspecting the activity in galaxies like M82 can deepen astronomers’ understanding of the early universe.

“Webb’s observation of M82, a target closer to us, is a reminder that the telescope excels at studying galaxies at all distances,” said Bolatto. “In addition to looking at young, high-redshift galaxies, we can look at targets closer to home to gather insight into the processes that are happening here – events that also occurred in the early universe.”

These findings have been accepted for publication in The Astrophysical Journal.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.




About This Release

Credits:

Media Contact:

Abigail Major
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Science: Alberto Bolatto (UMD)

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team

Related Links and Documents