Friday, January 17, 2025

Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds

Little Red Dots (NIRCam Image)
Credits/Image: NASA, ESA, CSA, STScI, Dale Kocevski (Colby College)



In December 2022, less than six months after commencing science operations, NASA’s James Webb Space Telescope revealed something never seen before: numerous red objects that appear small on the sky, which scientists soon called “little red dots” (LRDs). Though these dots are quite abundant, researchers are perplexed by their nature, the reason for their unique colors, and what they convey about the early universe.

A team of astronomers recently compiled one of the largest samples of LRDs to date, nearly all of which existed during the first 1.5 billion years after the big bang. They found that a large fraction of the LRDs in their sample showed signs of containing growing supermassive black holes.

“We’re confounded by this new population of objects that Webb has found. We don’t see analogs of them at lower redshifts, which is why we haven’t seen them prior to Webb,” said Dale Kocevski of Colby College in Waterville, Maine, and lead author of the study. “There's a substantial amount of work being done to try to determine the nature of these little red dots and whether their light is dominated by accreting black holes.”

A Potential Peek Into Early Black Hole Growth

A significant contributing factor to the team’s large sample size of LRDs was their use of publicly available Webb data. To start, the team searched for these red sources in the Cosmic Evolution Early Release Science (CEERS) survey before widening their scope to other extragalactic legacy fields, including the JWST Advanced Deep Extragalactic Survey (JADES) and the Next Generation Deep Extragalactic Exploratory Public (NGDEEP) survey.

The methodology used to identify these objects also differed from previous studies, resulting in the census spanning a wide redshift range. The distribution they discovered is intriguing: LRDs emerge in large numbers around 600 million years after the big bang and undergo a rapid decline in quantity around 1.5 billion years after the big bang.

The team looked toward the Red Unknowns: Bright Infrared Extragalactic Survey (RUBIES) for spectroscopic data on some of the LRDs in their sample. They found that about 70 percent of the targets showed evidence for gas rapidly orbiting 2 million miles per hour (1,000 kilometers per second) – a sign of an accretion disk around a supermassive black hole. This suggests that many LRDs are accreting black holes, also known as active galactic nuclei (AGN).

“The most exciting thing for me is the redshift distributions. These really red, high-redshift sources basically stop existing at a certain point after the big bang,” said Steven Finkelstein, a co-author of the study at the University of Texas at Austin. “If they are growing black holes, and we think at least 70 percent of them are, this hints at an era of obscured black hole growth in the early universe.”

Contrary to Headlines, Cosmology Isn’t Broken

When LRDs were first discovered, some suggested that cosmology was “broken.” If all of the light coming from these objects was from stars, it implied that some galaxies had grown so big, so fast, that theories could not account for them.

The team’s research supports the argument that much of the light coming from these objects is from accreting black holes and not from stars. Fewer stars means smaller, more lightweight galaxies that can be understood by existing theories.

“This is how you solve the universe-breaking problem,” said Anthony Taylor, a co-author of the study at the University of Texas at Austin.

Curiouser and Curiouser

There is still a lot up for debate as LRDs seem to evoke even more questions. For example, it is still an open question as to why LRDs do not appear at lower redshifts. One possible answer is inside-out growth: As star formation within a galaxy expands outward from the nucleus, less gas is being deposited by supernovas near the accreting black hole, and it becomes less obscured. In this case, the black hole sheds its gas cocoon, becomes bluer and less red, and loses its LRD status.

Additionally, LRDs are not bright in X-ray light, which contrasts with most black holes at lower redshifts. However, astronomers know that at certain gas densities, X-ray photons can become trapped, reducing the amount of X-ray emission. Therefore, this quality of LRDs could support the theory that these are heavily obscured black holes.

The team is taking multiple approaches to understand the nature of LRDs, including examining the mid-infrared properties of their sample, and looking broadly for accreting black holes to see how many fit LRD criteria. Obtaining deeper spectroscopy and select follow-up observations will also be beneficial for solving this currently “open case” about LRDs.

“There’s always two or more potential ways to explain the confounding properties of little red dots,” said Kocevski. “It’s a continuous exchange between models and observations, finding a balance between what aligns well between the two and what conflicts.”

These results were presented in a press conference at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and have been accepted for publication in The Astrophysical Journal.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).




About This Release

Credits:

Media Contact:

Abigail Major
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Science: Dale Kocevski (Colby College)

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.


Webb Watches Carbon-Rich Dust Shells Form, Expand in Star System

Compare Observations of Wolf-Rayet 140 (MIRI Images)
Credits/Image: NASA, ESA, CSA, STScI
Science: Emma Lieb (University of Denver), Ryan Lau (NSF's NOIRLab), Jennifer Hoffman (University of Denver)


Wolf-Rayet 140 (MIRI Compass Image)
Credits/Image: NASA, ESA, CSA, STScI
Science: Emma Lieb (University of Denver), Ryan Lau (NSF's NOIRLab), Jennifer Hoffman (University of Denver)




Fade Between 2022 and 2023 Observations of Wolf-Rayet 140
Credits/Video: NASA, ESA, CSA, STScI, Joseph DePasquale (STScI)
Science: Emma Lieb (University of Denver), Ryan Lau (NSF's NOIRLab), Jennifer Hoffman (University of Denver)


Stars’ Orbits in Wolf-Rayet 140 (Visualization)
Credits/Animation: NASA, ESA, CSA, Joseph Olmsted (STScI)



Astronomers have long tried to track down how elements like carbon, which is essential for life, become widely distributed across the universe. Now, NASA’s James Webb Space Telescope has examined one ongoing source of carbon-rich dust in our own Milky Way galaxy in greater detail: Wolf-Rayet 140, a system of two massive stars that follow a tight, elongated orbit.
As they swing past one another (within the central white dot in the Webb images), the stellar winds from each star slam together, the material compresses, and carbon-rich dust forms. Webb’s latest observations show 17 dust shells shining in mid-infrared light that are expanding at regular intervals into the surrounding space.

“The telescope not only confirmed that these dust shells are real, its data also showed that the dust shells are moving outward at consistent velocities, revealing visible changes over incredibly short periods of time,” said Emma Lieb, the lead author of the new paper and a doctoral student at the University of Denver in Colorado.

Every shell is racing away from the stars at more than 1,600 miles per second (2,600 kilometers per second), almost 1% the speed of light. “We are used to thinking about events in space taking place slowly, over millions or billions of years,” added Jennifer Hoffman, a co-author and a professor at the University of Denver. “In this system, the observatory is showing that the dust shells are expanding from one year to the next.”

Like clockwork, the stars’ winds generate dust for several months every eight years, as the pair make their closest approach during a wide, elongated orbit. Webb also shows how dust formation varies — look for the darker region at top left in both images.

The telescope’s mid-infrared images detected shells that have persisted for more than 130 years. (Older shells have dissipated enough that they are now too dim to detect.) The researchers speculate that the stars will ultimately generate tens of thousands of dust shells over hundreds of thousands of years.

“Mid-infrared observations are absolutely crucial for this analysis, since the dust in this system is fairly cool. Near-infrared and visible light would only show the shells that are closest to the star,” explained Ryan Lau, a co-author and astronomer at NSF NOIRLab in Tuscon, Arizona, who led the initial research about this system. “With these incredible new details, the telescope is also allowing us to study exactly when the stars are forming dust — almost to the day.”

The dust’s distribution isn’t uniform. Though this isn’t obvious at first glance, zooming in on the shells in Webb’s images reveals that some of the dust has “piled up,” forming amorphous, delicate clouds that are as large as our entire solar system. Many other individual dust particles float freely. Every speck is as small as one-hundredth the width of a human hair. Clumpy or not, all of the dust moves at the same speed and is carbon rich.

The Future of This System

What will happen to these stars over millions or billions of years, after they are finished “spraying” their surroundings with dust? The Wolf-Rayet star in this system is 10 times more massive than the Sun and nearing the end of its life. In its final “act,” this star will either explode as a supernova — possibly blasting away some or all of the dust shells — or collapse into a black hole, which would leave the dust shells intact.

Though no one can predict with any certainty what will happen, researchers are rooting for the black hole scenario. “A major question in astronomy is, where does all the dust in the universe come from?” Lau said. “If carbon-rich dust like this survives, it could help us begin to answer that question.”

“We know carbon is necessary for the formation of rocky planets and solar systems like ours,” Hoffman added. “It’s exciting to get a glimpse into how binary star systems not only create carbon-rich dust, but also propel it into our galactic neighborhood.”

These results have been published in the Astrophysical Journal Letters and were presented in a press conference at the 245th meeting of the American Astronomical Society in National Harbor, Maryland.

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.




About This Release

Credits:

Media Contact:

Claire Blome
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Science: Emma Lieb (University of Denver)

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents



Thursday, January 16, 2025

NASA's Hubble Tracks Down a 'Blue Lurker' Among Stars

Evolution of "Blue Lurker" Star System (Artist's Concept)
Credits/Artwork: NASA, ESA, Leah Hustak (STScI)



The name "blue lurker" might sound like a villainous character from a superhero movie. But it is a rare class of star that NASA's Hubble Space Telescope explored by looking deeply into the open star cluster M67, roughly 2,800 light-years away.

Forensics with Hubble data show that the star has had a tumultuous life, mixing with two other stars gravitationally bound together in a remarkable triple-star system. The star has a kinship to so-called "blue stragglers," which are hotter, brighter, and bluer than expected because they are likely the result of mergers between stars.

The blue lurker is spinning much faster than expected, an unusual behavior that led to its identification. Otherwise it looks like a normal Sun-like star. The term "blue" is a bit of a misnomer because the star's color blends in with all the other solar-mass stars in the cluster. Hence it is sort of "lurking" among the common stellar population.

The spin rate is evidence that the lurker must have siphoned in material from a companion star, causing its rotation to speed up. The star's high spin rate was discovered with NASA's retired Kepler space telescope. While normal Sun-like stars typically take about 30 days to complete one rotation, the lurker takes only four days.

How the blue lurker got that way is a "super complicated evolutionary story," said Emily Leiner of Illinois Institute of Technology in Chicago. "This star is really exciting because it's an example of a star that has interacted in a triple-star system." The blue lurker originally rotated more slowly and orbited a binary system consisting of two Sun-like stars.

Around 500 million years ago, the two stars in that binary merged, creating a single, much more massive star. This behemoth soon swelled into a giant star, dumping some of its own material onto the blue lurker and spinning it up in the process. Today, we observe that the blue lurker is orbiting a white dwarf star — the burned out remains of the massive merger.

"We know these multiple star systems are fairly common and are going to lead to really interesting outcomes," Leiner explained. "We just don't yet have a model that can reliably connect through all of those stages of evolution. Triple-star systems are about 10 percent of the Sun-like star population. But being able to put together this evolutionary history is challenging."

Hubble observed the white dwarf companion star that the lurker orbits. Using ultraviolet spectroscopy, Hubble found the white dwarf is very hot (as high as 23,000 degrees Fahrenheit, or roughly three times the Sun's surface temperature) and a heavyweight at 0.72 solar masses. According to theory, hot white dwarfs in M67 should be only about 0.5 solar masses. This is evidence that the white dwarf is the byproduct of the merger of two stars that once were part of a triple-star system.

"This is one of the only triple systems where we can tell a story this detailed about how it evolved," said Leiner. "Triples are emerging as potentially very important to creating interesting, explosive end products. It's really unusual to be able to put constraints on such a system as we are exploring."


Leiner's results are being presented at the 245th meeting of the American Astronomical Society in Washington, D.C.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.




About This Release

Credits:

Media Contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Science Contact:

Emily Leiner
Illinois Institute of Technology, Chicago, Illinois

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents



Hubble Reveals Surprising Spiral Shape of Galaxy Hosting Young Jet

Spiral Quasar-host Galaxy J0742+2704
Credits/Science: NASA, ESA, Kristina Nyland (U.S. Naval Research Laboratory)
Image Processing: Joseph DePasquale (STScI)

Compass Image of J0742+2704
Credits/Science: NASA, ESA, Kristina Nyland (U.S. Naval Research Laboratory)
Image Processing: Joseph DePasquale (STScI)



The night sky has always played a crucial role in navigation, from early ocean crossings to modern GPS. Besides stars, the United States Navy uses quasars as beacons. Quasars are distant galaxies with supermassive black holes, surrounded by brilliantly hot disks of swirling gas that can blast off jets of material. Following up on the groundbreaking 2020 discovery of newborn jets in a number of quasars, aspiring naval officer Olivia Achenbach of the United States Naval Academy has used NASA’s Hubble Space Telescope to reveal surprising properties of one of them, quasar J0742+2704.

"The biggest surprise was seeing the distinct spiral shape in the Hubble Space Telescope images. At first I was worried I had made an error," said Achenbach, who made the discovery during the course of a four-week internship.

“We typically see quasars as older galaxies that have grown very massive, along with their central black holes, after going through messy mergers and have come out with an elliptical shape,” said astronomer Kristina Nyland of the Naval Research Laboratory, Achenbach’s adviser on the research.

"It's extremely rare and exciting to find a quasar-hosting galaxy with spiral arms and a black hole that is more than 400 million times the mass of the Sun — which is pretty big — plus young jets that weren't detectable 20 years ago," Nyland said.

The unusual quasar takes its place amid an active debate in the astronomy community over what triggers quasar jets, which can be significant in the evolution of galaxies, as the jets can suppress star formation. Some astronomers suspect that quasar jets are triggered by major galaxy mergers, as the material from two or more galaxies mashes together, and heated gas is funneled toward merged black holes. Spiral galaxy quasars like J0742+2704, however, suggest that there may be other pathways for jet formation.

While J0742+2704 has maintained its spiral shape, the Hubble image does show intriguing signs of its potential interaction with other galaxies. One of its arms shows distortion, possibly a tidal tail.

"Clearly there is something interesting going on. While the quasar has not experienced a major disruptive merger, it may be interacting with another galaxy, which is gravitationally tugging at its spiral arm," said Nyland.

Another galaxy that appears nearby in the Hubble image (though its location still needs to be spectroscopically confirmed) has a ring structure. This rare shape can occur after a galaxy interaction in which a smaller galaxy punches through the center of a spiral galaxy. "The ring galaxy near the quasar host galaxy could be an intriguing clue as to what is happening in this system. We may be witnessing the aftermath of the interaction that triggered this young quasar jet," said Nyland.

Both Achenbach and Nyland emphasize that this intriguing discovery is really a new starting point, and there will be additional multi-wavelength analysis of J0742+2704 with data from NASA's Chandra X-ray Observatory and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. It's also a case for keeping our eyes on the skies, said Achenbach.

"If we looked at this galaxy 20 years, or maybe even a decade ago, we would have seen a fairly average quasar and never known it would eventually be home to newborn jets," said Achenbach. "It goes to show that if you keep searching, you can find something remarkable that you never expected, and it can send you in a whole new direction of discovery."

These results are being presented at the 245th meeting of the American Astronomical Society in Washington, D.C.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.




About This Release

Credits:

Media Contact:

Leah Ramsay
Space Telescope Science Institute, Baltimore, Maryland

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents


Wednesday, January 15, 2025

Massive black hole in the early universe spotted taking a ‘nap’ after overeating

Computer-simulated image of a supermassive black hole at the core of a galaxy.
Credit:
NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI)



Gravitational waves data held clues for high-mass black holes’ violent beginnings

The size and spin of black holes can reveal important information about how and where they formed, according to new research. The study tests the idea that many of the black holes observed by astronomers have merged multiple times within densely populated environments containing millions of stars.

The team, involving researchers from the University of Cambridge, examined the public catalogue of 69 gravitational wave events involving binary black holes detected by The Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo Observatory for clues about these successive mergers, which they believe create black holes with distinctive spin patterns.

They discovered that a black hole’s spin changes when it reaches a certain mass, suggesting it may have been produced through a series of multiple previous mergers.

Their study, published in the journal Physical Review Letters, shows how spin measurements can reveal the formation history of a black hole and offers a step forward in understanding the diverse origins of these astrophysical phenomena.

“As we observe more black hole mergers with gravitational wave detectors like LIGO and Virgo, it becomes ever clearer that black holes exhibit diverse masses and spins, suggesting they may have formed in different ways,” said lead author Dr Fabio Antonini from Cardiff University. “However, identifying which of these formation scenarios is most common has been challenging.”

The team pinpointed a clear mass threshold in the gravitational waves data where black hole spins consistently change.

They say this pattern aligns with existing models which assume black holes are produced through repeat collisions in clusters, rather than other environments where spin distributions are different.

This result supports a robust and relatively model-independent signature for identifying these kinds of black holes, something that has been challenging to confirm until now, according to the team.

“Our study gives us a powerful, data-driven way to identify the origins of a black hole’s formation history, showing that the way it spins is a strong indicator of it belonging to a group of high-mass black holes, which form in densely populated star clusters where small black holes repeatedly collide and merge with one another,” said co-author Dr Isobel Romero-Shaw, from Cambridge’s Department of Applied Mathematics and Theoretical Physics.

Their study will now help astrophysicists further refine computer models which simulate the formation of black holes, helping to shape how future gravitational wave detections are interpreted.

“Collaborating with other researchers and using advanced statistical methods will help to confirm and expand our findings, especially as we move toward next-generation detectors,” said co-author Dr Thomas Callister from the University of Chicago. “The Einstein Telescope, for example, could detect even more massive black holes and provide unprecedented insights into their origins.”

Reference:

Fabio Antonini, Isobel M. Romero-Shaw, and Thomas Callister. 'Star Cluster Population of High Mass Black Hole Mergers in Gravitational Wave Data.' Physical Review Letters (2025). DOI: 10.1103/PhysRevLett.134.011401




Note: The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.


Tuesday, January 14, 2025

Jetting into space

An area in the Orion nebula filled with dark, puffy clouds. On the left side a large area of clouds, crossed by a dark bar, is lit up in red and whitish colours by a protostar within. At the other side a large jet of material ejected by the protostar appears, made of thin, wispy, blue and pink clouds. A couple of foreground stars shine brightly in front of the nebula. Credit: ESA/Hubble & NASA, T. Megeath

Today’s NASA/ESA Hubble Space TelescopePicture of the Week peers into the dusty recesses of the nearest massive star-forming region to Earth, the Orion Nebula. Just 1300 light-years away, the Orion Nebula is visible to the naked eye below the three stars that form the ‘belt’ in the constellation Orion. The nebula is home to hundreds of newborn stars including the subject of this image: the protostars HOPS 150 and HOPS 153.

These protostars get their names from the Herschel Orion Protostar Survey, which was carried out with ESA’s Herschel Space Observatory. The object that can be seen in the upper-right corner of this image is HOPS 150: it’s a binary system, two young protostars orbiting each other. Each has a small, dusty disc of material surrounding it that it is feeding from. The dark line that cuts across the bright glow of these protostars is a cloud of gas and dust, over 2 000 times wider than the distance between Earth and the Sun, falling in on the pair of protostars. Based on the amount of infrared versus other wavelengths of light HOPS 150 is emitting, the protostars are mid-way down the path to becoming mature stars.

Extending across the left side of the image is a narrow, colourful outflow called a jet. This jet comes from the nearby protostar HOPS 153, out of frame. HOPS 153 is a significantly younger stellar object than its neighbour, still deeply embedded in its birth nebula and enshrouded by a cloud of cold, dense gas. While Hubble cannot penetrate this gas to see the protostar, the jet HOPS 153 has emitted is brightly visible as it plows into the surrounding gas and dust of the Orion Nebula.

The transition from tightly swaddled protostar to fully fledged star will dramatically affect HOPS 153’s surroundings. As gas falls onto the protostar, its jets spew material and energy into interstellar space, carving out bubbles and heating the gas. By stirring up and warming nearby gas, HOPS 153 may regulate the formation of new stars in its neighbourhood and even slow its own growth.



Monday, January 13, 2025

Seeing an Active Galactic Nucleus with 20/20 X-Ray Vision with XRISM

This multiwavelength image shows X-rays (blue), optical light (yellow), and radio waves (red) from the galaxy NGC 4151, which hosts an active galactic nucleus. Credit:
X-ray: NASA/CXC/CfA/J.Wang et al.; Optical: Isaac Newton Group of Telescopes, La Palma/Jacobus Kapteyn Telescope, Radio: NSF/NRAO/VLA

Title: XRISM Spectroscopy of the Fe Kα Emission Line in the Seyfert Active Galactic Nucleus NGC 4151 Reveals the Disk, Broad-line Region, and Torus
Authors: XRISM Collaboration
Status: Published in ApJL

Today we’re going to be taking a high-resolution look at X-rays from close to a supermassive black hole! But before we get into the astrophysics of today’s article, we first need to discuss the instruments that were built to do this science. More than 50 years ago now, charge-coupled devices (CCDs) began revolutionizing astronomy, and they continue to be one of the most commonly used detectors on telescopes. CCDs rely on the photoelectric effect, through which an incoming photon can liberate electrons in some material (semiconductors in the case of CCDs). These electrons are trapped by strong potential wells and electric charge can be applied to move the charge along and read this signal (check out this Astrobite for more details). CCDs are particularly powerful in the X-ray band, where the number of electrons trapped in each pixel scales roughly with the photon energy. This means that you get energy information (i.e., a spectrum) for free with CCDs! However, CCDs have limited spectral resolution, meaning they can’t determine this energy very precisely and therefore cannot resolve and unlock the power of narrow emission and absorption lines.

Figure 1: Schematic showing how a microcalorimeter works. An X-ray photon with energy E will produce a spike in the temperature of the absorber of E/C, where C is the heat capacity of the absorber. The thermometer is extremely sensitive to small changes in temperature, which means that we can get very accurate energies for each of the incoming X-ray photons. Therefore, a microcalorimeter can produce an X-ray spectrum with the best energy resolution of any current instrumentation. Credit:
NASA

X-Ray Microcalorimetry and 20/20 Vision

There are other ways to get better spectral resolution in the X-ray, including using gratings that will disperse your spectrum, as is commonly done with optical spectroscopy. However, even these techniques can’t reach the high spectral resolution needed; instead, new technology called a microcalorimeter has been engineered to solve this long-standing issue. As the name suggests, this instrument detects incoming photons by measuring tiny (micro) changes to the temperature (calorimetry) of the detector. Figure 1 shows the basic set-up of a microcalorimeter and how the energy of the photon is encoded in the strength of the resulting temperature fluctuation. In order to detect tiny changes to the temperature, microcalorimeters need to be extremely cold, 50 millikelvin to be precise! This is a huge engineering feat, but one that has recently been achieved by the X-ray Imaging and Spectroscopy Mission (XRISM)! XRISM is a JAXA/NASA collaborative mission, and it has two instruments on board: a CCD camera called Xtend and a microcalorimeter called Resolve. It was launched in September 2023, and its first science results are just starting to roll in!

Now, XRISM isn’t actually the first X-ray microcalorimeter to fly, but it’s the first to live through its commissioning phase! Although the X-ray microcalorimeter has been in the works since the 1990s, previous X-ray microcalorimeters have been cut from missions, lost to launch failures, and left unable to operate due to loss of coolant for the detector. In 2016, JAXA successfully launched and operated the first X-ray microcalorimeter on the Hitomi Satellite. However, unfortunately, shortly after taking a beautiful spectrum of the Perseus Cluster, one of the best-studied galaxy clusters in the local universe, communication was lost with the satellite and never recovered. XRISM’s Resolve instrument has been the most successful X-ray microcalorimeter so far, and it has allowed us to start looking at the universe with 20/20 X-ray vision!

Figure 2: XRISM Resolve spectra of NGC 4151. The left panels show the spectrum in the 5.8-7.2 keV range from two separate observations, with the data in black and the best fit total model in red. The right panels show a zoom in on the iron Kα 6.4 keV line with the three different components for the line also shown. The magenta model corresponds to the widest line, arising potentially from a warped disk, the dark blue model corresponds to the intermediate width line coming from the inner edge of the broad line region (BLR), and the cyan model corresponds to the most narrow line that arises from the inner edge of the dusty torus. Credit: XRISM Collaboration et al. 2024 universe with 20/20 X-ray vision!

Supermassive Science with XRISM

Today we’re going to put on our high-resolution X-ray spectroscopy glasses to look at one of the first XRISM targets: NGC 4151, one of the most well-known active galactic nuclei in the local universe. An active galactic nucleus consists of a supermassive black hole that is gobbling down gas from its surroundings through a process known as accretion. While we’ve known about active galactic nuclei for more than 50 years now, we still don’t really understand how they are fueled and what the structure is around them. XRISM can unlock this information indirectly by resolving some of the key X-ray emission and absorption lines. In particular, the most prominent emission line in the X-ray spectrum of an active galactic nucleus is a neutral iron Kα line at 6.4 kiloelectronvolts (keV), which arises from material around the supermassive black hole being illuminated by the light from the accretion process. This line holds the keys to probing the structure of the surrounding gas, as its dynamics can tell us about the structure of the accretion disk and trace gas in the torus that is thought to connect the local host galaxy to the accretion flow.

Figure 2 shows the XRISM Resolve spectrum of NGC 4151 from two separate observations. The spectrum shows a prominent 6.4 keV line that is resolved, meaning that the measured width of the line is greater than the instrument’s resolution limit. Additionally, the line cannot be fit with a single emission line and instead requires multiple lines, signaling multiple physical scales contributing to this emission line. The right panels of this figure highlight that there are three distinct components to this emission line with broad (magenta), intermediate (dark blue), and narrow (cyan) widths. Since gas that is closer to the black hole will be moving faster than more distant gas, the authors can use these line widths to estimate where this gas is located. They find that these three lines range from about 100 gravitational radii (about 100 times the size of the black hole) to about 10,000 gravitational radii. Determining the multi-scale nature of this line has been extraordinarily difficult to detect with other instruments due to their limited energy resolution!

Together these three components to the iron Kα line provide a compelling picture for the nuclear structure, which is shown in Figure 3. There are some additional pieces of evidence from the data that support this model as well. For example, the broadest line (magenta) shows variability on timescales of less than a day. This timescale corresponds roughly to the distance light could travel before reaching the magenta part of this figure, supporting the idea that there is a broad component associated with the disk. In addition to the location of the emitting gas, the dynamics and density can be constrained using the energy and shape of the line, respectively. In this source, the line is at the rest-frame energy and the shape is relatively symmetric, which together suggest that the emission comes from relatively optically thin gas that has not been accelerated to high velocities. Together, these diagnostics give one of the most in-depth pictures of supermassive black hole environments to date and will be crucial for testing our models of black hole feeding!

Figure 3: Schematic highlighting where each of the iron Kα emission lines arise from. The magenta component corresponds to the broadest line, potentially from a warp in the disk. The dark blue component corresponds to the intermediate-width line and arises from the inner edge of the broad line region (BLR). The cyan component corresponds to the narrowest line and arises from the inner edge of the active galactic nucleus torus. Credit: XRISM Collaboration et al. 2024

What’s Next?

These XRISM observations are rich with information, and today’s article focused only on the 6.4 keV emission line. The authors are planning a series of further articles, including on the active galactic nucleus winds traced by the absorption lines (i.e., the major dips seen at ~6.7 and ~7 keV in the left panels of Figure 2), comparisons of the emission lines with optical emission lines, and looking for faint evidence of broader emission from even closer to the supermassive black hole. The next obvious steps are also to observe more active galactic nuclei to test whether this multi-zone emission is a common occurrence in active galactic nuclei. One thing’s for sure, this 20/20 vision is sure to reveal new secrets about the lives and environments of supermassive black holes!

Original astrobite edited by Roel Lefever




Editor’s Note: Astrobites is a graduate-student-run organization that digests astrophysical literature for undergraduate students. As part of the partnership between the AAS and astrobites, we occasionally repost astrobites content here at AAS Nova. We hope you enjoy this post from astrobites; the original can be viewed at astrobites.org.



About the author, Megan Masterson:

I’m a 4th-year PhD student at MIT studying transient accretion events around supermassive black holes, including tidal disruption events and changing-look active galactic nuclei. I primarily use multi-wavelength observations to study from the inner accretion flow to the obscuring material in these transients. In my free time, you’ll find me hiking, reading, and watching women’s soccer.


Sunday, January 12, 2025

Astronomers witness the in situ spheroid formation in distant submillimetre-bright galaxies

Figure 1: Schematic diagram shows how spheroid formation occurs in distant submillimetre-bright galaxies, and how this process connects to the evolution of giant elliptical galaxies in today's Universe. On the far left, we have RGB images from JWST (using F444W for red, F227W for green, and F150W for blue) showcasing examples from our sample of galaxies. The cyan dashed ellipse marks the concentrated region of submm emission, with zoomed-in views highlighting the ALMA submm images. Also shown is a classification of the galaxies' intrinsic shapes. The average shape parameters for our full sample (green ellipse), a subsample of submm-compact galaxies (orange ellipse), and a subsample of submm-extended galaxies (blue ellipse) are compared to local early-type galaxies (red ellipse) and late-type galaxies (represented by purple and cyan spiral shapes). (Credit: Qing-Hua Tan)



An international team of researchers including The University of Tokyo Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI) has found evidence showing that old elliptical galaxies in the universe can form from intense star formation within early galaxy cores. This discovery that will deepen our understanding of how galaxies evolved from the early Universe, reports a new study in Nature.

Galaxies in today’s Universe are diverse in morphologies and can be roughly divided into two categories: younger, disk-like spiral galaxies, like our own Milky Way, that are still forming new stars; and older, elliptical galaxies, which are dominated by a central bulge, no longer forming stars and mostly lacking gas. These spheroidal galaxies contain very old stars, yet how they formed has remained a mystery—until now.

The discovery of the birth sites of giant, elliptical galaxies – announced in a paper published today in the Nature – come from analyzing data from the Atacama Large Millimeter/submillimeter Array (ALMA) on over 100 Submillimeter Bright Galaxies (SMGs) with redshifts dating to the “Cosmic noon” era, when the universe was between around 1.6 and 5.9 billion years old and many galaxies were actively forming stars. This study provides the first solid observational evidence that spheroids can form directly through intense star formation within the cores of highly luminous starburst galaxies in the early Universe, based on a new perspective from the submillimeter band. This breakthrough will significantly impact models of galaxy evolution and deepen our understanding of how galaxies form and evolve across the Universe.

In this study, researchers led by Chinese Academy of Sciences Purple Mountain Observatory Associate Researcher Qinghua Tan, and including Kavli IPMU Professor John Silverman, Project Researcher Boris Kalita, and graduate student Zhaoxuan Liu, used statistical analysis of the surface brightness distribution of dust emission in the submillimeter band, combined with a novel analysis technique. They found that the submillimeter emission in most of sample galaxies are very compact, with surface brightness profiles deviating significantly from those of exponential disks. This suggests that the submillimeter emission typically comes from structures that are already spheroid-like. Further evidence for this spheroidal shape comes from a detailed analysis of galaxies’ 3D geometry. Modeling based on the skewed-high axis-ratio distribution shows that the ratio of the shortest to the longest of their three axes is, on average, half and increases with spatial compactness. This indicates that most of these highly star-forming galaxies are intrinsically spherical rather than disk-shaped. Supported by numerical simulations, this discovery has shown us that the main mechanism behind the formation of these tri-dimensional galaxies (spheroids) is the simultaneous action of cold gas accretion and galaxy interactions. This process is thought to have been quite common in the early Universe, during the period when most spheroids were forming. It could redefine how we understand galaxy formation.

This research was made possible thanks to the A3COSMOS and A3GOODSS archival projects, which enabled researchers to gather a large number of galaxies observed with a high enough signal-to-noise ratio for detailed analysis. Future exploration of the wealth of ALMA observations accumulated over the years, along with new submillimeter and millimeter observations with higher resolution and sensitivity, will allow us to systematically study the cold gas in galaxies. This will offer unprecedented insight into the distribution and kinematics of the raw materials fueling star formation. With the powerful capabilities of Euclid, the James Webb Space Telescope (JWST), and the China Space Station Telescope (CSST) to map the stellar components of galaxies, we will gain a more complete picture of early galaxy formation. Together, these insights will deepen our understanding of how the Universe as a whole has evolved over time.




Paper details

Journal: Nature
Paper title: In-Situ Spheroid Formation in Distant Submillimeter-Bright Galaxies
Authors: Qing-Hua Tan (1,2), Emanuele Daddi (2), Benjamin Magnelli (2), Camila A. Correa (2), Frédéric Bournaud (2), Sylvia Adscheid (3), Shao-Bo Zhang (1), David Elbaz (2), Carlos Gómez-Guijarro (2), Boris S. Kalita (4,5,6), Daizhong Liu (1), Zhaoxuan Liu (4,5,7), Jérôme Pety (8,9), Annagrazia Puglisi (10,11), Eva Schinnerer (12), John D. Silverman (4,5,7,13), Francesco Valentino (14,15)

Author affiliations:

1. Purple Mountain Observatory, Chinese Academy of Sciences, 10 Yuanhua Road, Nanjing 210023, People's Republic of China
2. Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette 91191, France
3. Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
4. Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, 277-8583, Japan
5. Center for Data-Driven Discovery, Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
6. Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People's Republic of China
7. Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
8. Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, 38406 Saint-Martin d’Hères, France
9. LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, 75014 Paris, France
10. School of Physics and Astronomy, University of Southampton, Highfield SO17 1BJ, UK
11. Center for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
12. Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
13. Center for Astrophysical Sciences, Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
14. European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen, Germany
15. Cosmic Dawn Center (DAWN), Denmark


DOI: 10.1038/s41586-024-08201-6 (Published December 4, 2024)
Paper abstract (Nature)
Pre-print (arXiv.org)



Research contact:

John Silverman
Professor
Kavli Institute for the Physics and Mathematics of the Universe
E-mail:
john.silverman@ipmu.jp

Media contact:

Motoko Kakubayashi
Press officer
Kavli Institute for the Physics and Mathematics of the Universe
The University of Tokyo
Tel: 04-7136-5980
E-mail
press@ipmu.jp


Saturday, January 11, 2025

World's darkest and clearest skies at risk from industrial megaproject

PR Image eso2501a
Touching the Arc of Space

PR Image eso2501b
Light pollution at the world’s major astronomical observatories



Videos

Night sky beauty over Paranal
PR Video eso2501a
Night sky beauty over Paranal



On December 24th, AES Andes, a subsidiary of the US power company AES Corporation, submitted a project for a massive industrial complex for environmental impact assessment. This complex threatens the pristine skies above ESO’s Paranal Observatory in Chile’s Atacama Desert, the darkest and clearest of any astronomical observatory in the world [1]. The industrial megaproject is planned to be located just 5 to 11 kilometres from telescopes at Paranal, which would cause irreparable damage to astronomical observations, in particular due to light pollution emitted throughout the project’s operational life. Relocating the complex would save one of Earth's last truly pristine dark skies.

An irreplaceable heritage for humanity

Since its inauguration in 1999, Paranal Observatory, built and operated by the European Southern Observatory (ESO), has led to significant astronomy breakthroughs, such as the first image of an exoplanet and confirming the accelerated expansion of the Universe. The Nobel Prize in Physics in 2020 was awarded for research on the supermassive black hole at the centre of the Milky Way, in which Paranal telescopes were instrumental. The observatory is a key asset for astronomers worldwide, including those in Chile, which has seen its astronomical community grow substantially in the last decades. Additionally, the nearby Cerro Armazones hosts the construction of ESO’s Extremely Large Telescope (ELT), the world’s biggest telescope of its kind — a revolutionary facility that will dramatically change what we know about our Universe.

“The proximity of the AES Andes industrial megaproject to Paranal poses a critical risk to the most pristine night skies on the planet,” highlighted ESO Director General, Xavier Barcons. “Dust emissions during construction, increased atmospheric turbulence, and especially light pollution will irreparably impact the capabilities for astronomical observation, which have thus far attracted multi-billion-Euro investments by the governments of the ESO Member States.”

The unprecedented impact of a megaproject

project encompasses an industrial complex of more than 3000 hectares, which is close to the size of a city, or district, such as Valparaiso, Chile or Garching near Munich, Germany. It includes constructing a port, ammonia and hydrogen production plants and thousands of electricity generation units near Paranal.

Thanks to its atmospheric stability and lack of light pollution, the Atacama Desert is a unique natural laboratory for astronomical research. These attributes are essential for scientific projects that aim to address fundamental questions, such as the origin and evolution of the Universe or the quest for life and the habitability of other planets.

A call to protect the Chilean skies

“Chile, and in particular Paranal, is a truly special place for astronomy — its dark skies are a natural heritage that transcends its borders and benefits all humanity,” said Itziar de Gregorio, ESO’s Representative in Chile. “It is crucial to consider alternative locations for this megaproject that do not endanger one of the world's most important astronomical treasures.”

The relocation of this project remains the only effective way to prevent irreversible damage to Paranal's unique skies. This measure will not only safeguard the future of astronomy but also preserve one of the last truly pristine dark skies on Earth.

Source: ESO/News



Notes

[1] A study by Falchi and collaborators, published in 2023 in Monthly Notices of the Royal Astronomical Society, compared light pollution at all 28 major astronomical observatories, finding Paranal to be the darkest site among them.




Contacts

Francisco Rodríguez
ESO Media Relations Officer
Santiago, Chile
Tel: +56 2 2463 3151
Email:
francisco.rodriguez@eso.org

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Email:
press@eso.org


Friday, January 10, 2025

Prime Focus Spectrograph on the Subaru Telescope to Begin Science Operations in February

Example of data obtained by PFS observing celestial objects in the Andromeda Galaxy region. On the left, the positions of the PFS fibers configured to observe individual celestial objects are marked by circles on an image of the Andromeda Galaxy taken with HSC (Hyper Suprime-Cam) (Credit: NAOJ). The cyan rectangle represents the field of view of the multi-object spectrograph DEIMOS in operation at W. M. Keck Observatory for comparison. On the right, a magnified image of the observed celestial object is shown, along with the spectra obtained by PFS. (Credit: PFS Project/Kavli IPMU/NAOJ). Download image (4.5MB)



Researchers have finished equipping the Subaru Telescope with a new special “compound eye,” culminating several years of effort. This new eye is an instrument featuring approximately 2,400 prisms scattered across the extremely wide field of view available at the Subaru Telescope’s primary focus, allowing for simultaneous spectroscopic observation of thousands of celestial objects. This unrivaled capability will help researchers precisely understand the formation and evolution of galaxies and the Universe. Among 8-meter-class telescopes, the Subaru Telescope is the most competitive with the largest survey capability in the world. This instrument, the Prime Focus Spectrograph (PFS), will be ready to begin scientific operations in February 2025.

PFS will be one of the flagship instruments of the “Subaru Telescope 2.0” era. Taking advantage of the Subaru Telescope’s ultrawide field of view, approximately 1.3 degrees in diameter at the prime focus, and world-renowned large light-gathering power, PFS will position 2,400 fibers to collect light from celestial objects and simultaneously obtain spectra across the entire visible light range and part of the near-infrared band. Just like the compound eyes of insects, each facet (fiber) focuses on a different direction to cover a wide area while perceiving the colors of light from that direction. This highly ambitious instrument will dramatically enhance the Subaru Telescope’s spectroscopic observation efficiency.

Spanning nearly 15 years with support from industrial partners around the world, the development of PFS has been led by an international collaboration of over 20 research institutions in Japan, the U.S., France, Brazil, Taiwan, Germany, and China. Notably, the University of Tokyo Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI) has taken the lead in proposing and developing the instrument as well as planning large-sky survey observations, with the goal of testing various theoretical models about the formation of the Universe. The National Astronomical Observatory of Japan (NAOJ) has also played a central role, participating in the development of the instrument and overseeing the coordination of the project, while also being responsible for the acceptance and operation of the instrument

The PFS team plans to carry out a large-sky survey program over the next five or so years, utilizing a total of 360 nights of telescope time. This survey will take spectra of millions of distant galaxies, as well as hundreds of thousands of stars in the Milky Way and our neighboring Andromeda Galaxy.




Related Link(s)


Thursday, January 09, 2025

A Treasure Trove of Unseen Stars Seen Beyond the 'Dragon Arc'

Abell 370, a galaxy cluster located nearly 4 billion light-years away from Earth features several arcs of light, including the "Dragon Arc" (lower left of center). These arcs are caused by gravitational lensing: Light from distant galaxies far behind the massive galaxy cluster coming toward Earth is bent around Abell 370 by its massive gravity, resulting in contorted images.  Credit: NASA.High Resolution Image

The massive, yet invisible halo of dark matter of a galaxy cluster works as a "macrolens,", while lone, unbound stars drifting through the cluster act as additional "microlenses, multiplying the factor of magnification.  Credit: Yoshinobu Fudamoto. High Resolution Image

In this zoomed-in detail of the Hubble image of Abell 370, the host galaxy where the 44 stars were discovered appears several times: in a normal image (left), and a distorted image appearing as a drawn-out smear of light.  Credit: NASA. High Resolution Image



An international team of astronomers took pictures of more than 40 individual stars in a galaxy so far away its light dates back to when the universe was only half its present age.

Cambridge, MA — Looking halfway across the observable universe and expecting to see individual stars is considered a non-starter in astronomy, a bit like raising a pair of binoculars at the moon in hopes of making out individual grains of dust inside its craters. Thanks to a cosmic quirk of nature, however, an international team of astronomers did just that.

Using NASA's James Webb Space Telescope (JWST), postdoctoral researcher Fengwu Sun at the Center for Astrophysics | Harvard & Smithsonian (CfA) and his team observed a galaxy nearly 6.5 billion light-years from Earth, at a time when the universe was half its current age. In this distant galaxy, the team identified 44 individual stars, made visible thanks to an effect known as gravitational lensing and JWST's high light collecting power.

Published in the journal Nature Astronomy, the discovery marks this record-breaking achievement – the largest number of individual stars detected in the distant universe. It also provides a way to investigate one of the universe's greatest mysteries – dark matter.

"This groundbreaking discovery demonstrates, for the first time, that studying large numbers of individual stars in a distant galaxy is possible," Sun, a co-author on the study, said. “While previous studies with the Hubble Space Telescope found around seven stars, we now have the capability to resolve stars that were previously outside of our capability. Importantly, observing more individual stars will also help us better understand dark matter in the lensing plane of these galaxies and stars, which we couldn’t do with only the handful of individual stars observed previously."

CfA's Sun found this treasure trove of stars while inspecting JWST images of a galaxy known as the Dragon Arc, located along the line of sight from Earth behind a massive cluster of galaxies called Abell 370. Due to its gravitational lensing effect, Abell 370 stretches the Dragon Arc's signature spiral into an elongated shape – like a hall of mirrors of cosmic proportions.

The research team carefully analyzed colors of each of the stars inside the Dragon Arc and found that many are red supergiants, similar to Betelgeuse in the constellation of Orion, which is in the final stages of its life. This contrasts with earlier discoveries, which predominantly identified blue "supergiants" similar to Rigel and Deneb, which are among the brightest stars in the night sky. According to the researchers, this difference in stellar types also highlights the unique power of JWST observations at infrared wavelengths that could reveal stars at lower temperatures.

"When we discovered these individual stars, we were actually looking for a background galaxy that is lensing-magnified by the galaxies in this massive cluster,” said Sun. “But when we processed the data, we realized that there were what appeared to be a lot of individual star points. It was an exciting find because it was the first time we were able to see so many individual stars so far away."

Sun, in particular, is excited for the next opportunity to study these red supergiants. "We know more about red supergiants in our local galactic neighborhood because they are closer and we can take better images and spectra, and sometimes even resolve the stars. We can use the knowledge we’ve gained from studying red supergiants in the local universe to interpret what happens next for them at such an early epoch of galaxy formation in future studies."

Most galaxies, including the Milky Way, contain tens of billions of stars. In nearby galaxies such as the Andromeda galaxy, astronomers can observe stars one by one. However, in galaxies billions of light-years away, stars appear blended together as their light needs to travel for billions of light-years before it reaches us, presenting a long-standing challenge to scientists studying how galaxies form and evolve.

"To us, galaxies that are very far away usually look like a diffuse, fuzzy blob," said lead study author Yoshinobu Fudamoto, an assistant professor at Chiba University in Japan. "But actually, those blobs consist of many, many individual stars. We just can't resolve them with our telescopes."

Recent advances in astronomy have opened new possibilities by leveraging gravitational lensing – a natural magnification effect caused by the strong gravitational fields of massive objects. As predicted by Albert Einstein, gravitational lenses can amplify the light of distant stars by factors of hundreds or even thousands, making them detectable with sensitive instruments like JWST.

"These findings have typically been limited to just one or two stars per galaxy," Fudamoto said. "To study stellar populations in a statistically meaningful way, we need many more observations of individual stars."

Future JWST observations are expected to capture more magnified stars in the Dragon Arc galaxy. These efforts could lead to detailed studies of hundreds of stars in distant galaxies. Moreover, observations of individual stars could provide insight into the structure of gravitational lenses and even shed light on the elusive nature of dark matter.




About the Center for Astrophysics | Harvard & Smithsonian

The Center for Astrophysics | Harvard & Smithsonian is a collaboration between Harvard and the Smithsonian designed to ask—and ultimately answer—humanity's greatest unresolved questions about the nature of the universe. The Center for Astrophysics is headquartered in Cambridge, MA, with research facilities across the U.S. and around the world.



Resource

Y. Fudamoto, F. Sun, et al, "More than Forty Gravitationally Magnified Stars in a Galaxy at Redshift of 0.725," Nature Astronomy., doi: 10.1038/s41550-024-02432-3



Media Contact:

Amy C. Oliver
Public Affairs Officer, Fred Lawrence Whipple Observatory
Center for Astrophysics | Harvard & Smithsonian

amy.oliver@cfa.harvard.edu


Wednesday, January 08, 2025

Helical Magnetic Fields: A Universal Mechanism for Jet Collimation?

Results of the Rotation Measure analysis in the HH80-81 jet. The left image shows the streamline image of the component of the magnetic field parallel to the plane of the sky. In the middle panel, the color scale of the RM indicates the direction of the magnetic field along the line of sight, i.e., red, away from the observer, and blue, towards the observer. The right panel shows a scheme depicting the 3D configuration of the magnetic field, exhibiting a helical topology Credit: Rodríguez-Kamenetzky et al. 2025, The Astrophysical Journal. Hi-Res File

Artistic view of a protostar driving a bipolar jet within a helical magnetic field.
Credit: Wolfgang Steffen, UNAM.
Hi-Res File



New observations from the National Science Foundation National Radio Astronomy Observatory’s (NSF NRAO) Karl G. Jansky Very Large Array (NSF VLA) provide compelling evidence supporting a universal mechanism for the collimation of astrophysical jets, regardless of their origin. A new study, published in the Astrophysical Journal Letters , reveals the presence of a helical magnetic field within the HH 80-81 protostellar jet, a finding that mirrors similar structures observed in jets emanating from supermassive black holes.

Jets, powerful, highly collimated outflows of matter and energy, are observed across a vast range of scales in the universe. From the supermassive black holes at the centers of galaxies to the young stars in our own Milky Way, these jets play a crucial role in the evolution of their host systems. However, the precise mechanism that guides these jets and prevents them from dispersing into space has remained a long-standing puzzle.

“This is the first solid evidence that helical magnetic fields can explain astrophysical jets at different scales, supporting universality of the collimation mechanism”, said Adriana Rodríguez-Kamenetzky, of Institute of Theoretical and Experimental Astronomy (IATE), Argentinian National Scientific and Technical Research Council and National University of Córdoba (CONICET-UNC) and leader of the work.

Previous research using the NSF VLA, highlighted by NSF NRAO press releases in 2010 and 2021, showed the existence of magnetic fields in some protostellar jets and established the importance of helical magnetic fields in collimating jets from supermassive black holes. However, until now, definitive evidence confirming the presence of helical magnetic fields in protostellar jets had been elusive.  The challenge lies in the fact that the emission from protostellar jets is predominantly thermal, making it difficult to trace the magnetic field structures.

“Back in 2010, we used VLA to detect non-thermal emission and the presence of a magnetic field, but we couldn’t study its 3D structure”, said Carlos Carrasco-González, of the Institute of Radio Astronomy and Astrophysics (IRyA) of the National Autonomous University of Mexico (UNAM).

This new study overcomes these limitations by utilizing the enhanced capabilities of the upgraded NSF VLA. The high sensitivity and broad bandwidth of the NSF VLA allowed astronomers to perform an unprecedentedly detailed Rotation Measure (RM) analysis of the HH 80-81 jet. The RM analysis allows researchers to correct for Faraday rotation – the rotation of the polarization of light as it passes through a magnetized plasma – revealing the true orientation of the magnetic field.

“For the first time, we were able to study the 3D configuration of the magnetic field in a protostellar jet”, said Alice Pasetto, of IRyA-UNAM.

This groundbreaking analysis produced the following key results:


  • First-ever RM analysis of a protostellar jet:
    This study marks the first time RM analysis has been successfully applied to a protostellar jet, providing a unique insight into its three-dimensional magnetic structure.

  • Evidence for a helical magnetic field:
    The analysis definitively reveals a helical magnetic field configuration within the HH 80-81 jet. This result mirrors observations of helical magnetic fields in extragalactic jets, strongly suggesting a common mechanism for jet collimation across vastly different scales.

  • Confirmation of universality:
    By analyzing both the approaching jet and the receding counterjet – a feature readily observable in protostellar jets, unlike those originating from supermassive black holes – researchers confirmed that the helical magnetic field is intrinsic to the disk-jet system and not a result of interactions with the surrounding medium.
These findings provide robust support for the hypothesis that helical magnetic fields are a universal mechanism for collimating astrophysical jets, regardless of the scale or origin of the jet. This unifying theory helps unravel the complex physics governing the launch and evolution of these important cosmic structures.

Adriana Rodríguez-Kamenetzky and Alice Pasetto worked with Carlos Carrasco-González and Luis Felipe Rodríguez (IRyA-UNAM) in collaboration with scientists from the Spanish National Research Council (CSIC), the Institute of Space Sciences (ICE-CSIC), the Institute of Space Studies of Catalonia (IEEC), the University of Jaén (Spain) and the Indian Institute of Space Science and Technology (IIST).




About NRAO

The NSF National Radio Astronomy Observatory (NSF NRAO) is a facility of the U.S. National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

For media inquiries or further information, please contact:

NRAO Media Contact:

Corrina C. Jaramillo Feldman
Public Information Officer – New Mexico
Tel: +1 505-366-7267

cfeldman@nrao.edu