Saturday, April 25, 2015

Astronomers Find Runaway Galaxies

"These galaxies are facing a lonely future, exiled from the galaxy clusters they used to live in," said astronomer Igor Chilingarian (Harvard-Smithsonian Center for Astrophysics/Moscow State University). Chilingarian is the lead author of the study, which is appearing in the journal Science.

An object is a runaway if it's moving faster than escape velocity, which means it will depart its home never to return. In the case of a runaway star, that speed is more than a million miles per hour (500 km/s). A runaway galaxy has to race even faster, traveling at up to 6 million miles per hour (3,000 km/s).

Chilingarian and his co-author, Ivan Zolotukhin (L'Institut de Recherche en Astrophysique et Planetologie/Moscow State University), initially set out to identify new members of a class of galaxies called compact ellipticals. These tiny blobs of stars are bigger than star clusters but smaller than a typical galaxy, spanning only a few hundred light-years. In comparison, the Milky Way is 100,000 light-years across. Compact ellipticals also weigh 1000 times less than a galaxy like our Milky Way.

Prior to this study, only about 30 compact elliptical galaxies were known, all of them residing in galaxy clusters. To locate new examples Chilingarian and Zolotukhin sorted through public archives of data from the Sloan Digital Sky Survey and the GALEX satellite.

Their search identified almost 200 previously unknown compact ellipticals. Of those, 11 were completely isolated and found far from any large galaxy or galaxy cluster.

"The first compact ellipticals were all found in clusters because that's where people were looking. We broadened our search, and found the unexpected," said Zolotukhin.

These isolated compact galaxies were unexpected because theorists thought they originated from larger galaxies that had been stripped of most of their stars through interactions with an even bigger galaxy. So, the compact galaxies should all be found near big galaxies.

Not only were the newfound compact ellipticals isolated, but also they were moving faster than their brethren in clusters.

"We asked ourselves, what else could explain them? The answer was a classic three-body interaction," stated Chilingarian.

A hypervelocity star can be created if a binary star system wanders close to the black hole at the center of our galaxy. One star gets captured while the other is thrown away at tremendous speed.

Similarly, a compact elliptical could be paired with the big galaxy that stripped it of its stars. Then a third galaxy blunders into the dance and flings the compact elliptical away. As punishment, the intruder gets accreted by the remaining big galaxy.

This discovery represents a prominent success of the Virtual Observatory - a project to make data from large astronomical surveys easily available to researchers. So-called data mining can result in finds never anticipated when the original data was collected.

"We recognized we could use the power of the archives to potentially unearth something interesting, and we did," added Chilingarian.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.


For more information, contact:

Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463

cpulliam@cfa.harvard.edu




Friday, April 24, 2015

Celestial fireworks celebrate Hubble’s 25th anniversary

Westerlund 2 — Hubble’s 25th anniversary image

Wide-field image of Westerlund 2 (ground-based image)

The star cluster Westerlund 2

Star-forming region Gum 29

Pillars around Westerlund 2

New stars around Westerlund 2 

******************************************************************************************


VIDEOS

Hubblecast Episode 84: A starry snapshot for Hubble’s 25th
Hubblecast Episode 84: A starry snapshot for Hubble’s 25th

Zoom into Westerlund 2
Zoom into Westerlund 2

Westerlund 2 for fulldome
Westerlund 2 for fulldome

Pan across Westerlund 2
Pan across Westerlund 2

Flight through star cluster Westerlund 2 — fast
Flight through star cluster Westerlund 2 — fast

Flight through star cluster Westerlund 2 - slow
Flight through star cluster Westerlund 2 - slow


The glittering tapestry of young stars flaring to life in this new NASA/ESA Hubble Space Telescope image aptly resembles an exploding shell in a fireworks display. This vibrant image of the star cluster Westerlund 2 has been released to celebrate Hubble’s 25th year in orbit and a quarter of a century of new discoveries, stunning images and outstanding science.

On 24 April 1990 the NASA/ESA Hubble Space Telescope was sent into orbit aboard the space shuttle Discovery as the first space telescope of its kind. It offered a new view of the Universe and has, for 25 years, reached and surpassed all expectations, beaming back data and images that have changed scientists’ understanding of the Universe and the public’s perception of it.

In this image, the sparkling centrepiece of Hubble’s silver anniversary fireworks is a giant cluster of about 3000 stars called Westerlund 2 [1][2]. The cluster resides in a raucous stellar breeding ground known as Gum 29, located 20 000 light-years away in the constellation Carina.

The stellar nursery is difficult to observe because it is surrounded by dust, but Hubble’s Wide Field Camera 3 peered through the dusty veil in near-infrared light, giving astronomers a clear view of the cluster. Hubble’s sharp vision resolves the dense concentration of stars in the central cluster, which measures only about 10 light-years across.

The giant star cluster is only about two million years old, but contains some of the brightest, hottest and most massive stars ever discovered. Some of the heftiest stars are carving deep cavities in the surrounding material by unleashing torrents of ultraviolet light and high speed streams of charged particles, known as stellar winds. These are etching away the enveloping hydrogen gas cloud in which the stars were born and are responsible for the weird and wonderful shapes of the clouds of gas and dust in the image.

The pillars in the image are composed of dense gas and dust, and are resisting erosion from the fierce radiation and powerful winds. These gaseous monoliths are a few light-years tall and point to the central cluster. Other dense regions surround the pillars, including dark filaments of dust and gas.

Besides sculpting the gaseous terrain, the brilliant stars can also help create a succeeding generation of offspring. When the stellar winds hit dense walls of gas, they create shocks, which generate a new wave of star birth along the wall of the cavity. The red dots scattered throughout the landscape are a rich population of forming stars that are still wrapped in their gas and dust cocoons. These stellar foetuses have not yet ignited the hydrogen in their cores to light-up as stars. However, Hubble’s near-infrared vision allows astronomers to identify these fledglings. The brilliant blue stars seen throughout the image are mostly in the foreground.

The image’s central region, containing the star cluster, blends visible-light data taken by the Advanced Camera for Surveys and near-infrared exposures taken by the Wide Field Camera 3. The surrounding region is composed of visible-light observations taken by the Advanced Camera for Surveys.

This image is a testament to Hubble’s observational power and demonstrates that, even with 25 years of operations under its belt, Hubble’s story is by no means over. Hubble has set the stage for its companion the James Webb Space Telescope — scheduled for launch in 2018 — but will not be immediately replaced by this new feat of engineering, instead working alongside it. Now, 25 years after launch, is the time to celebrate Hubble’s future potential as well as its remarkable history.


Notes

[1] A new anniversary image is released every year; last year Hubble snapped the ethereal Monkey Head Nebula (heic1406). The year 2013 saw the release of a strikingly delicate view of the Horsehead Nebula (heic1307), and Hubble’s 22nd year was marked by a huge mosaic of a celestial spider (heic1206)! Other images include a multicoloured view of Saturn (opo9818a), a Tolkien-esque shot of the Carina Nebula (heic1007a), and a beautiful cosmic rose made up of merging galaxies (heic1107a). More anniversary images can be seen here.

[2] Westerlund 2 is named after Swedish astronomer Bengt Westerlund, who discovered the grouping in the 1960s.


Notes for Editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.


More Information

Image credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

The original observations of Westerlund 2 were obtained by the science team: Antonella Nota (ESA/STScI), Elena Sabbi (STScI), Eva Grebel and Peter Zeidler (Astronomisches Rechen-Institut Heidelberg), Monica Tosi (INAF, Osservatorio Astronomico di Bologna), Alceste Bonanos (National Observatory of Athens, Astronomical Institute), Carol Christian (STScI/AURA) and Selma de Mink (University of Amsterdam). Follow-up observations were made by the Hubble Heritage team: Zoltan Levay (STScI), Max Mutchler, Jennifer Mack, Lisa Frattare, Shelly Meyett, Mario Livio, Carol Christian (STScI/AURA), and Keith Noll (NASA/GSFC).


Links

Contacts

Georgia Bladon
ESA/Hubble, Public Information Officer
Garching, Germany
Cell: +44 7816291261
Email:
gbladon@partner.eso.org

Ray Villard
Space Telescope Science Institute
Baltimore, USA
Tel: +1-410-338-4514
Email:
villard@stsci.edu


Thursday, April 23, 2015

Cosmologically Complicating Dust

The Planck astronomy satellite's new submillimeter wavelength image of ripples in the cosmic background, as refined with data taken with the South Pole BICEP2/Keck Array facilities. Scientists from the two teams combined their data to conclude that previously reported measurements attributed to the effects of cosmic inflation are instead almost certainly due to the effects of galactic dust. Credit: ESA, NASA, Planck/BICEP.


The universe was created 13.7 billion years ago in a blaze of light: the big bang. Roughly 380,000 years later, after matter (mostly hydrogen) had cooled enough for neutral atoms to form, light was able to traverse space freely. That light, the cosmic microwave background radiation (CMBR), comes to us from every direction in the sky uniformly ... or so it first seemed. In the last decades, astronomers discovered that the radiation actually has very faint ripples and bumps in it at a level of brightness of only a part in one hundred thousand – the seeds for future structures, like galaxies.

Astronomers have conjectured that these ripples also contain traces of an initial burst of expansion -- the so-called inflation – which swelled the new universe by thirty-three orders of magnitude in a mere ten-to-the-power-minus-33 seconds. Clues about the inflation should be faintly present in the way the cosmic ripples are curled, an effect that is expected to be perhaps one hundred times fainter than the ripples themselves. One year ago, CfA astronomers working at the South Pole amazed the world by reporting evidence for such curling, the "B-mode polarization," and cautiously calculated that the measured strength supported the simplest models of inflation.

Other exotic processes are at work in the universe to make this daunting measurement even more challenging. The principal one is the scattering of light by dust particles in the galaxy that have been aligned by magnetic fields; the light is polarized and twisted in a way that emulates the curling effects of inflation. In 2009, the European Space Agency, with NASA as a partner, launched the Planck satellite to study the CMBR. The first papers from Planck substantially refined the values of key cosmological parameters. In the course of studying the cosmic light, it unavoidably encountered emission from dust grains. Writing in the latest issue of Physical Review Letters, CfA astronomers K.D. Alexander, C.A. Bischoff, I. Buder, J. Connors, C. Dvorkin, K.S. Karkare, J. Kovac, S. Richter, and C.L. Wong joined over one hundred colleagues in reporting their analysis of the galactic dust contribution to the curled CMBR signature using data from both South Pole and Planck experiments.

The scientists conclude that the previously reported curl signal is genuine, but almost certainly due to galactic dust, whose effect turned out to be considerably stronger than had been previously expected, swamping the cosmological signal. The new paper provides much more sensitive limits to cosmological effects, however, and notes that several next-generation experiments at the South Pole and elsewhere are continuing to probe even more deeply. In the next few years, they predict, substantial progress towards finding the faint traces of inflation will be made, and the improved results used to refine the details of cosmic inflation.


Reference(s):

"Joint Analysis of BICEP2/Keck Array and Planck Data," P.A.R. Ade et al. (BICEP2/Keck and Planck Collaborations, Physical Review Letters 114, 101301, 2015



Tau Ceti: The next Earth? Probably not

How would an alien world like this look? That’s the question that undergraduate art major Joshua Gonzalez attempted to answer. He worked with Professor Patrick Young’s group to learn how to analyze stellar spectra to find chemical abundances, and inspired by the scientific results, he created two digital paintings of possible unusual extrasolar planets, one being Tau Ceti for his Barrett Honors Thesis. Credit: Joshua Gonzalez.


The list of potential life-supporting planets just got a little shorter
 
As the search continues for Earth-size planets orbiting at just the right distance from their star, a region termed the habitable zone, the number of potentially life-supporting planets grows. In two decades we have progressed from having no extrasolar planets to having too many to search. Narrowing the list of hopefuls requires looking at extrasolar planets in a new way. Applying a nuanced approach that couples astronomy and geophysics, Arizona State University researchers report that from that long list we can cross off cosmic neighbor Tau Ceti.

The Tau Ceti system, popularized in several fictional works, including Star Trek, has long been used in science fiction, and even popular news, as a very likely place to have life due to its proximity to Earth and the star’s sun-like characteristics. Since December 2012 Tau Ceti has become even more appealing, thanks to evidence of possibly five planets orbiting it, with two of these – Tau Ceti e and f – potentially residing in the habitable zone.

Using the chemical composition of Tau Ceti, the ASU team modeled the star’s evolution and calculated its habitable zone. Although their data confirms that two planets (e and f) may be in the habitable zone it doesn’t mean life flourishes or even exists there.

“Planet e is in the habitable zone only if we make very generous assumptions. Planet f initially looks more promising, but modeling the evolution of the star makes it seem probable that it has only moved into the habitable zone recently as Tau Ceti has gotten more luminous over the course of its life,” explains astrophysicist Michael Pagano, ASU postdoctoral researcher and lead author of the paper appearing in the Astrophysical Journal. The collaboration also included ASU astrophysicists Patrick Young and Amanda Truitt and mineral physicist Sang-Heon (Dan) Shim.

Based upon the team’s models, planet f has likely been in the habitable zone much less than 1 billion years. This sounds like a long time, but it took Earth’s biosphere about 2 billion years to produce potentially detectable changes in its atmosphere. A planet that entered the habitable zone only a few hundred million years ago may well be habitable and even inhabited, but not have detectable biosignatures.

According to Pagano, he and his collaborators didn’t pick Tau Ceti “hoping, wanting, or thinking” it would be a good candidate to look for life, but for the idea that these might be truly alien new worlds.
Tau Ceti has a highly unusual composition with respect to its ratio of magnesium and silicon, which are two of the most important rock forming minerals on Earth. The ratio of magnesium to silicon in Tau Ceti is 1.78, which is about 70% more than our sun.

The astrophysicists looked at the data and asked, “What does this mean for the planets?”

Building on the strengths of ASU’s School of Earth and Space Exploration, which unites earth and space scientists in an effort to tackle research questions through a holistic approach, Shim was brought on board for his mineral expertise to provide insights into the possible nature of the planets themselves.

“With such a high magnesium and silicon ratio it is possible that the mineralogical make-up of planets around Tau Ceti could be significantly different from that of Earth. Tau Ceti’s planets could very well be dominated by the mineral olivine at shallow parts of the mantle and have lower mantles dominated by ferropericlase,” explains Shim.

Considering that ferropericlase is much less viscous, or resistant to flowing, hot, yet solid, mantle rock would flow more easily, possibly having profound effects on volcanism and tectonics at the planetary surface, processes which have a significant impact on the habitability of Earth.

“This is a reminder that geological processes are fundamental in understanding the habitability of planets,” Shim adds.

“Tau Ceti has been a popular destination for science fiction writers and everyone's imagination as somewhere there could possibly be life, but even though life around Tau Ceti may be unlikely, it should not be seen as a letdown, but should invigorate our minds to consider what exotic planets likely orbit the star, and the new and unusual planets that may exist in this vast universe,” says Pagano.

This work was supported by funding from the NASA Astrobiology Institute and NASA Nexus for Exoplanet System Science.


Written by Nikki Cassis


Wednesday, April 22, 2015

First Exoplanet Visible Light Spectrum

Artist’s impression of the exoplanet 51 Pegasi b

The star 51 Pegasi in the constellation of Pegasus

Wide-field view of the sky around the star 51 Pegasi


# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #


Videos

Zooming in on 51 Pegasi
Zooming in on 51 Pegasi

Artist’s impression of the exoplanet 51 Pegasi b
Artist’s impression of the exoplanet 51 Pegasi b



New technique paints promising picture for future

Astronomers using the HARPS planet-hunting machine at ESO’s La Silla Observatory in Chile have made the first-ever direct detection of the spectrum of visible light reflected off an exoplanet. These observations also revealed new properties of this famous object, the first exoplanet ever discovered around a normal star: 51 Pegasi b. The result promises an exciting future for this technique, particularly with the advent of next generation instruments, such as ESPRESSO, on the VLT, and future telescopes, such as the E-ELT.

The exoplanet 51 Pegasi b [1] lies some 50 light-years from Earth in the constellation of Pegasus. It was discovered in 1995 and will forever be remembered as the first confirmed exoplanet to be found orbiting an ordinary star like the Sun [2]. It is also regarded as the archetypal hot Jupiter — a class of planets now known to be relatively commonplace, which are similar in size and mass to Jupiter, but orbit much closer to their parent stars.

Since that landmark discovery, more than 1900 exoplanets in 1200 planetary systems have been confirmed, but, in the year of the twentieth anniversary of its discovery, 51 Pegasi b returns to the ring once more to provide another advance in exoplanet studies.

The team that made this new detection was led by Jorge Martins from the Instituto de Astrofísica e Ciências do Espaço (IA) and the Universidade do Porto, Portugal, who is currently a PhD student at ESO in Chile. They used the HARPS instrument on the ESO 3.6-metre telescope at the La Silla Observatory in Chile.

Currently, the most widely used method to examine an exoplanet’s atmosphere is to observe the host star’s spectrum as it is filtered through the planet’s atmosphere during transit — a technique known as transmission spectroscopy. An alternative approach is to observe the system when the star passes in front of the planet, which primarily provides information about the exoplanet’s temperature.

The new technique does not depend on finding a planetary transit, and so can potentially be used to study many more exoplanets. It allows the planetary spectrum to be directly detected in visible light, which means that different characteristics of the planet that are inaccessible to other techniques can be inferred.

The host star’s spectrum is used as a template to guide a search for a similar signature of light that is expected to be reflected off the planet as it describes its orbit. This is an exceedingly difficult task as planets are incredibly dim in comparison to their dazzling parent stars.

The signal from the planet is also easily swamped by other tiny effects and sources of noise [3]. In the face of such adversity, the success of the technique when applied to the HARPS data collected on 51 Pegasi b provides an extremely valuable proof of concept.

Jorge Martins explains: “This type of detection technique is of great scientific importance, as it allows us to measure the planet’s real mass and orbital inclination, which is essential to more fully understand the system. It also allows us to estimate the planet’s reflectivity, or albedo, which can be used to infer the composition of both the planet’s surface and atmosphere.”

51 Pegasi b was found to have a mass about half that of Jupiter’s and an orbit with an inclination of about nine degrees to the direction to the Earth [4]. The planet also seems to be larger than Jupiter in diameter and to be highly reflective. These are typical properties for a hot Jupiter that is very close to its parent star and exposed to intense starlight.

HARPS was essential to the team’s work, but the fact that the result was obtained using the ESO 3.6-metre telescope, which has a limited range of application with this technique, is exciting news for astronomers. Existing equipment like this will be surpassed by much more advanced instruments on larger telescopes, such as ESO’s Very Large Telescope and the future European Extremely Large Telescope [5].

"We are now eagerly awaiting first light of the ESPRESSO spectrograph on the VLT so that we can do more detailed studies of this and other planetary systems,” concludes Nuno Santos, of the IA and Universidade do Porto, who is a co-author of the new paper.

 
Notes

[1] Both 51 Pegasi b and its host star 51 Pegasi are among the objects available for public naming in the IAU’s NameExoWorlds contest.

[2] Two earlier planetary objects were detected orbiting in the extreme environment of a pulsar.

[3] The challenge is similar to trying to study the faint glimmer reflected off a tiny insect flying around a distant and brilliant light.

[4] This means that the planet’s orbit is close to being edge on as seen from Earth, although this is not close enough for transits to take place.

[5] ESPRESSO on the VLT, and later even more powerful instruments on much larger telescopes such as the E-ELT, will allow for a significant increase in precision and collecting power, aiding the detection of smaller exoplanets, while providing an increase in detail in the data for planets similar to 51 Pegasi b.


More Information

This research was presented in a paper “Evidence for a spectroscopic direct detection of reflected light from 51 Peg b”, by J. Martins et al., to appear in the journal Astronomy & Astrophysics on 22 April 2015.

The team is composed of J. H. C. Martins (IA and Universidade do Porto, Porto, Portugal; ESO, Santiago, Chile), N. C. Santos (IA and Universidade do Porto), P. Figueira (IA and Universidade do Porto), J. P. Faria (IA and Universidade do Porto), M. Montalto (IA and Universidade do Porto), I. Boisse (Aix Marseille Université, Marseille, France), D. Ehrenreich (Observatoire de Genève, Geneva, Switzerland), C. Lovis (Observatoire de Genève), M. Mayor (Observatoire de Genève), C. Melo (ESO, Santiago, Chile), F. Pepe (Observatoire de Genève), S. G. Sousa (IA and Universidade do Porto), S. Udry (Observatoire de Genève) and D. Cunha (IA and Universidade do Porto).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


Links
 
Contacts

Jorge Martins
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +56 2 2463 3087
Email:
Jorge.Martins@iastro.pt

Nuno Santos
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +351 226 089 893
Email:
Nuno.Santos@iastro.pt

Stéphane Udry
Observatoire de l’Université de Genève
Geneva, Switzerland
Tel: +41 22 379 24 67
Email:
stephane.udry@unige.ch

Isabelle Boisse
Aix Marseille Université
Marseille, France
Email:
Isabelle.Boisse@lam.fr

Richard Hook
ESO Public Information Officer
Garching, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email:
rhook@eso.org

Source:ESO

Extragalactic peculiarity

Credit: ESA/Hubble & NASA


This galaxy goes by the name of ESO 162-17 and is located about 40 million light-years away in the constellation of Carina. At first glance this image seems like a fairly standard picture of a galaxy with dark patches of dust and bright patches of young, blue stars. However, a closer look reveals several peculiar features.

Firstly, ESO 162-17 is what is known as a peculiar galaxy — a galaxy that has gone through interactions with its cosmic neighbours, resulting in an unusual amount of dust and gas, an irregular shape, or a strange composition.

Secondly, on 23 February 2010 astronomers observed the supernova known as SN 2010ae nestled within this galaxy. The supernova belongs to a recently discovered class of supernovae called Type Iax supernovae. This class of objects is related to the better known Type-Ia supernovae.

Type Ia supernovae result when a white dwarf accumulates enough mass either from a companion or, rarely, through collision with another white dwarf, to initiate a catastrophic collapse followed by a spectacular explosion as a supernova.  Type Iax supernovae also involve a white dwarf as the central star, but in this case it may survive the event. Type Iax supernovae are much fainter and rarer than Type Ia supernovae, and their exact mechanism is still a matter of open debate.

The rather beautiful four-pointed shape of foreground stars distributed around ESO 162-17 also draws the eye. This is an optical effect introduced as the incoming light is diffracted by the four struts that support the Hubble Space Telescope’s small secondary mirror.


Source: ESA/HUBBLE - Space Telescope

Tuesday, April 21, 2015

NASA’s NExSS Coalition to Lead Search for Life on Distant Worlds

The search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA's NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right). Credits: NASA


NASA is bringing together experts spanning a variety of scientific fields for an unprecedented initiative dedicated to the search for life on planets outside our solar system.  

The Nexus for Exoplanet System Science, or “NExSS”, hopes to better understand the various components of an exoplanet, as well as how the planet stars and neighbor planets interact to support life.

“This interdisciplinary endeavor connects top research teams and provides a synthesized approach in the search for planets with the greatest potential for signs of life,” says Jim Green, NASA’s Director of Planetary Science. “The hunt for exoplanets is not only a priority for astronomers, it’s of keen interest to planetary and climate scientists as well.”

The study of exoplanets – planets around other stars – is a relatively new field. The discovery of the first exoplanet around a star like our sun was made in 1995. Since the launch of NASA’s Kepler space telescope six years ago, more than 1,000 exoplanets have been found, with thousands of additional candidates waiting to be confirmed. Scientists are developing ways to confirm the habitability of these worlds and search for biosignatures, or signs of life.

The key to this effort is understanding how biology interacts with the atmosphere, geology, oceans, and interior of a planet, and how these interactions are affected by the host star. This “system science” approach will help scientists better understand how to look for life on exoplanets.

NExSS will tap into the collective expertise from each of the science communities supported by NASA’s Science Mission Directorate:
  • Earth scientists develop a systems science approach by studying our home planet.
  • Planetary scientists apply systems science to a wide variety of worlds within our solar system.
  • Heliophysicists add another layer to this systems science approach, looking in detail at how the Sun interacts with orbiting planets.
  • Astrophysicists provide data on the exoplanets and host stars for the application of this systems science framework.
NExSS will bring together these prominent research communities in an unprecedented collaboration, to share their perspectives, research results, and approaches in the pursuit of one of humanity’s deepest questions: Are we alone?

The team will help classify the diversity of worlds being discovered, understand the potential habitability of these worlds, and develop tools and technologies needed in the search for life beyond Earth.

Dr. Paul Hertz, Director of the Astrophysics Division at NASA notes, “NExSS scientists will not only apply a systems science approach to existing exoplanet data, their work will provide a foundation for interpreting observations of exoplanets from future exoplanet missions such as TESS, JWST, and WFIRST.” The Transiting Exoplanet Survey Satellite (TESS) is working toward a 2017 launch, with the James Webb Space Telescope (JWST) scheduled for launch in 2018. The Wide-field Infrared Survey Telescope is currently being studied by NASA for a launch in the 2020’s.

NExSS will be led by Natalie Batalha of NASA’s Ames Research Center, Dawn Gelino with NExScI, the NASA Exoplanet Science Institute, and Anthony del Genio of NASA’s Goddard Institute for Space Studies. The NExSS project will also include team members from 10 different universities and two research institutes. These teams were selected from proposals submitted across NASA’s Science Mission Directorate.

The Berkeley/Stanford University team is led by James Graham. This "Exoplanets Unveiled" group will focus on this question: “What are the properties of exoplanetary systems, particularly as they relate to their formation, evolution, and potential to harbor life?”

Daniel Apai leads the “Earths in Other Solar Systems” team from the University of Arizona. The EOS team will combine astronomical observations of exoplanets and forming planetary systems with powerful computer simulations and cutting-edge microscopic studies of meteorites from the early solar system to understand how Earth-like planets form and how biocritical ingredients  — C, H, N, O-containing molecules — are delivered to these worlds.


The Arizona State University team will take a similar approach. Led by Steven Desch, this research group will place planetary habitability in a chemical context, with the goal of producing a “periodic table of planets”. Additionally, the outputs from this team will be critical inputs to other teams modeling the atmospheres of other worlds.

Researchers from Hampton University will be exploring the sources and sinks for volatiles on habitable worlds. The “Living, Breathing Planet Team," led by William B. Moore, will study how the loss of hydrogen and other atmospheric compounds to space has profoundly changed the chemistry and surface conditions of planets in the solar system and beyond. This research will help determine the past and present habitability of Mars and even Venus, and will form the basis for identifying habitable and eventually living planets around other stars.


The team centered at NASA’s Goddard Institute for Space Studies will investigate habitability on a more local scale. Led by Tony Del Genio, it will examine the habitability of solar system rocky planets through time, and will use that foundation to inform the detection and characterization of habitable exoplanets in the future.


The NASA Astrobiology Institute's Virtual Planetary Laboratory, based at the University of Washington, was founded in 2001 and is a heritage team of the NExSS network. This research group, led by Dr. Victoria Meadows, will combine expertise from Earth observations, Earth system science, planetary science, and astronomy to explore factors likely to affect the habitability of exoplanets, as well as the remote detectability of global signs of habitability and life.

Five additional teams were chosen from the Planetary Science Division portion of the Exoplanets Research Program (ExRP).  Each brings a unique combination of expertise to understand the fundamental origins of exoplanetary systems, through laboratory, observational, and modeling studies.

A group led by Neal Turner at NASA’s Jet Propulsion Laboratory, California Institute of Technology, will work to understand why so many exoplanets orbit close to their stars. Were they born where we find them, or did they form farther out and spiral inward? The team will investigate how the gas and dust close to young stars interact with planets, using computer modeling to go beyond what can be imaged with today's telescopes on the ground and in space. 

A team at the University of Wyoming, headed by Hannah Jang-Condell, will explore the evolution of planet formation, modeling disks around young stars that are in the process of forming their planets. Of particular interest are “transitional” disks, which are protostellar disks that appear to have inner holes or regions partially cleared of gas and dust. These inner holes may be caused in part by planets inside or near the holes.

A Penn State University team, led by Eric Ford, will strive to further understand planetary formation by investigating the bulk properties of small transiting planets and implications for their formation.  
A second Penn State group, with Jason Wright as principal investigator, will study the atmospheres of giant planets that are transiting hot Jupiters with a novel, high-precision technique called diffuser-assisted photometry. This research aims to enable more detailed characterization of the temperatures, pressures, composition, and variability of exoplanet atmospheres.


The University of Maryland and NASA’s Goddard Space Flight Center team, with Wade Henning at the helm, will study tidal dynamics and orbital evolution of terrestrial class exoplanets. This effort will explore how intense tidal heating, such as the temporary creation of magma oceans, can actually save Earth-sized planets from being ejected during the orbital chaos of early solar systems.

Another University of Maryland project, led by Drake Deming, will leverage a statistical analysis of Kepler data to extract the maximum amount of information concerning the atmospheres of Kepler's planets.

The group led by Hiroshi Imanaka from the SETI Institute will be conducting laboratory investigation of plausible photochemical haze particles in hot, exoplanetary atmospheres.  

The Yale University team, headed by Debra Fischer, will design new spectrometers with the stability to reach Earth-detecting precision for nearby stars. The team will also make improvements to Planet Hunters, www.planethunters.org, a web interface that allows citizen scientists to search for transiting planets in the NASA Kepler public archive data. Citizen scientists have found more than 100 planets not previously detected; many of these planets are in the habitable zones of host stars.

A group led by Adam Jensen at the University of Nebraska-Kearney will explore the existence and evolution of exospheres around exoplanets, the outer, ‘unbound’ portion of a planet's atmosphere. This team previously made the first visible light detection of hydrogen absorption from an exoplanet's exosphere, indicating a source of hot, excited hydrogen around the planet. The existence of such hydrogen can potentially tell us about the long-term evolution of a planet's atmosphere, including the effects and interactions of stellar winds and planetary magnetic fields. 

From the University of California, Santa Cruz, Jonathan Fortney’s team will investigate how novel statistical methods can be used to extract information from light which is emitted and reflected by planetary atmospheres, in order to understand their atmospheric temperatures and the abundance of molecules.


Editor: Sarah Loff

A Cold Cosmic Mystery Solved: Astronomers discover what might be the largest known structure in the universe that leaves its imprint on cosmic microwave background radiation

The Cold Spot area resides in the constellation Eridanus in the southern galactic hemisphere. The insets show the environment of this anomalous patch of the sky as mapped by Szapudi’s team using PS1 and WISE data and as observed in the cosmic microwave background temperature data taken by the Planck satellite. The angular diameter of the vast supervoid aligned with the Cold Spot, which exceeds 30 degrees, is marked by the white circles. Graphics by Gergő Kránicz. Image credit: ESA Planck Collaboration. High-resolution version (6.6 Mb)


Synopsis: A very large cold spot that has been a mystery for over a decade can now be explained

In 2004, astronomers examining a map of the radiation leftover from the Big Bang (the cosmic microwave background, or CMB) discovered the Cold Spot, a larger-than-expected unusually cold area of the sky. The physics surrounding the Big Bang theory predicts warmer and cooler spots of various sizes in the infant universe, but a spot this large and this cold was unexpected.

Now, a team of astronomers led by Dr. István Szapudi of the Institute for Astronomy at the University of Hawaii at Manoa may have found an explanation for the existence of the Cold Spot, which Szapudi says may be “the largest individual structure ever identified by humanity.” 

If the Cold Spot originated from the Big Bang itself, it could be a rare sign of exotic physics that the standard cosmology (basically, the Big Bang theory and related physics) does not explain. If, however, it is caused by a foreground structure between us and the CMB, it would be a sign that there is an extremely rare large-scale structure in the mass distribution of the universe. 

Using data from Hawaii’s Pan-STARRS1 (PS1) telescope located on Haleakala, Maui, and NASA’s Wide Field Survey Explorer (WISE) satellite, Szapudi’s team discovered a large supervoid, a vast region 1.8 billion light-years across, in which the density of galaxies is much lower than usual in the known universe. This void was found by combining observations taken by PS1 at optical wavelengths with observations taken by WISE at infrared wavelengths to estimate the distance to and position of each galaxy in that part of the sky.

Earlier studies, also done in Hawaii, observed a much smaller area in the direction of the Cold Spot, but they could establish only that no very distant structure is in that part of the sky. Paradoxically, identifying nearby large structures is harder than finding distant ones, since we must map larger portions of the sky to see the closer structures. The large three-dimensional sky maps created from PS1 and WISE by Dr. András Kovács (Eötvös Loránd University, Budapest, Hungary) were thus essential for this study. The supervoid is only about 3 billion light-years away from us, a relatively short distance in the cosmic scheme of things.

Imagine there is a huge void with very little matter between you (the observer) and the CMB. Now think of the void as a hill. As the light enters the void, it must climb this hill. If the universe were not undergoing accelerating expansion, then the void would not evolve significantly, and light would descend the hill and regain the energy it lost as it exits the void. But with the accelerating expansion, the hill is measurably stretched as the light is traveling over it. By the time the light descends the hill, the hill has gotten flatter than when the light entered, so the light cannot pick up all the energy it lost upon entering the void. The light exits the void with less energy, and therefore at a longer wavelength, which corresponds to a colder temperature.

Getting through a supervoid can take millions of years, even at the speed of light, so this measurable effect, known as the Integrated Sachs-Wolfe (ISW) effect, might provide the first explanation one of the most significant anomalies found to date in the CMB, first by a NASA satellite called the Wilkinson Microwave Anisotropy Probe (WMAP), and more recently, by Planck, a satellite launched by the European Space Agency.

While the existence of the supervoid and its expected effect on the CMB do not fully explain the Cold Spot, it is very unlikely that the supervoid and the Cold Spot at the same location are a coincidence. The team will continue its work using improved data from PS1 and from the Dark Energy Survey being conducted with a telescope in Chile to study the Cold Spot and supervoid, as well as another large void located near the constellation Draco. 

The study is being published online on April 20 in Monthly Notices of the Royal Astronomical Society by the Oxford University Press. In addition to Szapudi and Kovács, researchers who contributed to this study include UH Manoa alumnus Benjamin Granett (now at the National Institute for Astrophysics, Italy), Zsolt Frei (Eötvös Loránd), and Joseph Silk (Johns Hopkins).

Contacts:

Dr. István Szapudi
+1 808 956-6196

szapudi@ifa.hawaii.edu
 
Dr. András Kovács
+34 93 176 3966

akovacs@ifae.es

Dr. Roy Gal
+1 808-956-6235
cell: +1 301-728-8637

rgal@ifa.hawaii.edu


Ms. Louise Good
Media Contact
+1 808-381-2939
good@ifa.hawaii.edu



 Source:  Institute for Astronomy - University of Hawaii 


Note:

Founded in 1967, the Institute for Astronomy at the University of Hawaii at Manoa conducts research into galaxies, cosmology, stars, planets, and the sun. Its faculty and staff are also involved in astronomy education, deep space missions, and in the development and management of the observatories on Haleakala and Maunakea. The Institute operates facilities on the islands of Oahu, Maui, and Hawaii.


The Pan-STARRS1 Surveys (PS1) have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, and the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eötvös Loránd University (ELTE), and the Los Alamos National Laboratory.

Monday, April 20, 2015

Intense X-rays sculpt Thor’s neon-hued helmet

Intense X-rays sculpt Thor’s neon-hued helmet
Copyright: J.A. Toala & M.A. Guerrero (IAA-CSIC), Y.-H. Chu (UIUC/ASIAA), R.A. Gruendl (UIUC), S. Mazlin, J. Harvey, D. Verschatse & R. Gilbert (SSRO-South) and ESA. Hi-res JPG


This brightly coloured scene shows a giant cloud of glowing gas and dust known as NGC 2359. This is also dubbed the Thor’s Helmet nebula, due to the arching arms of gas stemming from the central bulge and curving towards the top left and right of the frame, creating a shape reminiscent of the Norse god’s winged helmet.

The neon colours in this image are not just beautiful, they also tell us about the nebula’s composition. The bright blue patches show X-ray emission, spotted by the EPIC cameras on ESA’s XMM-Newton space observatory, while the pale red and green regions trace the glow from ionised hydrogen and oxygen, as seen by the Stars and Shadows Remote Observatory South at the Cerro Tololo Inter-American Observatory.

The intense X-ray emission detected by XMM-Newton is emanating from a star at the centre of the nebula. This star, a Wolf-Rayet star named HD 56925, is old, massive and pushing out incredible amounts of material at a staggering pace: the star loses a mass equivalent to that of the Sun in less than 100 000 years, in the form of a wind moving faster than 1500 km/s.

Having such violent inhabitants has influenced NGC 2359’s messy shape. The nebula consists of a central bubble surrounded by a tangled web of gaseous filaments, thick channels of dark dust and bright outbursts, where material swept up by the stellar wind has collided with the surrounding gas and triggered rippling shock waves throughout the region.

The blue patches in this image highlight the nebula’s hottest regions: the central bubble and a blowout to its lower left. NGC 2359’s gas is thought to reach temperatures ranging from several million up to tens of millions of degrees. 
  
This image combines X-ray data collected in 2013 by XMM-Newton (blue) with optical observations from Cerro Tololo in Chile (green and red). North is to the left, west is up. It was first published in the XMM-Newton image gallery.

Source: ESA

NGC 6388: White Dwarf May Have Shredded Passing Planet

NGC 6388
Credit: X-ray: NASA/CXC/IASF Palermo/M.Del Santo et al; Optical: NASA/STScI


animation
Tour of NGC 6388


The destruction of a planet may sound like the stuff of science fiction, but a team of astronomers has found evidence that this may have happened in an ancient cluster of stars at the edge of the Milky Way galaxy.

Using several telescopes, including NASA's Chandra X-ray Observatory, researchers have found evidence that a white dwarf star - the dense core of a star like the Sun that has run out of nuclear fuel - may have ripped apart a planet as it came too close.

How could a white dwarf star, which is only about the size of the Earth, be responsible for such an extreme act? The answer is gravity. When a star reaches its white dwarf stage, nearly all of the material from the star is packed inside a radius one hundredth that of the original star. This means that, for close encounters, the gravitational pull of the star and the associated tides, caused by the difference in gravity's pull on the near and far side of the planet, are greatly enhanced. For example, the gravity at the surface of a white dwarf is over ten thousand times higher than the gravity at the surface of the Sun.

Researchers used the European Space Agency's INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) to discover a new X-ray source near the center of the globular cluster NGC 6388. Optical observations had hinted that an intermediate-mass black hole with mass equal to several hundred Suns or more resides at the center of NGC 6388. The X-ray detection by INTEGRAL then raised the intriguing possibility that the X-rays were produced by hot gas swirling towards an intermediate-mass black hole.

In a follow-up X-ray observation, Chandra's excellent X-ray vision enabled the astronomers to determine that the X-rays from NGC 6388 were not coming from the putative black hole at the center of the cluster, but instead from a location slightly off to one side. A new composite image shows NGC 6388 with X-rays detected by Chandra in pink and visible light from the Hubble Space Telescope in red, green, and blue, with many of the stars appearing to be orange or white. Overlapping X-ray sources and stars near the center of the cluster also causes the image to appear white.

With the central black hole ruled out as the potential X-ray source, the hunt continued for clues about the actual source in NGC 6388. The source was monitored with the X-ray telescope on board NASA's Swift Gamma Ray Burst mission for about 200 days after the discovery by INTEGRAL.

The source became dimmer during the period of Swift observations. The rate at which the X-ray brightness dropped agrees with theoretical models of a disruption of a planet by the gravitational tidal forces of a white dwarf. In these models, a planet is first pulled away from its parent star by the gravity of the dense concentration of stars in a globular cluster. When such a planet passes too close to a white dwarf, it can be torn apart by the intense tidal forces of the white dwarf. The planetary debris is then heated and glows in X-rays as it falls onto the white dwarf. The observed amount of X-rays emitted at different energies agrees with expectations for a tidal disruption event.

The researchers estimate that the destroyed planet would have contained about a third of the mass of Earth, while the white dwarf has about 1.4 times the Sun's mass.

While the case for the tidal disruption of a planet is not iron-clad, the argument for it was strengthened when astronomers used data from the multiple telescopes to help eliminate other possible explanations for the detected X-rays. For example, the source does not show some of the distinctive features of a binary containing a neutron star, such as pulsations or rapid X-ray bursts. Also, the source is much too faint in radio waves to be part of a binary system with a stellar-mass black hole.

A paper describing these results was published in an October 2014 issue of the Monthly Notices of the Royal Astronomical Society. The first author is Melania Del Santo of the National Institute for Astrophysics (INAF), IASF-Palermo, Italy, and the co-authors are Achille Nucita of the Universitá del Salento in Lecce, Italy; Giuseppe Lodato of the Universitá Degli Studi di Milano in Milan, Italy; Luigi Manni and Francesco De Paolis of the Universitá del Salento in Lecce, Italy; Jay Farihi of University College London in London, UK; Giovanni De Cesare of the National Institute for Astrophysics in IAPS-Rome, Italy and Alberto Segreto of the National Institute for Astrophysics (INAF), IASF-Palermo, Italy.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.


Fast Facts for NGC 6388: 

Release Date: April 16, 2015  
Scale Image: is 3 arcmin across (about 38 light years)  
Category: Normal Stars & Star Clusters 
Coordinates (J2000): RA 17h 36m 17.46s | Dec -44° 44' 08.34"  
Constellation: Scorpius
Observation Date: 2 pointings on 21 Apr 2005 and 29 Aug 2011  
Observation Time: 13 hours.  
Obs. ID: 5505, 12453  
Instrument: ACIS
References: Del Santo, M. et al, 2014, MNRAS, 444, 93; arXiv:1407.5081  
Color Code: X-ray (Pink); Optical (Red, Green, Blue)  
Distance Estimate: About 43,000 light years 


Sunday, April 19, 2015

NASA Awards Radiation Challenge Winners, Launches Next Round to Seek Ideas for Protecting Humans on the Journey to Mars

This illustration depicts our heliosphere, showing the approximate locations of Voyager 1 and Voyager 2 spacecraft. Galactic cosmic rays originate outside the heliosphere and stream in uniformly from all directions. Image Credit: NASA
NASA awarded $12,000 to five winners of a challenge to mitigate radiation exposure on deep space missions and launched a new follow-on challenge to identify innovative ways of protecting crews on the journey to Mars.

The follow-on challenge offers an award of up to $30,000 for design ideas to protect the crew on long-duration space missions. Anyone can participate in the challenge, which will be open Wednesday, April 29 through Monday, June 29, 2015.

"We are very impressed with the enthusiasm and sheer number of people from the public who showed interest in solving this very difficult problem for human space exploration,” said Steve Rader, deputy manager of the Center of Excellence for Collaborative Innovation. "We look forward to seeing what people will come up with in this next challenge to find the optimal configuration for these different protection approaches.”

Galactic cosmic rays (GCRs), high-energy radiation that originates outside the solar system are a major issue facing future space travelers venturing beyond low-Earth orbit. These charged particles permeate the universe and exposure to them is inevitable during space exploration. Because missions to Mars will require crews to remain beyond the protection of Earth’s magnetic field and atmosphere for approximately 500 days and potentially more than 1,000 days, learning how to protect human explorers from the effect of exposure to GCRs is a high priority.

While the five winners selected in the first challenge did not identify a solution that ultimately solves the problem of GCR risk to human crews, the first place idea did provide a novel approach to using and configuring known methods of protection to save substantial launch mass and lower launch costs over multiple missions. The other winning submissions all provided solid proposed configurations on known approaches and were supported with sound engineering and mathematics.

NASA received 136 submissions. The five selected winners are:
  • 1st place ($5,000): George Hitt, assistant professor of Physics and Nuclear Engineering at Khalifa University, United Arab Emirates, for his novel idea on reusing a shield that could be placed in a Mars Transfer Orbit.
  • 2nd Place ($3,000): Ian Gallon, retired researcher in electro-magnetics of Bridport, England, for his mathematical details on what it would take for an active radiation mitigation system to function well.
  • 3rd Place ($2,000): Olivier Loido, freelance engineer of Toulouse, France, for his concepts for a launch configuration and deploying an array of magnets.
  • 4th Place ($1,000 each): Markus Novak, recent graduate from Ohio State University of Dublin, Ohio, for his creation of safe areas through particle trajectory simulations, and Mikhail Petrichenkov of Russia for his concept of operations making use of NASA Storm Shelter work.
NASA’s goal is to identify key solutions that will reduce crew members’ total radiation dose from exposure to GCRs on long duration deep space missions by at least a factor of four.

In a continued effort to achieve that goal, the agency has developed a second challenge that asks the public for ideas on optimal configurations of active and passive solutions to provide crew members maximum protection. Active protection uses magnetic or electrostatic fields to deflect the harmful radiation, while passive protection uses material layering to shield the crew from the GCRs.

These challenges are managed by the Center of Excellence for Collaborative Innovation (CoECI). CoECI is a multi-center organization established at the request of the White House Office of Science and Technology Policy to advance NASA’s open innovation efforts and extend that expertise to other federal agencies.

CoECI is directly supported by the Human Health and Performance Directorate at NASA’s Johnson Space Center in Houston. The challenges are hosted on the NASA Innovation Pavilion through its contract with InnoCentive, Inc.

To participate in the challenge beginning April 29, visit: https://www.innocentive.com/pavilion/NASA
For additional information about the galactic cosmic ray challenges, visit: http://go.nasa.gov/1Es4AgJ


Stephanie Schierholz
Headquarters, Washington
202-358-1100

stephanie.schierholz@nasa.gov