Showing posts with label Barred Spiral Galaxies. Show all posts
Showing posts with label Barred Spiral Galaxies. Show all posts

Monday, June 02, 2025

Starry spectacle

A spiral galaxy seen directly on. It glows strongly at its centre and has a short horizontal bar. Two spiral arms extend from this bar, but they are broad and irregularly-shaped. They are filled with tiny blue dots - stars - and glowing pink clouds - star-forming nebulae. The arms break apart into many strands at the edge of the disc. Beyond this is a dark background.

A galaxy ablaze with young stars is the subject of today’s NASA/ESA Hubble Space Telescope Picture of the Week. This galaxy is called NGC 685 and is situated about 64 million light-years away in the constellation Eridanus (The River). NGC 685 is classified as a barred spiral because its feathery spiral arms sprout from the ends of a bar of stars at the galaxy’s centre. The Milky Way is also a barred spiral, but our galaxy is a little less than twice the size of NGC 685.

Astronomers used Hubble to study NGC 685 for two observing programmes, both of which focus on star formation. It’s no surprise that NGC 685 was chosen for these programmes: numerous patches of young blue stars highlight the galaxy’s spiral arms. Many of these star clusters are cocooned in pink gas clouds, which are called H II (pronounced ‘H-two’) regions. An H II region is a gas cloud that glows for a short time when particularly hot and massive stars are born. An especially eye-catching H II region peeks out at the bottom edge of the image. Despite the dozens of star-forming regions evident in this image, NGC 685 converts an amount of gas equivalent to less than half the mass of the Sun into stars each year.

The Hubble data collected for the two observing programmes will allow astronomers to catalogue 50 000 H II regions and 100 000 star clusters in nearby galaxies. By combining Hubble’s sensitive visible and ultraviolet observations with infrared data from the NASA/ESA/CSA James Webb Space Telescope and radio data from the Atacama Large Millimeter/submillimeter Array, researchers will peer into the depths of dusty stellar nurseries and illuminate the stars forming there.



Saturday, May 08, 2021

A Barred Galaxy’s Massive Molecular Inflow


The barred spiral galaxy NGC1300 as seen by Hubble.  Astronomers think that galactic bars help funnel material into the nuclear regions of galaxies where they help trigger star formation and feed the supermassive black hole.  The nuclear region is heavily obscured in the optical, but infrared and submillimeter wavelengths can penetrate the dust.  Analyses of new infrared spectra of water vapor and other gases have now confirmed and quantified these processes in the barred spiral ESO320-G030.NASA, ESA, and the Hubble Heritage Team; STScI/AURA

Large amounts of gas are sometimes funneled to a galaxy's nuclear regions, with profound consequences. The gas triggers starburst activity and can also feed the supermassive black hole, converting it into an active galactic nucleus (AGN); indeed the supermassive black holes in AGN are thought to gain most of their mass in these accretion events. Eventually, outward pressure from supernovae, shocks, and/or AGN activity terminate the inflow. Galaxy mergers are thought to be one mechanism capable of triggering these massive inflows by disrupting the medium. A less dramatic cause may result from gas flows induced by a combination of galactic rotation and the gravitational instabilities generated by galactic bars, the elongated central structures (composed of stars) found in numerous spiral galaxies including the Milky Way.

What happens to infalling gas when it encounters a nuclear region is poorly understood because the very high obscuration around galactic nuclei makes optical observations challenging. Astronomers have therefore been relying on data from far-infrared and submillimeter wavelength observations which can penetrate the dust, although longer wavelength imaging typically lacks the high spatial resolution needed. Infrared spectroscopy has been one of the premier ways to overcome both difficulties because the radiation not only penetrates the dust, the strengths and shapes of spectral lines can be modeled to infer even small dimensions as well as temperatures, densities, and other characteristics of the emitting regions.

CfA astronomers Eduardo Gonzalez-Alfonso, Matt Ashby, and Howard Smith led a team that modeled infrared spectra of water vapor from the nuclear region of the ultraluminous galaxy ESO320-G030, about 160 million light-years away, a galaxy that emits about one hundred times as much energy as the Milky Way. The data were obtained with the Herschel Space Observatory and the ALMA submillimeter facility. This galaxy shows no signs of having been in a merger, nor does it show any signs of AGN activity, but it does have a clear and complex central bar structure and infalling gas that was previously discovered through infrared spectroscopy.

The astronomers observed and modeled twenty spectral features of water vapor, enough diagnostic lines to model the complexity of the emitting regions. The successful results required a three-component nuclear model: a warm envelope (about 50 kelvin) about 450 light-years in radius within which is a second component, a nuclear disk about 130 light-years in radius, and finally a much warmer compact core (100 kelvin) about 40 light-years in radius. These three components alone emit nearly 70% of the galaxy’s luminosity from a starburst that is making about 18 solar-masses of stars a year (the Milky Way averages about one per year). The mass inflow rate into the region is about the same as the star production – about 18 solar-masses per year. In addition to these conclusions about the nuclear region, the astronomers use their best-fit results to model successfully 17 other molecular species (besides water) seen in the far infrared spectra, including ionized molecules and carbon and nitrogen-bearing molecules. The combined results, in particular the extremely high abundance of ionized molecules, suggest the strong presence of enhanced ionizing cosmic rays and shed light on the chemistry of the complex nuclear zone.

Reference: 

"A Proto-Pseudobulge in ESO 320-G030 Fed by a Massive Molecular Inflow Driven by a Nuclear Bar," Eduardo González-Alfonso, Miguel Pereira-Santaella, Jacqueline Fischer, Santiago García-Burillo, Chentao Yang, Almudena Alonso-Herrero, Luis Colina, Matthew L. N. Ashby, Howard A. Smith, Fernando Rico-Villas, Jesús Martín-Pintado, Sara Cazzoli, and Kenneth P. Stewart, Astronomy & Astrophysics, 645, 49, 2021.

Source: Harvard-Smithsonian Center for Astrophysics (CfA)


Friday, September 04, 2020

A Tilted Wonder

NGC 2188
Credit: ESA/Hubble & NASA, R. TullyNGC 2188

The blue and orange stars of the faint galaxy named NGC 2188 sparkle in this image taken with the NASA/ESA Hubble Space Telescope. Although NGC 2188 appears at first glance to consist solely of a narrow band of stars, it is classified by astronomers as a barred-spiral galaxy. It appears this way from our viewpoint on Earth as the centre and spiral arms of the galaxy are tilted away from us, with only the very narrow outer edge of the galaxy’s disc visible to us. Astronomers liken this occurrence to turning a dinner plate in your hands so you see only its outer edge. The true shape of the galaxy was identified by studying the distribution of the stars in the inner central bulge and outer disc and by observing the stars’ colours.

NGC 2188 is estimated to be just half the size of our Milky Way, at 50 000 light-years across, and it is situated in the constellation of Columba (The Dove). Named in the late 1500s after Noah’s dove in biblical stories, the small constellation consists of many faint yet beautiful stars and astronomical objects.

Source: ESA/Hubble/News



Monday, June 15, 2020

New Method to Study Barred Spiral Galaxies

(Upper Left) The distribution of stars (psudocolor) and gas (contour lines) for two barred spiral galaxies in this study, NGC 2903 and NGC 4303. (Lower Left) The velocity of the gas in the galaxies. Blue indicates motion towards the viewer; red indicates motion away from the viewer. (Right) The Nobeyama 45-m Radio Telescope used for the COMING (CO Multi-line Imaging of Nearby Galaxies) survey.  Credit: Upper Left psudocolor images: 2MASS J-band, Jarrett et al. 2003, contour and Lower Left images: COMING project; Right: Dragan Salak.  Original size (1.2MB)

Analysis of gas motion in 20 nearby spiral galaxies has revealed a clear difference between those with bars and those without bars. This suggests that already available data on gas motion can be used to study bars in spiral galaxies, even in the absence of high-resolution imaging data.

In spiral galaxies, a large disk of stars and gas rotates around a central bulge. Spiral galaxies take their name from bright swirls (spiral arms) in the disk where stars are more densely concentrated. Many different types of spirals have been observed, including some with straight sections known as bars.

But a galactic disk is not a solid object. Different parts of the disk rotate at different speeds, similar to the clouds in a typhoon or soap suds spinning around a drain. In fact, the motion in a galactic disk isn’t limited to pure circular rotation, parts moving radially towards or away from the center can also be observed.

To better understand motion within the disk, a team led by Dragan Salak (at that time an assistant professor at Kwansei Gakuin University and now a postdoctoral researcher at the University of Tsukuba) analyzed the gas motion in the disks for a sample of 20 nearby spiral galaxies, including 7 barred-spirals. They found a clear difference between the kinematics of barred and non-barred galaxies. Non-barred spiral galaxies show very little radial motion at all locations. In contrast, barred spirals have on average 1.5-2 times more radial motion than non-barred spirals out to the end of the bar, but beyond the end of the bar the motion is close to circular. This result matches theoretical models where the bar structure helps to channel gas towards the center of the galaxy. The team found that the radius where the motion towards the center stops is closely related to the length of the bar, ranging between 0.8 to 1.6 times the length. This suggests that using the gas motion as a proxy for the bar could allow researchers to use modest-resolution, wide-field velocity data which are more easily available than high-resolution image data. For example, this study used the COMING survey of gas properties in nearby galaxies from the Nobeyama 45-m Radio Telescope in Japan.

Then by correlating the properties of the bar with the properties of the host galaxy, the team found that bars in more massive galaxies tend to be larger and rotate slower. This agrees with simulations where more massive galaxies provide more material for the bars to grow, but the mass of the galaxy exerts a torque which slows the rotation of the bar.

These results appeared as Salak et al. “CO Multi-line Imaging of Nearby Galaxies (COMING). VII. Fourier Decomposition of Molecular Gas Velocity Fields and Bar Pattern Speed” in December 2019 in Publications of the Astronomical Society of Japan Special Issue: Nobeyama 45 m Telescope: Legacy Projects and Receiver FOREST.

Related Links


Friday, January 24, 2020

Supermassive Influence

Credit: ESA/Hubble & NASA, A. Seth

This peculiar galaxy, beautifully streaked with tendrils of reddish dust, is captured here in wonderful detail by the NASA/ESA Hubble Space Telescope

The galaxy is known as NGC 1022, and is officially classified as a barred spiral galaxy. You can just about make out the bar of stars in the centre of the galaxy in this image, with swirling arms emerging from its ends. This bar is much less prominent than in some of the galaxy’s barred cousins and gives the galaxy a rather squat appearance; but the lanes of dust that swirl throughout its disc ensure it is no less beautiful. 

Hubble observed this image as part of a study into one of the Universe’s most notorious residents: black holes. These are fundamental components of galaxies, and are thought to lurk at the hearts of many — if not all — spirals. In fact, they may have quite a large influence over their cosmic homes. Studies suggest that the mass of the black hole sitting at a galaxy’s centre is linked with the larger-scale properties of the galaxy itself. However, in order to learn more, we need observational data of a wider and more diverse range of galaxies — something Hubble’s study aims to provide.




Friday, December 13, 2019

Galactic Diversity

Credit: ESA/Hubble & NASA, D. Rosario et al.

NGC 3175 is located around 50 million light-years away in the constellation of Antlia (The Air Pump). The galaxy can be seen slicing across the frame in this image from the NASA/ESA Hubble Space Telescope, with its mix of bright patches of glowing gas, dark lanes of dust, bright core, and whirling, pinwheeling arms coming together to paint a beautiful celestial scene.

The galaxy is the eponymous member of the NGC 3175 group, which has been called a nearby analogue for the Local Group. The Local Group contains our very own home galaxy, the Milky Way, and around 50 others — a mix of spiral, irregular, and dwarf galaxies. The NGC 3175 group contains a couple of large spiral galaxies — the subject of this image, and NGC 3137 — and numerous lower-mass spiral and satellite galaxies. Galaxy groups are some of the most common galactic gatherings in the cosmos, and they comprise 50 or so galaxies all bound together by

This image comprises observations from Hubble’s Wide Field Camera 3.




Friday, March 16, 2018

Spirals and supernovae

Credit: ESA/Hubble & NASA, A. Riess (STScl/JHU)


This stunning image from Hubble shows the majestic galaxy NGC 1015, found nestled within the constellation of Cetus (The Whale) 118 million light-years from Earth. In this image, we see NGC 1015 face-on, with its beautifully symmetrical swirling arms and bright central bulge creating a scene akin to a sparkling Catherine wheel firework.

NGC 1015 has a bright, fairly large centre and smooth, tightly wound spiral arms and a central “bar” of gas and stars. This shape leads NGC 1015 to be classified as a barred spiral galaxy — just like our home, the Milky Way. Bars are found in around two-thirds of all spiral galaxies, and the arms of this galaxy swirl outwards from a pale yellow ring encircling the bar itself. Scientists believe that any hungry black holes lurking at the centre of barred spirals funnel gas and energy from the outer arms into the core via these glowing bars, feeding the black hole, fueling star birth at the centre and building up the galaxy’s central bulge.

In 2009, a Type Ia supernova named SN 2009ig was spotted in NGC 1015 — one of the bright dots to the upper right of the galaxy’s centre. These types of supernovae are extremely important: they are all caused by exploding white dwarfs which have companion stars, and always peak at the same brightness — 5 billion times brighter than the Sun. Knowing the true brightness of these events, and comparing this with their apparent brightness, gives astronomers a unique chance to measure distances in the Universe.



Thursday, September 28, 2017

Bursting with Starbirth

Result of a galactic crash 
Credit: ESA/Hubble & NASA
Acknowledgements: D. Calzetti (UMass) and the LEGUS Team, J. Maund (University of Sheffield), and R. Chandar (University of Toledo)



Videos
 
Pan across NGC 4490
Pan across NGC 4490



This image, taken with the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 4490. The scattered and warped appearance of the galaxy are the result of a past cosmic collision with another galaxy, NGC 4485 (not visible in this image).

The extreme tidal forces of the interaction between the two galaxies have carved out the shapes and properties of NGC 4490. Once a barred spiral galaxy, the outlying regions of NGC 4490 have been stretched out, resulting in its nickname of the Cocoon Galaxy.



Friday, September 15, 2017

Starbursts in NGC 5398

Credit: ESA/Hubble & NASA


This NASA/ESA Hubble Space Telescope picture shows NGC 5398, a barred spiral galaxy located about 55 million light-years away

The galaxy is famous for containing an especially extensive HII region, a large cloud composed of ionised hydrogen (or HII, pronounced “H-two”, with H being the chemical symbol for hydrogen and the “II” indicating that the atoms have lost an electron to become ionised). NGC 5398’s cloud is named Tol 89 and sits at the lower left end of the galaxy’s central “bar” of stars, a structure that cuts through the galactic core and funnels material inwards to maintain the star formation occurring there.

Tol 86 is conspicuous in being the only large massive star forming complex in the entire galaxy, with an extension of roughly 5000 times 4000 light-years; it contains at least seven young and massive star clusters. The two brightest clumps within Tol 89, which astronomers have named simply “A” and “B”, appear to have undergone two bursts of star-forming activity — “starbursts” — roughly 4 million and less than 3 million years ago respectively. Tol 89-A is thought to contain a number of particularly bright and massive stars known as Wolf-Rayet stars, which are known for their high temperatures and extreme stellar winds.


Saturday, August 12, 2017

Small but significant

NGC 5949
Credit: ESA/Hubble & NASA


The subject of this NASA/ESA Hubble Space Telescope image is a dwarf galaxy named NGC 5949. Thanks to its proximity to Earth — it sits at a distance of around 44 million light-years from us, placing it within the Milky Way’s cosmic neighbourhood — NGC 5949 is a perfect target for astronomers to study dwarf galaxies.

With a mass of about a hundredth that of the Milky Way, NGC 5949 is a relatively bulky example of a dwarf galaxy. Its classification as a dwarf is due to its relatively small number of constituent stars, but the galaxy’s loosely-bound spiral arms also place it in the category of barred spirals. This structure is just visible in this image, which shows the galaxy as a bright yet ill-defined pinwheel. Despite its small proportions, NGC 5949’s proximity has meant that its light can be picked up by fairly small telescopes, something that facilitated its discovery by the astronomer William Herschel in 1801. 

Astronomers have run into several cosmological quandaries when it comes to dwarf galaxies like NGC 5949. For example, the distribution of dark matter within dwarfs is quite puzzling (the “cuspy halo” problem), and our simulations of the Universe predict that there should be many more dwarf galaxies than we see around us (the “missing satellites” problem).



Friday, July 28, 2017

Galactic David and Goliath

NGC 1512 and NGC 1510
 
Wide-field view of NGC 1510 and NGC 1512 (ground-based view)



Videos
 
Zooming onto the galaxies NGC 1512 and NGC 1510
Zooming onto the galaxies NGC 1512 and NGC 1510

Pan across NGC 1512 and NGC 1510
Pan across NGC 1512 and NGC 1510



The gravitational dance between two galaxies in our local neighbourhood has led to intriguing visual features in both as witnessed in this new NASA/ESA Hubble Space Telescope image. The tiny NGC 1510 and its colossal neighbour NGC 1512 are at the beginning of a lengthy merger, a crucial process in galaxy evolution. Despite its diminutive size, NGC 1510 has had a significant effect on NGC 1512’s structure and amount of star formation.

Galaxies come in a range of shapes and sizes, and astronomers use this fact to classify them based on their appearance. NGC 1512, the large galaxy to the left in this image, is classified as a barred spiral, named after the bar composed of stars, gas and dust slicing through its centre. The tiny NGC 1510 to the right, on the other hand, is a dwarf galaxy. Despite their very different sizes, each galaxy affects the other through gravity, causing slow changes in their appearances.

The bar in NGC 1512 acts as a cosmic funnel, channelling the raw materials required for star formation from the outer ring into the heart of the galaxy. This pipeline of gas and dust in NGC 1512 fuels intense star birth in the bright, blue, shimmering inner disc known as a circumnuclear starburst ring, which spans 2400 light-years.

Both the bar and the starburst ring are thought to be at least in part the result of the cosmic scuffle between the two galaxies — a merger that has been going on for 400 million years.

NGC 1512, which has been observed by Hubble in the past, is also home to a second, more serene, star-forming region in its outer ring. This ring is dotted with dozens of HII regions, where large swathes of hydrogen gas are subject to intense radiation from nearby, newly formed stars. This radiation causes the gas to glow and creates the bright knots of light seen throughout the ring.

Remarkably, NGC 1512 extends even further than we can see in this image — beyond the outer ring — displaying malformed, tendril-like spiral arms enveloping NGC 1510. These huge arms are thought to be warped by strong gravitational interactions with NGC 1510 and the accretion of material from it. But these interactions are not just affecting NGC 1512; they have also taken their toll on the smaller of the pair.

The constant tidal tugging from its neighbour has swirled up the gas and dust in NGC 1510 and kick-started star formation that is even more intense than in NGC 1512. This causes the galaxy to glow with the blue hue that is indicative of hot new stars.

NGC 1510 is not the only galaxy to have experienced the massive gravitational tidal forces of NGC 1512. Observations made in 2015 showed that the outer regions of the spiral arms of NGC 1512 were indeed once part of a separate, older galaxy. This galaxy was ripped apart and absorbed by NGC 1512, just as it is doing now to NGC 1510.

Together, the pair demonstrate how interactions between galaxies, even if they are of very different sizes, can have a significant influence on their structures, changing the dynamics of their constituent gas and dust and even triggering starbursts. Such interactions between galaxies, and galaxy mergers in particular, play a key role in galactic evolution.



Links



Contact

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email:
mjaeger@partner.eso.org


Saturday, July 15, 2017

Just like home

Credit: ESA/Hubble & NASA


Discovered by British astronomer William Herschel over 200 years ago, NGC 2500 lies about 30  million light-years away in the northern constellation of Lynx. As this NASA/ESA Hubble Space Telescope image shows, NGC 2500 is a particular kind of spiral galaxy known as a barred spiral, its wispy arms swirling out from a bright, elongated core.

Barred spirals are actually more common than was once thought. Around two-thirds of all spiral galaxies — including the Milky Way — exhibit these straight bars cutting through their centres. These cosmic structures act as glowing nurseries for newborn stars, and funnel material towards the active core of a galaxy. NGC 2500 is still actively forming new stars, although this process appears to be occurring very unevenly. The upper half of the galaxy — where the spiral arms are slightly better defined — hosts many more star-forming regions than the lower half, as indicated by the bright, dotted islands of light.

There is another similarity between NGC 2500 and our home galaxy. Together with Andromeda, Triangulum, and many smaller natural satellites, the Milky Way is part of the Local Group of galaxies, a gathering of over 50 galaxies all loosely held together by gravity. NGC 2500 forms a similar group with some of its nearby neighbours, including NGC 2541, NGC 2552, NGC 2537, and the bright, Andromeda-like spiral NGC 2481 (known collectively as the NGC 2841 group).



Thursday, July 06, 2017

Dazzling Spiral with an Active Heart

Dazzling galaxy Messier 77 

The active galaxy Messier 77 in the constellation of Cetus 
 
Wide-field image of the sky around Messier 77 



Videos
 
ESOcast 115 Light: Meet one of the most energetic objects in the Universe
ESOcast 115 Light: Meet one of the most energetic objects in the Universe

Zooming in on Messier 77
Zooming in on Messier 77

Panning across a new image of Messier 77
Panning across a new image of Messier 77




ESO’s Very Large Telescope (VLT) has captured a magnificent face-on view of the barred spiral galaxy Messier 77. The image does justice to the galaxy’s beauty, showcasing its glittering arms criss-crossed with dust lanes — but it fails to betray Messier 77’s turbulent nature.

This picturesque spiral galaxy appears to be tranquil, but there is more to it than meets the eye. Messier 77 (also known as NGC 1068) is one of the closest active galaxies, which are some of the most energetic and spectacular objects in the Universe. Their nuclei are often bright enough to outshine the whole of the rest of the galaxy. Active galaxies are among the brightest objects in the Universe and emit light at most, if not all, wavelengths, from gamma rays and X-rays all the way to microwaves and radiowaves. Messier 77 is further classified as a Type II Seyfert galaxy, characterised by being particularly bright at infrared wavelengths.

This impressive luminosity is caused by intense radiation blasting out from a central engine — the accretion disc surrounding a supermassive black hole. Material that falls towards the black hole is compressed and heated up to incredible temperatures, causing it to radiate a tremendous amount of energy. This accretion disc is thought to be enshrouded by thick doughnut-shaped structure of gas and dust, called a “torus”. Observations of Messier 77 back in 2003 were the first to resolve such a structure using the powerful VLT Interferometer (eso0319).

This image of Messier 77 was taken in four different wavelength bands represented by blue, red, violet and pink (hydrogen-alpha) colours. Each wavelength brings out a different quality: for example, the pinkish hydrogen-alpha highlights the hotter and younger stars forming in the spiral arms, while in red are the fine, thread-like filamentary structures in the gas surrounding Messier 77 [1]. A foreground Milky Way star is also seen beside the galaxy centre, displaying tell-tale diffraction spikes. Additionally, many more distant galaxies are visible; sitting at the outskirts of the spiral arms, they appear tiny and delicate compared to the colossal active galaxy .

Located 47 million light-years away in the constellation of Cetus (The Sea Monster), Messier 77 is one of the most remote galaxies of the Messier catalogue. Initially, Messier believed that the highly luminous object he saw through his telescope was a cluster of stars, but as technology progressed its true status as a galaxy was realised. At approximately 100 000 light-years across, Messier 77 is also one of largest galaxies in the Messier catalogue — so massive that its gravity causes other nearby galaxies to twist and become warped (eso1707) [2] .

This image was obtained using the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument mounted on Unit Telescope 1 (Antu) of the VLT, located at ESO’s Paranal Observatory in Chile. It hails from ESO’s Cosmic Gems programme, an outreach initiative that produces images of interesting, intriguing or visually attractive objects using ESO telescopes for the purposes of education and outreach.



Notes

[1] Similar red filaments are also found in NGC 1275. They are cool, despite being surrounded by a very hot gas at around 50 million degrees Celsius. The filaments are suspended in a magnetic field which maintains their structure and demonstrates how energy from the central black hole is transferred to the surrounding gas.

[2] NGC 1055 is located about 60 million light-years away. It is an edge-on galaxy, in contrast to Messier 77. This Astronomy Picture of the Day portrays both of them together, in a field of view about the size of the Moon (APOD).



More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Links



Contacts

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591


Source: ESO

Monday, July 03, 2017

Subaru Telescope's Prime Focus Camera Suprime-Cam Takes Its Final Data

Figure 1: Barred spiral galaxy NGC 7479 was Suprime-Cam's final target from Subaru Telescope. This color image is a composite of g', r', i', and NA656 band images. (Credit: NAOJ, Data processed by Dr. Ichi Tanaka)


Suprime-Cam, the wide-field imager mounted at the primary focus of the Subaru Telescope, had its final night of observation on May 29, 2017. The instrument's wide-field imaging capability – 200 times larger than that of Hubble Space Telescope – coupled with sensitive CCD detectors, Subaru's large mirror, and superb weather conditions on Maunakea, gave Suprime-Cam unique imaging power. Some scientists consider it to be the driving force of modern observational astronomy. Since its first observation in 1999, Suprime-Cam made countless discoveries, and has repeatedly broken a world record for the most distant galaxy ever observed.

Three groups of scientists came together for Suprime-Cam's final night of observation, and spotted asteroids, galaxies, and supermassive black holes. Before sunrise, the observers held a ceremony and celebrated the camera's contributions to astronomy.

At the remote observing room in the headquarters of the National Astronomical Observatory of Japan (NAOJ) in Mitaka, Tokyo, astronomers and engineers gathered to share the experience. One of them was Professor Sadanori Okamura from Hosei University, a key figure in the development of Suprime-Cam. Professor Okamura shared stories of the trials, tribulations, and triumphs, that contributed to the camera's successful journey. 

Suprime-Cam's final target was NGC 7479, a barred spiral galaxy about 100 million light-years away in the direction of the constellation Pegasus. Professor Okamura first observed this galaxy in 1970s at the Okayama Astrophysical Observatory in Japan for a morphological study. He built the basis for galaxy imaging observations in Japan, and his work was internationally recognized. He also advanced extragalactic astronomy by using wide-field imaging observations, and his research activities directly led to Suprime-Cam's development.

NGC 7479 had never been observed by the Subaru Telescope. The resulting image shows clear and detailed structures of a star-forming region that was not visible in 1970s photographic plates. This high-quality imaging data was the "Final Light" that Suprime-Cam captured, and it will create opportunities for even more study.

Figure 2: Observation team pointing the telescope to Suprime-Cam's final target: NGC 7479.
Credit: NAOJ

The Subaru Telescope was specially built to mount Suprime-Cam at its prime focus at the top of the telescope. That placement allows a wide field of view, an arrangement unique to the Subaru Telescope. The technological advancements and expertise that emerged from Suprime-Cam have been inherited by its successor, the Hyper Suprime-Cam (HSC).

With a field of view seven times larger than Suprime-Cam, HSC has been in operation for open use since March 2014. "HSC has already brought revolutionary results in various astronomical fields," said Professor Okamura, "and it is the world's most powerful wide field imaging camera. After Suprime-Cam, I expect HSC will pioneer new advances in observational astronomy."

Figure 3: Many people gathered at the remote observing room in Mitaka, Tokyo (left) and at the summit observing room on Maunakea (right) to watch the final observations made by Suprime-Cam on Subaru Telescope.



Wednesday, February 15, 2017

New Light on Dark Matter Halos

NGC 1300 is a classic barred spiral galaxy, similar to those observed in the present study. It is 17 Mpc away and relatively face-on, with an inclination of about 35 degrees. Shown here is a colour composition from B, V and I-band CCD images obtained using the Prime-Focus Camera on the Isaac Newton Telescope (INT) in 1996. Credit: J. A. López Aguerri, M. Prieto, C. Muñoz-Tuñón, and A. M. Varela (IAC). Large format: GIF


For the past twenty years observers have been trying to test the effects of the predicted dark matter halos on the bars in barred galaxies. The basic idea is that according to simulation models which include the halos, these should have acted as a gravitational brake and slowed down the rotation of the bars during the lifetimes of galaxy discs.

This could be tested by measuring the corotation radius corresponding to the bar, which is the radius at which the angular pattern speed of the bar is equal to the angular speed of the stars in the disc. Classical models as early as the 1980's showed that the corotation radius should be just outside the tip of the bar, while the simulations made just under 20 years ago suggested that the ratio of the corotation radius to the bar length should indeed be just bigger than unity, unless the bar has been slowed down by interaction with the halo.

In that case corotation would move progressively outwards in the disc. The simulators set a (somewhat arbitrary) criterion that if the ratio excedes 1.4 this is satisfactory evidence of braking by the halo, and this criterion has been used by observers as a test for the presence of halos.

The problem has been the difficulty of measuring the corotation radius. Until recently this had been done, by a few different methods, for only a few tens of galaxies, and the results were somewhat surprising. The ratio of corotation radius to bar length was, in almost all cases, below 1.4. The conclusion seemed to be that dark halos do not have the braking effect predicted.

However a group at the Instituto de Astrofísica de Canarias (IAC), including Joan Font and John Beckman, devised a new method for corotation, using data from high resolution two-dimensional spectra taken with Fabry-Perot spectrographs, the most accurate among them GHaFaS on the William Herschel Telescope (WHT). They previously published corotation measurements on over 100 galaxies, and then applied their measurements to find the corotation-bar length ratios, using Spitzer satellite infrared images for the bar lengths, to avoid problems of dust absorption.

In their results, they found ratios in the range 1 to 1.4, but that was not all. They also computed the ratio of the bar angular rotation velocity to those of the discs, and showed that many bars, notably long, massive bars, have small values for this ratio, suggesting that braking must have occurred

Puzzled by this, they asked themselves how these two opposite conclusions could be reconciled, and the only answer seemed to be that the bars, as well as slowing down, must be growing in length as the discs evolved, thus keeping the ratio of corotation radius to bar length below 1.4. They enlisted the help of Inma Martínez, a theorist at the IAC, who simulates bar evolution in galaxies, and she showed in her simulations that this is indeed what tends to occur, and had not been well taken into account in previous work.

The results of two of the simulations. They show the development of the corotation radius and the bar length with time. The wiggles are due to the fact that bars develop buckling instabilities which make their growth uneven. The green areas are those where the bar length would be called "fast" in previous studies. Although the corotation radius increases with time, in these simulations the bar length increases faster, so that at the end of the simulation, in both cases the bar would have been classfied as "fast" even though it has slowed down considerably. Large format: JPEG

The results of their joint study were published in the February 1st issue of the Astrophysical Journal. The overall conclusion is that dark matter halos are no longer threatened by observations of rotating bars.


More information:

"New evidence in favour of dark matter: the bars in galaxies are spinning more slowly than we thought", IAC press release, 7th February 2017.

J. Font, J. E. Beckman, I. Martínez-Valpuesta, A. S. Borlaff, P. A. James, S. Díaz-García, B. García-Lorenzo, A. Camps-Fariña, L. Gutiérrez, and P. Amram, 2017, "Kinematic Clues to Bar Evolution for Galaxies in the Local Universe: Why the Fastest Rotating Bars are Rotating Most Slowly", ApJ, 835, 279 [ Paper ].

GHaFaS web site.

Contact:

Javier Méndez
(Public Relations Officer)


Friday, February 10, 2017

A spiral in Andromeda A spiral in Andromeda

Credit: ESA/Hubble & NASA


Not to be confused with our neighbouring Andromeda Galaxy, the Andromeda constellation is one of the 88 modern constellations. More importantly for this image, it is home to the pictured NGC 7640.

Many different classifications are used to identify galaxies by shape and structure — NGC 7640 is a barred spiral type. These are recognisable by their spiral arms, which fan out not from a circular core, but from an elongated bar cutting through the galaxy’s centre. Our home galaxy, the Milky Way, is also a barred spiral galaxy. NGC 7640 might not look much like a spiral in this image, but this is due to the orientation of the galaxy with respect to Earth — or to Hubble, which acted as photographer in this case! We often do not see galaxies face on, which can make features such as spiral arms less obvious. 

There is evidence that NGC 7640 has experienced some kind of interaction in its past. Galaxies contain vast amounts of mass, and therefore affect one another via gravity. Sometimes these interactions can be mild, and sometimes hugely dramatic, with two or more colliding and merging into a new, bigger galaxy. Understanding the history of a galaxy, and what interactions it has experienced, helps astronomers to improve their understanding of how galaxies — and the stars within them — form.

Source: ESA/ News

Friday, December 16, 2016

A closer look at IC 5201

Credit: ESA/Hubble & NASA


In 1900, astronomer Joseph Lunt made a discovery: Peering through a telescope at Cape Town Observatory, the British–South African scientist spotted this beautiful sight in the southern constellation of Grus (The Crane): a barred spiral galaxy now named IC 5201.

Over a century later, the galaxy is still of interest to astronomers. For this image, the NASA/ESA Hubble Space Telescope used its Advanced Camera for Surveys (ACS) to produce a beautiful and intricate image of the galaxy. Hubble’s ACS can resolve individual stars within other galaxies, making it an invaluable tool to explore how various populations of stars have sprung to life, evolved, and died throughout the cosmos.

IC 5201 sits over 40 million light-years away from us. As with two thirds of all the spirals we see in the Universe — including the Milky Way, the galaxy has a bar of stars slicing through its centre.


Friday, May 06, 2016

Hubble spies NGC 4394

 Credit: ESA/Hubble & NASA
Acknowledgement: Judy Schmidt (
Geckzilla)


Discovered in 1784 by the German–British astronomer William Herschel, NGC 4394 is a barred spiral galaxy situated about 55 million light-years from Earth. The galaxy lies in the constellation of Coma Berenices (Berenice's Hair), and is considered to be a member of the Virgo Cluster.

NGC 4394 is the archetypal barred spiral galaxy, with bright spiral arms emerging from the ends of a bar that cuts through the galaxy’s central bulge. These arms are peppered with young blue stars, dark filaments of cosmic dust, and bright, fuzzy regions of active star formation. At the centre of NGC 4394 lies a region of ionised gas known as a LINER. LINERs are active regions that display a characteristic set of emission lines in their spectra— mostly weakly ionised atoms of oxygen, nitrogen and sulphur.

Although LINER galaxies are relatively common, it’s still unclear where the energy comes from to ionise the gas. In most cases it is thought to be the influence of a black hole at the centre of the galaxy, but it could also be the result of a high level of star formation. In the case of NGC 4394, it is likely that gravitational interaction with a nearby neighbour has caused gas to flow into the galaxy’s central region, providing a new reservoir of material to fuel the black hole or to make new stars.


Wednesday, April 13, 2016

Inside the Fiery Furnace

VST image of the Fornax Galaxy Cluster

PR Image eso1612b
Finding Chart for the Fornax Galaxy Cluster

PR Image eso1612c
The location of the Fornax Galaxy Cluster

PR Image eso1612d
Wide-field view of the Fornax Galaxy Cluster



Videos
 
Zooming in on the Fornax Galaxy cluster
Zooming in on the Fornax Galaxy cluster

VST image of the Fornax Galaxy Cluster
VST image of the Fornax Galaxy Cluster





VLT Survey Telescope Captures the Fornax Cluster


This new image from the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile captures a spectacular concentration of galaxies known as the Fornax Cluster, which can be found in the southern hemisphere constellation of Fornax (The Furnace). The cluster plays host to a menagerie of galaxies of all shapes and sizes, some of which are hiding secrets.

Galaxies, it seems, are sociable animals and they like to gather together in large groups, known as clusters. Actually it’s gravity that holds the galaxies in the cluster close together as a single entity, with the pull of gravity arising from large amounts of dark matter, as well as from the galaxies we can see. Clusters can contain anything between about 100 and 1000 galaxies and can be between about 5 and 30 million light-years across.

Galaxy clusters do not come in neatly defined shapes so it is difficult to determine exactly where they begin and end. However, astronomers have estimated that the centre of the Fornax Cluster is in the region of 65 million light-years from Earth. What is more accurately known is that it contains nearly sixty large galaxies, and a similar number of smaller dwarf galaxies. Galaxy clusters like this one are commonplace in the Universe and illustrate the powerful influence of gravity over large distances as it draws together the enormous masses of individual galaxies into one region.

At the centre of this particular cluster, in the middle of the three bright fuzzy blobs on the left side of the image, is what is known as a cD galaxy — a galactic cannibal. cD galaxies like this one, called NGC 1399, look similar to elliptical galaxies but are bigger and have extended, faint envelopes [1]. This is because they have grown by swallowing smaller galaxies drawn by gravity towards the centre of the cluster [2].

Indeed, there is evidence that this process is happening before our eyes — if you look closely enough. Recent work by a team of astronomers led by Enrichetta Iodice (INAF – Osservatorio di Capodimonte, Naples, Italy)  [3], using data from ESO’s VST, has revealed a very faint bridge of light between NGC 1399 and the smaller galaxy NGC 1387 to its right. This bridge, which has not been seen before (and is too faint to show up in this picture), is somewhat bluer than either galaxy, indicating that it consists of stars created in gas that was drawn away from NGC 1387 by the gravitational pull of NGC 1399. Despite there being little evidence for ongoing interactions in the Fornax Cluster overall, it seems that NGC 1399 at least is still feeding on its neighbours.

Towards the bottom right of this image is the large barred spiral galaxy NGC 1365. This is a striking example of its type, the prominent bar passing through the central core of the galaxy, and the spiral arms emerging from the ends of the bar. In keeping with the nature of cluster galaxies, there is more to NGC 1365 than meets the eye. It is classified as a Seyfert Galaxy, with a bright active galactic nucleus also containing a supermassive black hole at its centre.

This spectacular image was taken by the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile. At 2.6 metres in diameter, the VST is by no means a large telescope by today’s standards, but it has been designed specifically to conduct large-scale surveys of the sky. What sets it apart is its huge corrected field of view and 256-megapixel camera, called OmegaCAM, which was specially developed for surveying the sky. With this camera the VST can produce deep images of large areas of sky quickly, leaving the really big telescopes — like ESO’s Very Large Telescope (VLT) — to explore the details of individual objects.




Notes

[1] The image captures only the central regions of the Fornax Cluster; it extends over a larger region of sky.

[2] The central galaxy is often the brightest galaxy in a cluster, but in this case the brightest galaxy, NGC 1316, is situated at the edge of the cluster, just outside the area covered by this image. Also known as Fornax A, it is one of the most powerful sources of radio waves in the sky. The radio waves, which can be seen by specialised telescopes sensitive to this kind of radiation, emanate from two enormous lobes extending far into space either side of the visible galaxy. The energy that powers the radio emission comes from a supermassive black hole lurking at the centre of the galaxy which is emitting two opposing jets of high-energy particles. These jets produce the radio waves when they plough into the rarefied gas which occupies the space between galaxies in the cluster.

[3] “The Fornax Deep Survey with VST. I. The extended and diffuse stellar halo of NGC1399 out to 192 kpc” by E. Iodice, M. Capaccioli , A. Grado , L. Limatola, M. Spavone, N.R. Napolitano, M. Paolillo, R. F. Peletier, M. Cantiello, T. Lisker, C. Wittmann, A. Venhola , M. Hilker , R. D’Abrusco, V. Pota, and P. Schipani has been published in the Astrophysical Journal.





More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.





Links



Contacts

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email:
rhook@eso.org


 Source: ESO