Showing posts with label Messier 77. Show all posts
Showing posts with label Messier 77. Show all posts

Tuesday, April 22, 2025

The squid and the whale

A close-up of a spiral galaxy, seen face-on. Its center glows brightly. From the sides of the galaxy’s core emerge spiral arms which wind through the round disc of the galaxy, filled with shining pink spots where stars are forming and more dark-red dust. Some faint stars can be seen around the galaxy, as well as a particularly bright star in the lower left of the image.

Today’s rather aquatic-themed NASA/ESA Hubble Space Telescope Picture of the Week features the spiral galaxy Messier 77, also known as the Squid Galaxy, which sits 45 million light-years away in the constellation Cetus (The Whale). Credit: ESA/Hubble & NASA, L. C. Ho, D. Thilker

The designation Messier 77 comes from the galaxy’s place in the famous catalogue compiled by the French astronomer Charles Messier. Another French astronomer, Pierre Méchain, discovered the galaxy in 1780. Both Messier and Méchain were comet hunters who catalogued nebulous objects that could be mistaken for comets.

Messier, Méchain, and other astronomers of their time mistook the Squid Galaxy for either a spiral nebula or a star cluster. This mischaracterisation isn’t surprising. More than a century would pass between the discovery of the Squid Galaxy and the realisation that the ‘spiral nebulae’ scattered across the sky were not part of our galaxy and were in fact separate galaxies millions of light-years away. The Squid Galaxy’s appearance through a small telescope — an intensely bright centre surrounded by a fuzzy cloud — closely resembles one or more stars wreathed in a nebula.
The name ‘Squid Galaxy’ only came about recently. This name comes from the extended, filamentary structure that curls around the galaxy’s disc like the tentacles of a squid. The Squid Galaxy is a great example of how advances in technology and scientific understanding can completely change our perception of an astronomical object — and even what we call it!

A Hubble image of the Squid Galaxy was previously released in 2013. This new version incorporates recent observations made with different filters and updated image processing techniques.

Links

Tuesday, January 28, 2025

Zooming in on a supermassive black hole in action

An image of the spiral galaxy NGC 1068 (Messier 77) obtained by the European Southern Observatory’s (ESO) Very Large Telescope (VLT). The galaxy has a distance of 14.4 Mpc (47 million light-years) and is one of the nearest galaxies with an active galactic nucleus. © ESO

A new type of observation reveals what makes the cores of active galaxies glow

Using the Large Binocular Telescope Interferometer, a team of astronomers led by scientists from the Max Planck Institute for Astronomy (MPIA) and the University of Arizona (UofA) has disentangled the sources of infrared radiation near the supermassive black hole at the centre of the galaxy NGC 1068. They discovered that the surrounding dusty wind is heated by the hot central accretion disk and shocks generated by a collimated gas jet. These findings and additional features support the unified model of active galactic nuclei, which explains their varying appearances.

Active galactic nuclei (AGN) are supermassive black holes at the centre of certain galaxies. When these black holes attract matter, a quickly rotating disk of hot gas forms, releasing enormous amounts of energy before plunging into the black hole. Such AGN belong to the most energetic phenomena observed in space. As a result, they also influence processes occurring in their host galaxies. The details are a field of ongoing research.

A team around former MPIA student Jacob Isbell, now a postdoc at the Steward Observatory of the University of Arizona, aimed the Large Binocular Telescope (LBT) at the galaxy NGC 1068, also known as Messier 77, to study the minute details in its centre at thermal infrared wavelengths. This galaxy is one of the nearest with an AGN. The observations had the proper spatial resolution to focus on the components emitting this kind of radiation. The results are now published in Nature Astronomy.

An optical image of the spiral galaxy NGC 1068 (Messier 77) overlaid with an insert with the image obtained by the Large Binocular Telescope Interferometer (LBTI) at thermal infrared wavelengths (8.7 micrometres). The false-colour image depicts the brightness variation of mostly warm dust surrounding the supermassive black hole in the centre of that galaxy. By comparing the image with previous observations at various wavelengths, the researchers identified the hot and bright disk of gas and dust and the collimated gas jet as their heat sources. The components identified in the image confirm the unified model of active galactic nuclei. © ESO / J. Isbell (UofA, MPIA) / MPIA


Disentangling the AGN components

The bright, hot disk surrounding the supermassive black hole emits an enormous amount of light that drives the dust apart as if the individual grains were tiny sails – a phenomenon known as radiation pressure. The images revealed the glowing dust, a warm, outflowing wind caused by that mechanism, which was heated by the hot central disk.

Simultaneously, farther out, much material is way brighter than it should have been if it was illuminated only by the bright accretion disk. By comparing the new images to past observations at various wavelengths, the researchers tied this finding to a collimated jet of hot gas emanating from the disk centre. While blasting through the galaxy, it hits and heats clouds of molecular gas and dust, leading to the unexpected bright infrared signal. Such jets are particularly bright at radio wavelengths when interacting with gas and particles in the environment around the supermassive black holes.

Altogether, the result confirms the so-called unified model of AGN. It promotes a configuration of a supermassive black hole in the centre of a galaxy, which attracts and collects gas and dust from the surrounding host galaxy, accumulating in an inner bright and hot disk. In addition, an outer, larger structure of cooler, outflowing material obstructs the view. Finally, a powerful gas jet is ejected from the centre. Different components are exposed to the observer, depending on the viewing angle. Although the observed features vary significantly between objects, the unified model proposes that those variations derive from intrinsically similar configurations of structures around the supermassive black hole, powering the AGN phenomenon.

View from the dome of the Large Binocular Telescope (LBT) through the open dome doors. In the foreground are the two large primary mirrors with the support structure for the secondary mirrors. © Marc-André Besel & Wiphu Rujopakarn


LBT – A precursor of future segmented-mirror telescopes

The LBT is located on Mount Graham, northeast of Tucson, USA, and operates its two 8.4-metre mirrors independently of each other, essentially functioning like two separate telescopes mounted side by side and aligned in parallel. MPIA is a member of the LBT Corporation via the LBT-Beteiligungsgesellschaft (holding company), which supplies 25% of all operations funding.

Combining the light from both mirrors, the LBT becomes an imaging interferometer (LBTI), allowing for approximately three times higher resolution observations than would be possible with each mirror on its own. To stabilize this high-resolution imaging machine, LBTI regularly deploys the OVMS+ vibration control system developed under MPIA leadership by MPIA’s Jörg-Uwe Pott to enable these challenging observations of distant galaxies. This imaging technique has been successfully employed to study volcanoes on the surface of Jupiter’s moon Io. The Jupiter results encouraged the researchers to use the interferometer to look now at an AGN.

“The AGN within the galaxy NGC 1068 is especially bright, so it was the perfect opportunity to test this method,” Isbell said. “These are the highest resolution direct images of an AGN taken so far.” In this context, direct images mean, they contain all faint and diffuse radiation from the structures observed. In contrast, images from other interferometers, such as the Very Large Telescope Interferometer (VLTI), are reconstructed from computations interpolating the missing imaging information.

Combining both mirrors produces images directly on the detector, very much like telescopes with segmented mirrors do, such as the James Webb Space Telescope, as well as the future 25-metre Giant Magellan Telescope (GMT) and the upcoming 39-metre Extremely Large Telescope (ELT), both being built in Chile. This way, Isbell and his collaborators produced the first ELT-like images of an AGN. As a result, the LBTI observations resolved individual features of up to 20 light-years at a distance of 47 million light-years. Previously, the various processes were blended due to low resolution, but now it is possible to view their individual impact.

A test for future observations

The study shows that the environments of AGN can be complex. The new findings help us understand the intricate ways in which AGN interact with their host galaxies. By probing distant galaxies in the early universe, when the galaxies were still young, we cannot achieve the same level of detail. Therefore, these results are like a local analogue.

“This type of imaging can be used on any astronomical object,” Isbell said. “We’ve already started looking at disks around stars and very large, evolved stars, which have dusty envelopes around them.”

Additional information

The MPIA team involved in this study comprised Jacob W. Isbell (now Steward Observatory, The University of Arizona, Tucson, USA) and Jörg-Uwe Pott.

Other researchers included Steve Ertel (Steward Observatory and Large Binocular Telescope Observatory, The University of Arizona, Tucson, USA), Gerd Weigelt (Max Planck Institute for Radio Astronomy, Bonn, Germany), and Marko Stalevski (Astronomical Observatory, Belgrade, Serbia and Sterrenkundig Observatorium, Universiteit Gent, Belgium).

This press release is based on the one published by the University of Arizona.




Contacts:

Dr. Markus Nielbock
Press and outreach officer

+49 6221 528-134
pr@mpia.de
MPIA press department
Max Planck Institute for Astronomy, Heidelberg, Germany

Dr. Jacob W. Isbell
jwisbell@arizona.edu
Jacob Isbell / UofA
Steward Observatory, The University of Arizona, Tucson, AZ, USA

Dr. Jörg-Uwe Pott
+49 6221 528-202
jpott@mpia.de
Jörg-Uwe Pott / MPIA
Max Planck Institute for Astronomy, Heidelberg, Germany



Original publication

Jacob W. Isbell, S. Ertel, J.-U. Pott et al.
Direct imaging of active galactic nucleus outflows and their origin with the 23 m Large Binocular Telescope
Nature Astronomy (2025)

Source | DOI



Video

The Unified Model of active galactic nuclei

Credit: ESO/L. Calçada and M. Kornmesser



Links

Nature Astronomy embargo policy
Ring of cosmic dust hides a supermassive black hole in Active Galactic Nucleus


February 16, 2022
Image of warm dust emission from the heart of an active galactic nucleus shows a ring-like structure that obscures the black hole


more

 

 


Thursday, February 17, 2022

Supermassive black hole caught hiding in a ring of cosmic dust

Galaxy Messier 77 and close-up view of its active centre 
 
A close-up view of Messier 77’s active galactic nucleus
 
Dazzling galaxy Messier 77
 
Artist’s impression of the active galactic nucleus of Messier 77
 
The active galaxy Messier 77 in the constellation of Cetus 
 
Wide-field image of the sky around Messier 77




Video

Artist’s animation of the active galactic nucleus of Messier 77
Artist’s animation of the active galactic nucleus of Messier 77 
 
The Unified Model of active galactic nuclei
The Unified Model of active galactic nuclei



The European Southern Observatory’s Very Large Telescope Interferometer (ESO’s VLTI) has observed a cloud of cosmic dust at the centre of the galaxy Messier 77 that is hiding a supermassive black hole. The findings have confirmed predictions made around 30 years ago and are giving astronomers new insight into “active galactic nuclei”, some of the brightest and most enigmatic objects in the universe.

Active galactic nuclei (AGNs) are extremely energetic sources powered by supermassive black holes and found at the centre of some galaxies. These black holes feed on large volumes of cosmic dust and gas. Before it is eaten up, this material spirals towards the black hole and huge amounts of energy are released in the process, often outshining all the stars in the galaxy.

Astronomers have been curious about AGNs ever since they first spotted these bright objects in the 1950s. Now, thanks to ESO’s VLTI, a team of researchers, led by Violeta Gámez Rosas from Leiden University in the Netherlands, have taken a key step towards understanding how they work and what they look like up close. The results are published today in Nature.

By making extraordinarily detailed observations of the centre of the galaxy Messier 77, also known as NGC 1068, Gámez Rosas and her team detected a thick ring of cosmic dust and gas hiding a supermassive black hole. This discovery provides vital evidence to support a 30-year-old theory known as the Unified Model of AGNs.

Astronomers know there are different types of AGN. For example, some release bursts of radio waves while others don’t; certain AGNs shine brightly in visible light, while others, like Messier 77, are more subdued. The Unified Model states that despite their differences, all AGNs have the same basic structure: a supermassive black hole surrounded by a thick ring of dust.

According to this model, any difference in appearance between AGNs results from the orientation at which we view the black hole and its thick ring from Earth. The type of AGN we see depends on how much the ring obscures the black hole from our view point, completely hiding it in some cases.

Astronomers had found some evidence to support the Unified Model before, including spotting warm dust at the centre of Messier 77. However, doubts remained about whether this dust could completely hide a black hole and hence explain why this AGN shines less brightly in visible light than others.

“The real nature of the dust clouds and their role in both feeding the black hole and determining how it looks when viewed from Earth have been central questions in AGN studies over the last three decades,” explains Gámez Rosas. “Whilst no single result will settle all the questions we have, we have taken a major step in understanding how AGNs work.”

The observations were made possible thanks to the Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) mounted on ESO’s VLTI, located in Chile’s Atacama Desert. MATISSE combined infrared light collected by all four 8.2-metre telescopes of ESO’s Very Large Telescope (VLT) using a technique called interferometry. The team used MATISSE to scan the centre of Messier 77, located 47 million light-years away in the constellation Cetus.

“MATISSE can see a broad range of infrared wavelengths, which lets us see through the dust and accurately measure temperatures. Because the VLTI is in fact a very large interferometer, we have the resolution to see what’s going on even in galaxies as far away as Messier 77. The images we obtained detail the changes in temperature and absorption of the dust clouds around the black hole,” says co-author Walter Jaffe, a professor at Leiden University.

Combining the changes in dust temperature (from around room temperature to about 1200 °C) caused by the intense radiation from the black hole with the absorption maps, the team built up a detailed picture of the dust and pinpointed where the black hole must lie. The dust — in a thick inner ring and a more extended disc — with the black hole positioned at its centre supports the Unified Model. The team also used data from the Atacama Large Millimeter/submillimeter Array, co-owned by ESO, and the National Radio Astronomy Observatory’s Very Long Baseline Array to construct their picture.

“Our results should lead to a better understanding of the inner workings of AGNs,” concludes Gámez Rosas. “They could also help us better understand the history of the Milky Way, which harbours a supermassive black hole at its centre that may have been active in the past.”  

The researchers are now looking to use ESO’s VLTI to find more supporting evidence of the Unified Model of AGNs by considering a larger sample of galaxies.

Team member Bruno Lopez, the MATISSE Principal Investigator at the Observatoire de la Côte d’Azur in Nice, France, says: “Messier 77 is an important prototype AGN and a wonderful motivation to expand our observing programme and to optimise MATISSE to tackle a wider sample of AGNs."

ESO’s Extremely Large Telescope (ELT), set to begin observing later this decade, will also aid the search, providing results that will complement the team’s findings and allow them to explore the interaction between AGNs and galaxies.



More Information

This research was presented in the paper “Thermal imaging of dust hiding the black hole in the Active Galaxy NGC 1068” (doi: 10.1038/s41586-021-04311-7) to appear in Nature.

The team is composed of Violeta Gámez Rosas (Leiden Observatory, Leiden University, Netherlands [Leiden]), Jacob W. Isbell (Max Planck Institute for Astronomy, Heidelberg, Germany [MPIA]), Walter Jaffe (Leiden), Romain G. Petrov (Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France [OCA]), James H. Leftley (OCA), Karl-Heinz Hofmann (Max Planck Institute for Radio Astronomy, Bonn, Germany [MPIfR]), Florentin Millour (OCA), Leonard Burtscher (Leiden), Klaus Meisenheimer (MPIA), Anthony Meilland (OCA), Laurens B. F. M. Waters (Department of Astrophysics/IMAPP, Radboud University, the Netherlands; SRON, Netherlands Institute for Space Research, the Netherlands), Bruno Lopez (OCA), Stéphane Lagarde (OCA), Gerd Weigelt (MPIfR), Philippe Berio (OCA), Fatme Allouche (OCA), Sylvie Robbe-Dubois (OCA), Pierre Cruzalèbes (OCA), Felix Bettonvil (ASTRON, Dwingeloo, the Netherlands [ASTRON]), Thomas Henning (MPIA), Jean-Charles Augereau (Univ. Grenoble Alpes, CNRS, Institute for Planetary sciences and Astrophysics, France [IPAG]), Pierre Antonelli (OCA), Udo Beckmann (MPIfR), Roy van Boekel (MPIA), Philippe Bendjoya (OCA), William C. Danchi (NASA Goddard Space Flight Center, Greenbelt, USA), Carsten Dominik (Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands [API]), Julien Drevon (OCA), Jack F. Gallimore (Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania, USA), Uwe Graser (MPIA), Matthias Heininger (MPIfR), Vincent Hocdé (OCA), Michiel Hogerheijde (Leiden; API), Josef Hron (Department of Astrophysics, University of Vienna, Austria), Caterina M.V. Impellizzeri (Leiden), Lucia Klarmann (MPIA), Elena Kokoulina (OCA), Lucas Labadie (1st Institute of Physics, University of Cologne, Germany), Michael Lehmitz (MPIA), Alexis Matter (OCA), Claudia Paladini (European Southern Observatory, Santiago, Chile [ESO-Chile]), Eric Pantin (Centre d'Etudes de Saclay, Gif-sur-Yvette, France), Jörg-Uwe Pott (MPIA), Dieter Schertl (MPIfR), Anthony Soulain (Sydney Institute for Astronomy, University of Sydney, Australia [SIfA]), Philippe Stee (OCA), Konrad Tristram (ESO-Chile), Jozsef Varga (Leiden), Julien Woillez (European Southern Observatory, Garching bei München, Germany [ESO]), Sebastian Wolf (Institute for Theoretical Physics and Astrophysics, University of Kiel, Germany), Gideon Yoffe (MPIA), and Gerard Zins (ESO-Chile).

MATISSE was designed, funded and built in close collaboration with ESO, by a consortium composed of institutes in France (J.-L. Lagrange Laboratory — INSU-CNRS — Côte d’Azur Observatory — University of Nice Sophia-Antipolis), Germany (MPIA, MPIfR and University of Kiel), the Netherlands (NOVA and University of Leiden), and Austria (University of Vienna). The Konkoly Observatory and Cologne University have also provided some support in the manufacture of the instrument.

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration in astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates APEX and ALMA on Chajnantor, two facilities that observe the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.



Links




Contacts:

Violeta Gámez Rosas
Leiden University
Leiden, the Netherlands
Tel: +31 71 527 5737

Email: gamez@strw.leidenuniv.nl

Walter Jaffe
Leiden University
Leiden, the Netherlands
Tel: +31 71 527 5737
Email:
jaffe@strw.leidenuniv.nl

Bruno Lopez
MATISSE Principal Investigator
Observatoire de la Côte d’ Azur, Nice, France
Tel: +33 4 92 00 30 11
Email:
Bruno.Lopez@oca.eu

Romain Petrov
MATISSE Project Scientist
Observatoire de la Côte d’ Azur, Nice, France
Tel: +33 4 92 00 30 11
Email:
Romain.Petrov@oca.eu

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org

Source: ESO/News


Thursday, October 17, 2019

Going Against the Flow Around a Supermassive Black Hole

Artist impression of the heart of galaxy NGC 1068, which harbors an actively feeding supermassive black hole, hidden within a thick doughnut-shaped cloud of dust and gas. ALMA discovered two counter-rotating flows of gas around the black hole. The colors in this image represent the motion of the gas: blue is material moving toward us, red is moving away. Credit: NRAO/AUI/NSF, S. Dagnello. Hi-Res File/Screensize File

ALMA image showing two disks of gas moving in opposite directions around the black hole in galaxy NGC 1068. The colors in this image represent the motion of the gas: blue is material moving toward us, red is moving away. The white triangles are added to show the accelerated gas that is expelled from the inner disk - forming a thick, obscuring cloud around the black hole. Credit: ALMA (ESO/NAOJ/NRAO), V. Impellizzeri; NRAO/AUI/NSF, S. Dagnello. Hi-Res File/Screensize File

Star chart showing the location of NGC 1068 (also known as Messier 77), a spiral galaxy approximately 47 million light-years from Earth in the direction of the constellation Cetus. Credit: IAU; Sky & Telescope magazine; NRAO/AUI/NSF, S. Dagnello. Hi-Res File/Screensize File

At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas. When astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA)

to study this cloud in more detail, they made an unexpected discovery that could explain why supermassive black holes grew so rapidly in the early Universe.

“Thanks to the spectacular resolution of ALMA, we measured the movement of gas in the inner orbits around the black hole,” explains Violette Impellizzeri of the National Radio Astronomy Observatory (NRAO), working at ALMA in Chile and lead author on a paper published in the Astrophysical Journal. “Surprisingly, we found two disks of gas rotating in opposite directions.”

Supermassive black holes already existed when the Universe was young – just a billion years after the Big Bang. But how these extreme objects, whose masses are up to billions of times the mass of the Sun, had time to grow in such a relatively short timespan, is an outstanding question among astronomers. This new ALMA discovery could provide a clue. “Counter-rotating gas streams are unstable, which means that clouds fall into the black hole faster than they do in a disk with a single rotation direction,” said Impellizzeri. “This could be a way in which a black hole can grow rapidly.”

NGC 1068 (also known as Messier 77) is a spiral galaxy approximately 47 million light-years from Earth in the direction of the constellation Cetus. At its center is an active galactic nucleus, a supermassive black hole that is actively feeding itself from a thin, rotating disk of gas and dust, also known as an accretion disk.

Previous ALMA observations revealed that the black hole is not only gulping down material, but also spewing out gas at incredibly high speeds – up to 500 kilometers per second (more than one million miles per hour). This gas that gets expelled from the accretion disk likely contributes to hiding the region around the black hole from optical telescopes.

Impellizzeri and her team used ALMA’s superior zoom lens ability to observe the molecular gas around the black hole. Unexpectedly, they found two counter-rotating disks of gas. The inner disk spans 2-4 light-years and follows the rotation of the galaxy, whereas the outer disk (also known as the torus) spans 4-22 light-years and is rotating the opposite way.

“We did not expect to see this, because gas falling into a black hole would normally spin around it in only one direction,” said Impellizzeri. “Something must have disturbed the flow, because it is impossible for a part of the disk to start rotating backward all on its own.”

Counter-rotation is not an unusual phenomenon in space. “We see it in galaxies, usually thousands of light-years away from their galactic centers,” explained co-author Jack Gallimore from Bucknell University in Lewisburg, Pennsylvania. “The counter-rotation always results from the collision or interaction between two galaxies. What makes this result remarkable is that we see it on a much smaller scale, tens of light-years instead of thousands from the central black hole.”

The astronomers think that the backward flow in NGC 1068 might be caused by gas clouds that fell out of the host galaxy, or by a small passing galaxy on a counter-rotating orbit captured in the disk.

At the moment, the outer disk appears to be in a stable orbit around the inner disk. “That will change when the outer disk begins to fall onto the inner disk, which may happen after a few orbits or a few hundred thousand years. The rotating streams of gas will collide and become unstable, and the disks will likely collapse in a luminous event as the molecular gas falls into the black hole. Unfortunately, we will not be there to witness the fireworks,” said Gallimore.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.




Contact:

Iris Nijman
Interim Public Information Officer for ALMA
alma-pr@nrao.edu



Reference:

“Counter-Rotation and High Velocity Outflow in the Parsec-Scale Molecular Torus of NGC 1068,” C. M. Violette Impellizzeri et. al., the Astrophysical Journal. DOI: 10.3847/2041-8213/ab3c64

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.


Thursday, July 06, 2017

Dazzling Spiral with an Active Heart

Dazzling galaxy Messier 77 

The active galaxy Messier 77 in the constellation of Cetus 
 
Wide-field image of the sky around Messier 77 



Videos
 
ESOcast 115 Light: Meet one of the most energetic objects in the Universe
ESOcast 115 Light: Meet one of the most energetic objects in the Universe

Zooming in on Messier 77
Zooming in on Messier 77

Panning across a new image of Messier 77
Panning across a new image of Messier 77




ESO’s Very Large Telescope (VLT) has captured a magnificent face-on view of the barred spiral galaxy Messier 77. The image does justice to the galaxy’s beauty, showcasing its glittering arms criss-crossed with dust lanes — but it fails to betray Messier 77’s turbulent nature.

This picturesque spiral galaxy appears to be tranquil, but there is more to it than meets the eye. Messier 77 (also known as NGC 1068) is one of the closest active galaxies, which are some of the most energetic and spectacular objects in the Universe. Their nuclei are often bright enough to outshine the whole of the rest of the galaxy. Active galaxies are among the brightest objects in the Universe and emit light at most, if not all, wavelengths, from gamma rays and X-rays all the way to microwaves and radiowaves. Messier 77 is further classified as a Type II Seyfert galaxy, characterised by being particularly bright at infrared wavelengths.

This impressive luminosity is caused by intense radiation blasting out from a central engine — the accretion disc surrounding a supermassive black hole. Material that falls towards the black hole is compressed and heated up to incredible temperatures, causing it to radiate a tremendous amount of energy. This accretion disc is thought to be enshrouded by thick doughnut-shaped structure of gas and dust, called a “torus”. Observations of Messier 77 back in 2003 were the first to resolve such a structure using the powerful VLT Interferometer (eso0319).

This image of Messier 77 was taken in four different wavelength bands represented by blue, red, violet and pink (hydrogen-alpha) colours. Each wavelength brings out a different quality: for example, the pinkish hydrogen-alpha highlights the hotter and younger stars forming in the spiral arms, while in red are the fine, thread-like filamentary structures in the gas surrounding Messier 77 [1]. A foreground Milky Way star is also seen beside the galaxy centre, displaying tell-tale diffraction spikes. Additionally, many more distant galaxies are visible; sitting at the outskirts of the spiral arms, they appear tiny and delicate compared to the colossal active galaxy .

Located 47 million light-years away in the constellation of Cetus (The Sea Monster), Messier 77 is one of the most remote galaxies of the Messier catalogue. Initially, Messier believed that the highly luminous object he saw through his telescope was a cluster of stars, but as technology progressed its true status as a galaxy was realised. At approximately 100 000 light-years across, Messier 77 is also one of largest galaxies in the Messier catalogue — so massive that its gravity causes other nearby galaxies to twist and become warped (eso1707) [2] .

This image was obtained using the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument mounted on Unit Telescope 1 (Antu) of the VLT, located at ESO’s Paranal Observatory in Chile. It hails from ESO’s Cosmic Gems programme, an outreach initiative that produces images of interesting, intriguing or visually attractive objects using ESO telescopes for the purposes of education and outreach.



Notes

[1] Similar red filaments are also found in NGC 1275. They are cool, despite being surrounded by a very hot gas at around 50 million degrees Celsius. The filaments are suspended in a magnetic field which maintains their structure and demonstrates how energy from the central black hole is transferred to the surrounding gas.

[2] NGC 1055 is located about 60 million light-years away. It is an edge-on galaxy, in contrast to Messier 77. This Astronomy Picture of the Day portrays both of them together, in a field of view about the size of the Moon (APOD).



More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Links



Contacts

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591


Source: ESO

Tuesday, September 20, 2016

Black Hole Hidden Within Its Own Exhaust

Artist impression of the heart of galaxy NGC 1068, which harbors an actively feeding supermassive black hole. Arising from the black hole's outer accretion disk, ALMA discovered clouds of cold molecular gas and dust. This material is being accelerated by magnetic fields in the disk, reaching speeds of about 400 to 800 kilometers per second. This material gets expelled from the disk and goes on to hide the region around the black hole from optical telescopes on Earth. Essentially, the black hole is cloaking itself behind a veil of its own exhaust. Credit: NRAO/AUI/NSF; D. Berry / Skyworks

ALMA image of the central region of galaxy NGC 1068. The torus of material harboring the supermassive black hole is highlighted in the pullout box. This region, which is approximately 40 light-years across, is the result of material flung out of the black hole's accretion disk. The colors in this image represent the motion of the gas: blue is material moving toward us, red moving away. The areas in green are low velocity and consistent with rotation around a black hole. The white in the central region means the gas is moving both toward and away at very high speed, the conditions illustrated in the artist impression. The outer ring area is unrelated to the black hole and is more tied to the structure of the central 1,000 light-years of the host galaxy. Credit: Gallimore et al.; ALMA (ESO/NAOJ/NRAO); B. Saxton (NRAO/AUI/NSF)


Supermassive black holes, millions to billions of times the mass of our Sun, are found at the centers of galaxies. Many of these galactic behemoths are hidden within a thick doughnut-shape ring of dust and gas known as a torus. Previous observations suggest these cloaking, tire-like structures are formed from the native material found near the center of a galaxy.

New data from the Atacama Large Millimeter/submillimeter Array (ALMA), however, reveal that the black hole at the center of a galaxy named NGC 1068 is actually the source of its own dusty torus of dust and gas, forged from material flung out of the black hole’s accretion disk.

This newly discovered cosmic fountain of cold gas and dust could reshape our understanding of how black holes impact their host galaxy and potentially the intergalactic medium.

"Think of a black hole as an engine. It's fueled by material falling in on it from a flattened disk of dust and gas,” said Jack Gallimore, an astronomer at Bucknell University in Lewisburg, Pennsylvania, and lead author on a paper published in Astrophysical Journal Letters. "But like any engine, a black hole can also emit exhaust." That exhaust, astronomers discovered, is the likely source of the torus of material that effectively obscures the region around the galaxy's supermassive black hole from optical telescopes.

NGC 1068 (also known as Messier 77) is a barred spiral galaxy approximately 47 million light-years from Earth in the direction of the constellation Cetus. At its center is an active galactic nucleus, a supermassive black hole that is being fed by a thin, rotating disk of gas and dust known as an accretion disk. As material in the disk spirals toward the central black hole, it becomes superheated and blazes bright with ultraviolet radiation. The outer reaches of the disk, however, are considerably cooler and glow more appreciably in infrared light and the millimeter-wavelength light that ALMA can detect.

Using ALMA, an international team of astronomers peered deep into this region and discovered a sprinkling of cool clouds of carbon monoxide lifting off the outer portion of the accretion disk. The energy from the hot inner disk partially ionizes these clouds, enabling them to adhere to powerful magnetic field lines that wrap around the disk.

Like water being flung out of a rapidly rotating garden sprinkler, the clouds rising above the accretion disk get accelerated centrifugally along the magnetic field lines to very high speeds -- approximately 400 to 800 kilometers per second (nearly 2 million miles per hour). This is up to nearly three times faster than the rotational speed of the outer accretion disk, fast enough to send the clouds hurtling further out into the galaxy.

"These clouds are traveling so fast that they reach 'escape velocity' and are jettisoned in a cone-like spray from both sides of the disk," said Gallimore. "With ALMA, we can for the first time see that it is the gas that is thrown out that hides the black hole, not the gas falling in." This suggests that the general theory of an active black hole is oversimplified, he concludes.

With future ALMA observations, the astronomers hope to work out a fuel budget for this black hole engine: how much mass per year goes into the black hole and how much is ejected as exhaust.

"These are fundamental quantities for understanding black holes that we really don't have a good handle on at this time," concludes Gallimore.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities,




Reference:

This research is presented in the paper titled “High-velocity bipolar molecular emission from an AGN torus,” by J. Gallimore et al., published in Astrophysical Journal Letters on 15 September 2016. 



Contact:

Charles Blue
NRAO Public Information Officer
+1 434.296.0314; cblue@nrao.edu




The team is composed of Jack Gallimore (Bucknell University, Lewisburg, Pennsylvania), Moshe Elitzur (University of California, Berkeley), Roberto Maiolino (University of Cambridge, U.K.), Alessandro Marconi (University of Firenze, Italy), Christopher P. O’Dea (University of Manitoba, Winnipeg, Canada), Dieter Lutz (Max Planck Institute for Extraterrestrial Physics, Garching, Germany), Stefi A. Baum, University of Manitoba, Winnipeg, Canada), Robert Nikutta (Catholic University of Chile, Santiago), C.M.V. Impellizzeri (Joint ALMA Observatory, Santiago, Chile), Richard Davies (Max Planck Institute for Extraterrestrial Physics, Garching, Germany), Amy E. Kimball (National Radio Astronomy Observatory, Socorro, New Mexico), Eleonora Sani (European Southern Observatory, Santiago, Chile). The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.