Thursday, February 29, 2024

Monthly Roundup: Discovering, Modeling, and Characterizing Pulsars

Composite X-ray, optical, and infrared image of the Crab Nebula, which houses a pulsar at its center
Credit:
X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

When a massive star goes supernova, the explosion can leave behind a pulsar: the core of a dead star containing 1–2 times the mass of the Sun in a sphere just 20 kilometers across. Pulsars are almost entirely composed of neutrons and spin extremely quickly — the fastest recorded pulsar spins 716 times every second, meaning that a point on its surface moves at roughly a quarter of the speed of light. Pulsars emit beams of radio waves from their poles, and an observer on Earth sees pulses of radio emission in time with the star’s rotation. The word pulsar comes from pulsating radio source.

Observing pulsars helps us understand the evolution of massive stars, provides a way to study the physics of ultra-dense materials, and gives us a means to search for the background gravitational hum of supermassive black holes in colliding galaxies. Today, we’ll take a look at three recent research articles that explore fundamental questions in pulsar science.

The field surrounding PSR J1032−5804 shown at, from left to right, radio, infrared, and visible wavelengths, as well as a composite of all three. Credit: Wang et al. 2024

How Do We Find Pulsars?

Jocelyn Bell Burnell discovered the first pulsar by chance in 1967, when the characteristic pulses popped up in radio observations taken with a new telescope. Today, researchers design surveys tuned to the particular properties of pulsars to make them stand out from other signals in the sky. Namely, radio surveys can search for sources with steep spectra — in other words, signals that are far brighter at low frequencies than at high frequencies — or strongly polarized light.

Ziteng Wang (Curtin University) and collaborators used the Australian Square Kilometre Array Pathfinder (ASKAP), a 36-dish radio interferometer, to search for circularly polarized signals from pulsars. In addition to known stars and pulsars, the observations pinpointed a strongly circularly polarized source with no known counterpart at other wavelengths. The team followed up on this promising discovery with the 64-meter Murriyang radio telescope at Parkes Observatory and found a pulsar with a rotation period of 78.72 milliseconds. The pulsar, cataloged as PSR J1032−5804, has an estimated age of 34,600 years, making it relatively young and possibly still associated with a visible supernova remnant. The team found a compact region of emission surrounding the pulsar, but they couldn’t rule out the possibility that the material belongs to unrelated nebulae.

PSR J1032−5804 is notable because its pulses are highly scattered by interstellar gas and dust. Highly scattered pulsar signals are hard to detect because scattering broadens and weakens the signal, especially at lower frequencies where pulsars should be at their brightest. Wang’s team has shown that searching at relatively high frequencies — the team’s observations were made at 3 gigahertz — is a viable way to detect scattered pulsars.

Simulation output showing the magnetic field lines (green curves) and plasma density (background color) in a pulsar’s magnetosphere. Credit: Bransgrove et al. 2023

How Do Pulsars Make Their Pulses?

Pulsars may be most famous for their characteristic pulses of radio emission, but the origin of those pulses is still under debate. To understand what powers these radio beacons, researchers use detailed simulations that track the behavior of individual particles to understand how they behave under the exotic conditions present at the surface of a pulsar. To date, localized simulations have been able to produce radio waves from a pulsar’s poles, and global simulations have discerned the source of pulsars’ gamma-ray pulses (10% or so of pulsars produce gamma-ray pulses in addition to radio pulses), but radio pulses have not yet been seen in global simulations.

Ashley Bransgrove (Columbia University and Princeton University) and collaborators carried out high-resolution global simulations of a pulsar’s magnetosphere: the region immediately surrounding a pulsar where its strong magnetic field dominates the motion of charged particles. The simulations show how the rapid rotation of the pulsar lofts charged particles from its surface and accelerates them, filling the magnetosphere with gamma rays and a dense sea of electrons and their positively charged counterparts, positrons. Near the pulsar’s poles and farther out in its magnetosphere, gaps form where the electric current is mismatched, and pairs of electrons and positrons are generated in these gaps. When the gaps discharge — think of a spark, or lightning — they excite waves in the plasma and, subsequently, electromagnetic waves. The emitted radiation is similar in frequency and luminosity to observed pulsars, suggesting that electric discharge may generate the radio waves that pulsars are known for.

The team notes that it’s too soon to apply their simulations to observations of individual pulsars, and more work is needed to understand the role of gamma-ray emission, explore the details of electron–positron pair production, and extend the work to pulsars whose spin axes and magnetic axes are misaligned.

The location of the Boomerang within the supernova remnant surrounding the pulsar PSR J2229+6114
Credit: Pope et al. 2024

How Do Pulsars Interact with Their Surroundings?

When pulsars are young, they’re swaddled in the gas and dust of their surrounding supernova remnants. This leads young pulsars to create a pulsar wind nebula: a glowing cloud of gas energized by winds of relativistic charged particles streaming off the pulsar. A recent article authored by the Nuclear Spectroscopic Telescope Array (NuSTAR) and Very Energetic Radiation Imaging Telescope Array System (VERITAS) collaborations presents multiwavelength observations of the Boomerang, a 10,000-year-old pulsar wind nebula well known for its complex structure.

The teams combined archival data from radio telescopes and the Chandra X-ray Observatory with newly collected data from NuSTAR, VERITAS, and the Fermi Gamma-ray Space Telescope to probe the nebula’s multiwavelength behavior. These observations revealed that the nebula appears far larger at radio wavelengths than at X-ray wavelengths, a common feature of pulsar wind nebulae due to the difference sources of emission: the nebula’s size at radio wavelengths is set by outflowing particles, while its size at X-ray wavelengths comes from the rate at which electrons lose energy as they spiral around magnetic field lines and emit X-rays. The nebula’s size even varies across X-ray wavelengths, appearing smaller at shorter wavelengths.

Judging from how the nebula’s size changes with wavelength, its overall energy output, and its X-ray emission over the past two decades, the authors provide a new estimate on its distance and magnetic field strength, finding it to be more distant and with a far weaker magnetic field than previously thought. By modeling how the nebula’s energy output may have evolved over time, the team also found that the Boomerang is, well, boomeranging! Roughly 1,000 years ago, a backwards-moving supernova shock wave crashed into the expanding nebula, crushing the nebula and temporarily reversing its expansion. Today, the nebula is re-expanding in the wake of the shock wave, showcasing how pulsars dynamically interact with their surroundings.

By Kerry Hensley


Citation

“Discovery of a Young, Highly Scattered Pulsar PSR J1032-5804 with the Australian Square Kilometre Array Pathfinder,” Ziteng Wang et al 2024 ApJ 961 175. doi:10.3847/1538-4357/ad0fe8

“Radio Emission and Electric Gaps in Pulsar Magnetospheres,” Ashley Bransgrove et al 2023 ApJL 958 L9. doi:10.3847/2041-8213/ad0556

“A Multiwavelength Investigation of PSR J2229+6114 and Its Pulsar Wind Nebula in the Radio, X-ray, and Gamma-ray Bands,” I. Pope et al 2024 ApJ 960 75. doi:10.3847/1538-4357/ad0120



Wednesday, February 28, 2024

Metal scar found on cannibal star

PR Image eso2403a
Artist’s impression of WD 0816-310, a magnetic white dwarf with a metal scar



Videos

Metal scar found on cannibal star | ESOcast Light
PR Video eso2403a
Metal scar found on cannibal star | ESOcast Light

Artist’s animation of WD 0816-310, a magnetic white dwarf, ingesting planetary fragments
PR Video eso2403b
Artist’s animation of WD 0816-310, a magnetic white dwarf, ingesting planetary fragments



When a star like our Sun reaches the end of its life, it can ingest the surrounding planets and asteroids that were born with it. Now, using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) in Chile, researchers have found a unique signature of this process for the first time — a scar imprinted on the surface of a white dwarf star. The results are published today in The Astrophysical Journal Letters.

It is well known that some white dwarfs — slowly cooling embers of stars like our Sun — are cannibalising pieces of their planetary systems. Now we have discovered that the star’s magnetic field plays a key role in this process, resulting in a scar on the white dwarf’s surface,” says Stefano Bagnulo, an astronomer at Armagh Observatory and Planetarium in Northern Ireland, UK, and lead author of the study.

The scar the team observed is a concentration of metals imprinted on the surface of the white dwarf WD 0816-310, the Earth-sized remnant of a star similar to, but somewhat more massive than, our Sun. “We have demonstrated that these metals originate from a planetary fragment as large as or possibly larger than Vesta, which is about 500 kilometres across and the second-largest asteroid in the Solar System,” says Jay Farihi, a professor at University College London, UK, and co-author on the study.

The observations also provided clues to how the star got its metal scar. The team noticed that the strength of the metal detection changed as the star rotated, suggesting that the metals are concentrated on a specific area on the white dwarf’s surface, rather than smoothly spread across it. They also found that these changes were synchronised with changes in the white dwarf’s magnetic field, indicating that this metal scar is located on one of its magnetic poles. Put together, these clues indicate that the magnetic field funneled metals onto the star, creating the scar [1].

Surprisingly, the material was not evenly mixed over the surface of the star, as predicted by theory. Instead, this scar is a concentrated patch of planetary material, held in place by the same magnetic field that has guided the infalling fragments,” says co-author John Landstreet, a professor at Western University, Canada, who is also affiliated with the Armagh Observatory and Planetarium. “Nothing like this has been seen before.

To reach these conclusions, the team used a ‘Swiss-army knife’ instrument on the VLT called FORS2, which allowed them to detect the metal scar and connect it to the star’s magnetic field. “ESO has the unique combination of capabilities needed to observe faint objects such as white dwarfs, and sensitively measure stellar magnetic fields,” says Bagnulo. In their study, the team also relied on archival data from the VLT’s X-shooter instrument to confirm their findings.

Harnessing the power of observations like these, astronomers can reveal the bulk composition of exoplanets, planets orbiting other stars outside the Solar System. This unique study also shows how planetary systems can remain dynamically active, even after 'death'.

Source: ESO/News



Notes

[1] Previously, astronomers have observed numerous white dwarfs polluted by metals that were scattered over the surface of the star. These are known to originate from disrupted planets or asteroids that veer too close to the star, following star-grazing orbits similar to those of comets in our Solar System. However, for WD 0816-310, the team is confident that vaporised material was ionised and guided onto the magnetic poles by the white dwarf's magnetic field. The process shares similarities to how auroras form on Earth and on Jupiter.




More information

This research was presented in a paper titled “Discovery of magnetically guided metal accretion onto a polluted white dwarf” to appear in The Astrophysical Journal Letters (doi:10.3847/2041-8213/ad2619).

The team is composed of Stefano Bagnulo (Armagh Observatory & Planetarium, UK [Armagh]), Jay Farihi (Department of Physics and Astronomy, University College London, UK), John D. Landstreet (Armagh; Department of Physics & Astronomy, Western University, Canada), and Colin P. Folsom (Tartu Observatory, University of Tartu, Estonia).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.



Links



Contacts

Stefano Bagnulo
Armagh Observatory and Planetarium
Armagh, UK
Tel: +44 (0)28 3752 3689
Email:
Stefano.Bagnulo@Armagh.ac.uk

Jay Farihi
Department of Physics & Astronomy, University College London
London, UK
Email:
j.farihi@ucl.ac.uk

John Landstreet
Department of Physics & Astronomy, University of Western Ontario and Armagh Observatory and Planetarium
London and Armagh, Canada and UK
Email:
jlandstr@uwo.ca

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org


Tuesday, February 27, 2024

Celestial fossils

A cluster of stars. Most of the stars are very small and uniform in size, and they are notably bluish and cluster more densely together towards the centre of the image. Some appear larger in the foreground. The stars give way to a dark background at the corners. Credit: ESA/Hubble & NASA, A. Sarajedini, F. Niederhofer

This densely populated group of stars is the globular cluster known as NGC 1841, which is found within the Large Magellanic Cloud (LMC), a satellite galaxy to the Milky Way galaxy that lies about 162 000 light-years away. Satellite galaxies are galaxies that are bound by gravity in orbits around a more massive host galaxy. We typically think of our galaxy’s nearest galactic companion as being the Andromeda Galaxy, but it would be more accurate to say that Andromeda is the nearest galaxy that is not in orbit around the Milky Way galaxy. In fact, our galaxy is orbited by tens of known satellite galaxies that are far closer than Andromeda, the largest and brightest of which is the LMC, which is easily visible to the naked eye from the southern hemisphere (although this is decreasingly the case thanks to light pollution).

The LMC is home to many globular clusters. These celestial bodies fall somewhere between open clusters — which are much less dense and tightly bound — and small, compact galaxies. Increasingly sophisticated observations have revealed the stellar populations and other characteristics of globular clusters to be varied and complex, and it is not well understood how these tightly-packed clusters form. However, there are certain consistencies across all globular clusters: they are very stable and so are capable of lasting a long time, and can therefore be very old. This means that globular clusters often contain large numbers of very old stars, which make them something akin to celestial ‘fossils’. Just as fossils provide insight into the early development of life on Earth, globular clusters such as NGC 1841 can provide insights into very early star formation in galaxies.



Monday, February 26, 2024

SDSS J1531+3414: Black Hole Fashions Stellar Beads on a String

SDSS J1531+3414
Credit: X-ray: NASA/CXC/SAO/O. Omoruyi et al.; Optical: NASA/ESA/STScI/G. Tremblay et al.; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk




Astronomers have discovered one of the most powerful eruptions from a black hole ever recorded in the system known as SDSS J1531+3414 (SDSS J1531 for short). As explained in our press release, this mega-explosion billions of years ago may help explain the formation of a striking pattern of star clusters around two massive galaxies, resembling “beads on a string.”

SDSS J1531 is a massive galaxy cluster containing hundreds of individual galaxies and huge reservoirs of hot gas and dark matter. At the center of SDSS J1531, which is located about 3.8 billion light-years away, two of the cluster’s largest galaxies are colliding with each other.

Astronomers used several telescopes to study SDSS J1531 including NASA’s Chandra X-ray Observatory, and the Low Frequency Array (LOFAR), a radio telescope. This composite image shows SDSS J1531 in X-rays from Chandra (blue and purple) that have been combined with radio data from LOFAR (dark pink) as well as an optical image from the Hubble Space Telescope (appearing as yellow and white). The inset gives a close-in view of the center of SDSS J1531 in optical light, showing the two large galaxies and a set of 19 large clusters of stars, called superclusters, stretching across the middle. The image shows these star clusters are arranged in an ‘S’ formation that resembles beads on a string.

The multiwavelength data provides signs of an ancient, titanic eruption in SDSS J1531, which a team of researchers think was responsible for creation of the 19 star clusters. Their argument is that an extremely powerful jet from the supermassive black holes in the center of one of the large galaxies pushed the surrounding hot gas away from the black hole, creating a gigantic cavity. The evidence for a cavity comes from “wings” of bright X-ray emission, seen with Chandra, tracing dense gas near the center of SDSS J1531. These wings are the edge of the cavity and the less dense gas in between is part of the cavity. LOFAR shows radio waves from the remains of the jet’s energetic particles filling in the giant cavity. These features are highlighted in a labeled version of the image.

Multiwavelength Image of SDSS J1531, Labeled; Credit: X-ray: NASA/CXC/SAO/O. Omoruyi et al.; Optical: NASA/ESA/STScI/G. Tremblay et al.; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk

The astronomers also discovered cold and warm gas located near the opening of the cavity, detected with the Atacama Large Millimeter and submillimeter Array (ALMA) and the Gemini North Telescope, respectively. A separate graphic shows the optical image with the cold gas added in green (left), and the warm gas added in red (right). The team argues that some of the hot gas pushed away from the black hole eventually cooled to form the cold and warm gas shown. The team thinks tidal effects from the two merging galaxies compressed the gas along curved paths, leading to the star clusters forming in the “beads on a string” pattern.

Cold and warm gas located near the opening of the cavity
Credit: Optical/Halpha: NASA/ESA/STScI; Radio: ESO/NAOJ/NRAO)

A paper led by Osase Omoruyi of the Center for Astrophysics | Harvard & Smithsonian (CfA) describing these results has recently been published in The Astrophysical Journal and is available online here. The authors of the paper are Grant Tremblay (CfA), Francoise Combes (Paris Observatory, France), Timothy Davis (Cardiff University, UK), Michael Gladders (University of Chicago), Alexey Vikhlinin (CfA), Paul Nulsen (CfA), Preeti Kharb (National Centre for Radio Astrophysics — Tata Institute of Fundamental Research, India ), Stefi Baum (University of Manitoba, Canada), Christopher O’Dea (University of Manitoba, Canada), Keren Sharon (University of Michigan), Bryan Terrazas (Columbia University), Rebecca Nevin (Fermi National Accelerator Laboratory), Aimee Schechter (University of Colorado Boulder), John ZuHone (CfA), Michael McDonald (Massachusetts Institute of Technology), Hakon Dahle (University of Oslo, Norway), Matthew B. Bayliss (University of Cincinnati), Thomas Connor (CfA), Michael Florian (University of Arizona), Jane Rigby (NASA Goddard Space Flight Center), and Sravani Vaddi (Arecibo Observatory)

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.




Visual Description:

This is an image of a cluster of galaxies called SDSS J1531+3414 in X-ray, optical, and radio light. The overall scene resembles a colorful display of lights as if viewed through a wet, glass window.

Blurry orange dots of different sizes are scattered across a black background. These orange dots are entire galaxies. Near the center of the image, two central galaxies appear as bright, white dots. Star clusters, resembling beads on a string in shades of electric blue, sweep over the galaxy on the left, through the space in between the galaxy pair, and then lightly coil beneath both galaxies. Clouds of blue, X-ray light, and dark pink, radio light, surround the two galaxies.

The blue cloud spreads out for thousands of light-years toward the region above the central galaxies. The dark pink cloud, somewhat resembling the shape of an upside down spinning top toy, stretches far below the two galaxies and slightly toward our left. This dark pink cloud represents the remains of a powerful jet, produced by a supermassive black hole within one of the two central galaxies. In the upper right corner of the image, another dark pink cloud is present. This cloud may be the relic of a counter-jet from the same black hole outburst.




Fast Facts for (SDSS J1531+3414):

Scale: Image is about 1.5 arcmin (1.4 million light-years) across.
Category: Groups & Clusters of Galaxies, Black Holes
Coordinates (J2000): RA 15h 31m 10.66s | Dec +34° 14´ 25.71"
Constellation: Corona Borealis
Observation Dates: 2 observations Oct 20 and 28, 2015
Observation Time: 34 hours (1 day 10 hours)
Obs. ID: 17218, 18689
Instrument: ACIS
References: Omoruyi, O. et al., 2024, ApJ, Accepted; arXiv:2312.06762
Color Code: X-ray: blue, purple; Optical: red, green, blue; Radio: dark pink
Distance Estimate: About 3.8 billion light-years (z=0.335)


Sunday, February 25, 2024

The Radcliffe Wave is Waving

How the Radcliffe Wave moves through the backyard of our Sun (yellow dot). Blue dots are clusters of baby stars. The white line is a theoretical model by Ralf Konietzka and collaborators that explains the current shape and motion of the Wave. The magenta and green lines at the beginning show how and to what extent the Radcliffe Wave will move in the future. Background is a cartoon model of the Milky Way. Credit: Ralf Konietzka, Alyssa Goodman & WorldWide Telescope

A few years ago, astronomers at the Center for Astrophysics | Harvard & Smithsonian (CfA) uncovered one of the Milky Way's greatest secrets: an enormous, wave-shaped chain of gaseous clouds in our sun’s backyard, giving birth to clusters of stars along the spiral arm of the galaxy we call home.

Naming this astonishing new structure the Radcliffe Wave, in honor of the Harvard Radcliffe Institute where the undulation was originally discovered, astronomers at CfA now report in Nature that the Radcliffe Wave not only looks like a wave, but also moves like one – oscillating through space much like "the wave" moving through a stadium full of fans.

"By using the motion of baby stars born in the gaseous clouds along the Radcliffe Wave," said Ralf Konietzka, the paper's lead author and a Ph.D. student at Harvard’s Kenneth C. Griffin Graduate School of Arts and Sciences and CfA, "we can trace the motion of their natal gas to show that the Radcliffe Wave is actually waving."


How the Radcliffe Wave moves through the backyard of our Sun (yellow dot). Blue dots are clusters of baby stars. The white line is a theoretical model by Ralf Konietzka and collaborators that explains the current shape and motion of the Wave. The magenta and green lines at the beginning show how and to what extent the Radcliffe Wave will move in the future. Background is a cartoon model of the Milky Way.  Credit:  Ralf Konietzka, Alyssa Goodman & WorldWide Telescope

In 2018 when University of Vienna professor João Alves was a fellow at Harvard Radcliffe Institute, he worked with Catherine Zucker – then a Ph.D. student at Harvard and now a Smithsonian Astrophysical Observatory (SAO) astrophysicist at CfA – and Alyssa Goodman, Robert Wheeler Willson Professor of Applied Astronomy at CfA, to map out the 3D positions of the stellar nurseries in the sun’s galactic neighborhood. By combining brand-new data from the European Space Agency's Gaia mission with the data-intensive "3D Dust Mapping" technique – pioneered by Doug Finkbeiner, a Harvard professor at CfA and his team – they noticed a pattern emerging, leading to the discovery of the Radcliffe Wave in 2020.

"It's the largest coherent structure that we know of, and it's really, really close to us," said Zucker. "It's been there the whole time. We just didn’t know about it, because we couldn’t build these high-resolution models of the distribution of gaseous clouds near the sun, in 3D."

The 2020 3D dust map, which was developed at the CfA, clearly showed that the Radcliffe Wave existed, but no measurements available then were good enough to see if the wave was moving. But in 2022, using a newer release of Gaia data, Alves' group assigned 3D motions to the young star clusters in the Radcliffe Wave. With the clusters' positions and motions in hand, Konietzka's team then determined that the entire Radcliffe Wave is indeed waving.

The star clusters along the Radcliffe Wave move up and down, like people in a sports stadium doing "the wave," creating a pattern that travels through our galactic backyard.

"Similar to how fans in a stadium are being pulled back to their seats by the Earth's gravity," said Konietzka, “the Radcliffe Wave oscillates due to the gravity of the Milky Way."

Understanding the behavior of this 9,000-light-year-long, gargantuan structure in our galactic backyard, just 500 light-years away from the sun at its closest point, allows researchers to now turn their attention to even more challenging questions. No one yet knows what caused the Radcliffe Wave or why it moves the way it does.

"Now we can go and test all these different theories for why the wave formed in the first place," Zucker said.

"Those theories range from explosions of massive stars, called supernovae, to out-of-galaxy disturbances, like a dwarf satellite galaxy colliding with our Milky Way," Konietzka added.

The Nature article also includes a calculation on how much dark matter might be contributing to the gravity responsible for the Wave's motion.

"It turns out that no significant dark matter is needed to explain the motion we observe," Konietzka said. “The gravity of ordinary matter alone is enough to drive the waving of the Wave."

In addition, the discovery of the oscillation raises new questions about the preponderance of these waves both across the Milky Way and other galaxies. Since the Radcliffe Wave appears to form the backbone of the nearest spiral arm in the Milky Way, the waving of the Wave could imply that spiral arms of galaxies oscillate in general, making galaxies even more dynamic than previously thought.

"The question is, what caused the displacement giving rise to the waving we see?," Goodman said. “And does it happen all over the galaxy? In all galaxies? Does it happen occasionally? Does it happen all the time?"

The authors of the Nature paper are Ralf Konietzka, Alyssa A. Goodman and Catherine Zucker, all from CfA, Andreas Burkert (Max Planck Institute for Extraterrestrial Physics in Garching, Germany), João Alves (University of Vienna), Michael Foley (Harvard graduate student at CfA), and Cameren Swiggum, Maria Koller, Núria Miret-Roig, all from the University of Vienna.

The National Science Foundation, NASA, ESA, and the European Research Council (ERC) Advanced Grant ISM-FLOW supported this work.





About the Center for Astrophysics | Harvard & Smithsonian

The Center for Astrophysics | Harvard & Smithsonian is a collaboration between Harvard and the Smithsonian designed to ask—and ultimately answer—humanity's greatest unresolved questions about the nature of the universe. The Center for Astrophysics is headquartered in Cambridge, MA, with research facilities across the U.S. and around the world.

Media Contact:

Peter Edmonds
Interim CfA Public Affairs
Center for Astrophysics | Harvard & Smithsonian
+1 617-571-7279

pedmonds@cfa.harvard.edu


Saturday, February 24, 2024

Magnetic Last Moments

An illustration of a small companion disintegrating around a black widow pulsar
Credit:
NASA’s Goddard Space Flight Center

Black widow pulsars are cruel, fascinating beasts that have understandably attracted much attention. Recently, a new set of radio observations has shined light not on the pulsars themselves, but on the properties of their unlucky victims.

An illustration of a black widow pulsar that includes the tail of the disintegrating companion
Credit:
NASA’s Goddard Space Flight Center

Cruel Stars

Black widow pulsars, as their name suggests, easily rank among the deadliest creatures that roam our galaxy. These vicious beasts are a member of the pulsar family, meaning they are dense balls of neutrons formed during the collapse of a massive star. Similarly to a more peaceful (though still quite energetic) subset of their pulsar brethren, they spin so rapidly that they complete one rotation in less than a hundredth of a second. Unlike their docile counterparts, however, each black widow has trapped a low-mass companion into a nearby orbit. These companions, usually a small star or a brown dwarf, feel the full force of the intense radiation spewing from their captors. As the companion helplessly circles the pulsar, this radiation strips material away and peels the object apart. Eventually, the companion meets the same fate as the insolent soldiers who gazed upon forbidden artifacts in Steven Spielberg’s Raiders of the Lost Ark: they melt into nothingness, unable to withstand the heat.

Astronomers have watched one of these monsters named PSR J2051−0827 slowly destroy an unlucky brown dwarf since the late 1990s. Recently, however, their view of this gruesome spectacle improved thanks to the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China. A team led by S.Q. Wang, Xinjiang Astronomical Observatory, analyzed new observations taken with this facility to inspect the disintegrating brown dwarf in exquisite detail.

Different measured quantities as a function of the brown dwarf’s orbital phase. The bottom plot show the rotation measure: the authors attribute the decrease between the dash-dotted and dashed vertical line to the tail’s magnetic field. Adapted from Wang et al. 2024

An Unwilling Comet

As the doomed brown dwarf completes laps around the pulsar, the material blown off forms a long tail extending behind it, much like a scaled-up comet. This material slightly impedes our view of the system from Earth, and with periodic regularity, it causes different properties of the observed radio emission to shift around. The simplest of these properties is the brightness of the emission: When the densest part of the comet-like tail falls into our line of sight to the pulsar, some low frequencies are blocked entirely, while higher frequencies manage to shine straight through. These “eclipses” have been seen in this system and others in the past, and the range of frequencies blocked can help constrain the environment of the tail.

Besides simple intensity, astronomers can also measure a property known as the rotation measure (RM) of the emission. This slightly abstract quantity measures how the polarization of the emission has changed since it left the pulsar: radiation departs the black widow with a certain polarization, but any magnetized material it encounters along the way to our telescopes on Earth causes that polarization to shift slightly in a way that’s imprinted on the RM. During the main eclipse, the relatively dense, turbulent material of the tail leaves the polarization scrambled in a way that makes it difficult to measure the RM. However, during the egress of the eclipse when the tail begins to thin out, Wang and collaborators discovered that the RM steadily decreased until it reached its steady, out-of-eclipse value. They infer that this shift is due to a magnetic field in the tail: the material that used to make up the outer atmosphere of the brown dwarf is slightly magnetized with a field strength of about 0.1 Gauss, a little weaker than Earth’s magnetic field at the surface.

Novel, For Now

The researchers note that this is the first time this orbital-phase-dependent change in the RM has been observed, meaning that it’s also the first precise measurement of the magnetic field in the material blown away from black widow’s a companion. However, with FAST now fully operational and proven capable of this kind of measurement, similar observations are likely to follow. We’re likely about to learn much more about the tragic futures of these low-mass companions, and in doing so, more about the pulsars that will bring about about their demise.

By Ben Cassese

Citation

“Change of Rotation Measure during the Eclipse of a Black Widow PSR J2051−0827,” S. Q. Wang et al 2023 ApJ 955 36. doi:10.3847/1538-4357/acea81



Friday, February 23, 2024

Webb Finds Evidence for Neutron Star at Heart of Young Supernova Remnant

SN 1987A (NIRCam, MIRI and NIRSpec Images)
Credits: Image: NASA, ESA, CSA, STScI, Claes Fransson (Stockholm University), Mikako Matsuura (Cardiff University), M. Barlow (UCL), Patrick Kavanagh (Maynooth University), Josefin Larsson (KTH),




NASA’s James Webb Space Telescope has found the best evidence yet for emission from a neutron star at the site of a recently observed supernova. The supernova, known as SN 1987A, was a core-collapse supernova, meaning the compacted remains at its core formed either a neutron star or a black hole. Evidence for such a compact object has long been sought, and while indirect evidence for the presence of a neutron star has previously been found, this is the first time that the effects of high-energy emission from the probable young neutron star have been detected.

Supernovae — the explosive final death throes of some massive stars — blast out within hours, and the brightness of the explosion peaks within a few months. The remains of the exploding star will continue to evolve at a rapid rate over the following decades, offering a rare opportunity for astronomers to study a key astronomical process in real time.

Supernova 1987A

The supernova SN 1987A occurred 160,000 light-years from Earth in the Large Magellanic Cloud. It was first observed on Earth in February 1987, and its brightness peaked in May of that year. It was the first supernova that could be seen with the naked eye since Kepler's Supernova was observed in 1604.

About two hours prior to the first visible-light observation of SN 1987A, three observatories around the world detected a burst of neutrinos lasting only a few seconds. The two different types of observations were linked to the same supernova event, and provided important evidence to inform the theory of how core-collapse supernovae take place. This theory included the expectation that this type of supernova would form a neutron star or a black hole. Astronomers have searched for evidence for one or the other of these compact objects at the center of the expanding remnant material ever since.
Indirect evidence for the presence of a neutron star at the center of the remnant has been found in the past few years, and observations of much older supernova remnants — such as the Crab Nebula — confirm that neutron stars are found in many supernova remnants. However, no direct evidence of a neutron star in the aftermath of SN 1987A (or any other such recent supernova explosion) had been observed, until now.

Claes Fransson of Stockholm University, and the lead author on this study, explained: “From theoretical models of SN 1987A, the 10-second burst of neutrinos observed just before the supernova implied that a neutron star or black hole was formed in the explosion. But we have not observed any compelling signature of such a newborn object from any supernova explosion. With this observatory, we have now found direct evidence for emission triggered by the newborn compact object, most likely a neutron star.” Webb’s Observations of SN 1987A

Webb began science observations in July 2022, and the Webb observations behind this work were taken on July 16, making the SN 1987A remnant one of the first objects observed by Webb. The team used the Medium Resolution Spectrograph (MRS) mode of Webb’s MIRI (Mid-Infrared Instrument), which members of the same team helped to develop. The MRS is a type of instrument known as an Integral Field Unit (IFU).

IFUs are able to image an object and take a spectrum of it at the same time. An IFU forms a spectrum at each pixel, allowing observers to see spectroscopic differences across the object. Analysis of the Doppler shift of each spectrum also permits the evaluation of the velocity at each position.

Spectral analysis of the results showed a strong signal due to ionized argon from the center of the ejected material that surrounds the original site of SN 1987A. Subsequent observations using Webb’s NIRSpec (Near-Infrared Spectrograph) IFU at shorter wavelengths found even more heavily ionized chemical elements, particularly five times ionized argon (meaning argon atoms that have lost five of their 18 electrons). Such ions require highly energetic photons to form, and those photons have to come from somewhere.

“To create these ions that we observed in the ejecta, it was clear that there had to be a source of high-energy radiation in the center of the SN 1987A remnant," Fransson said. "In the paper we discuss different possibilities, finding that only a few scenarios are likely, and all of these involve a newly born neutron star.”

More observations are planned this year, with Webb and ground-based telescopes. The research team hopes ongoing study will provide more clarity about exactly what is happening in the heart of the SN 1987A remnant. These observations will hopefully stimulate the development of more detailed models, ultimately enabling astronomers to better understand not just SN 1987A, but all core-collapse supernovae.

These findings were published in the journal Science.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.




About This Release

Credits:

Media Contact:

Bethany Downer
ESA/Webb, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Science: Claes Fransson (Stockholm University)

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents


Thursday, February 22, 2024

Cosmic Dark Matter Web Detected in Coma Cluster


Figure 1: Dark matter in the Coma Cluster region. The distribution of dark matter calculated based on this research (dark green cloud) is overlayed on an image of the Coma Cluster and more distant background galaxies taken by the Subaru Telescope. Strands of dark matter can be seen extending millions of light years. Credit: HyeongHan et al.

The Subaru Telescope has spotted the terminal ends of dark matter filaments in the Coma Cluster stretching across millions of light years. This is the first time that strands of the cosmic web spanning the entire Universe have been directly detected. This provides new evidence to test theories about the evolution of the Universe.

In the Solar System we are used to seeing matter gathered into round objects like planets, moons, and the Sun. But dark matter, which accounts for most of the mass in the Universe, is believed to exist as a web of long thin strands. But like a spider web, these strands can be hard to see, so astronomers have typically drawn conclusions based on observations of galaxies and gas stuck in the web. This is similar to how if you see a dead leaf that appears to hang in midair, you know there is a spider web that you cannot see.

A team of researchers from Yonsei University used the Subaru Telescope to look for direct signs of dark matter filaments in the Coma Cluster, located 321 million light-years away in the direction of the constellation Coma Berenices. The Coma Cluster is one of the largest and closest galaxy clusters, making it a good place to look for faint signs of dark matter. Ironically, because it is so close, it also appears large, making it difficult to observe the entire cluster. The Subaru Telescope offers the right combination of high sensitivity, high resolution, and wide field of view, to make these observations possible. Through robust data analysis, the team identified the terminal segments of the invisible dark matter filaments attached to the Coma Cluster. This is the first time these strands have been confirmed directly, giving new evidence for the idea that dark matter webs stretch across the Universe.

These results appeared as HyeongHan et al. "Weak-lensing detection of intracluster filaments in the Coma cluster" in Nature Astronomy on January 5, 2024.

This research is based on data collected at Subaru Telescope and obtained from SMOKA, which is operated by the Astronomy Data Center, National Astronomical Observatory of Japan.




Relevant Links



About the Subaru Telescope

The Subaru Telescope is a large optical-infrared telescope operated by the National Astronomical Observatory of Japan, National Institutes of Natural Sciences with the support of the MEXT Project to Promote Large Scientific Frontiers. We are honored and grateful for the opportunity of observing the Universe from Maunakea, which has cultural, historical, and natural significance in Hawai`i.


Wednesday, February 21, 2024

Brightest and fastest-growing: astronomers identify record-breaking quasar

PR Image eso2402a
Artist’s impression of the record-breaking quasar J0529-4351

PR Image eso2402b
Wide-field of the region around the quasar J0529-4351



Videos

Astronomers identify record-breaking quasar | ESOcast Light  
PR Video eso2402a
Astronomers identify record-breaking quasar | ESOcast Light

Artist’s impression of the record-breaking quasar J0529-4351  
PR Video eso2402b
Artist’s impression of the record-breaking quasar J0529-4351

Zooming in on the record-breaking quasar J0529-4351  
PR Video eso2402c
Zooming in on the record-breaking quasar J0529-4351



Using the European Southern Observatory’s (ESO) Very Large Telescope (VLT), astronomers have characterised a bright quasar, finding it to be not only the brightest of its kind, but also the most luminous object ever observed. Quasars are the bright cores of distant galaxies and they are powered by supermassive black holes. The black hole in this record-breaking quasar is growing in mass by the equivalent of one Sun per day, making it the fastest-growing black hole to date.

The black holes powering quasars collect matter from their surroundings in a process so energetic that it emits vast amounts of light. So much so that quasars are some of the brightest objects in our sky, meaning even distant ones are visible from Earth. As a general rule, the most luminous quasars indicate the fastest-growing supermassive black holes.

We have discovered the fastest-growing black hole known to date. It has a mass of 17 billion Suns, and eats just over a Sun per day. This makes it the most luminous object in the known Universe,” says Christian Wolf, an astronomer at the Australian National University (ANU) and lead author of the study published today in Nature Astronomy. The quasar, called J0529-4351, is so far away from Earth that its light took over 12 billion years to reach us.

The matter being pulled in toward this black hole, in the form of a disc, emits so much energy that J0529-4351 is over 500 trillion times more luminous than the Sun [1]. “All this light comes from a hot accretion disc that measures seven light-years in diameter — this must be the largest accretion disc in the Universe," says ANU PhD student and co-author Samuel Lai. Seven light-years is about 15 000 times the distance from the Sun to the orbit of Neptune.

And, remarkably, this record-breaking quasar was hiding in plain sight. “It is a surprise that it has remained unknown until today, when we already know about a million less impressive quasars. It has literally been staring us in the face until now,” says co-author Christopher Onken, an astronomer at ANU. He added that this object showed up in images from the ESO Schmidt Southern Sky Survey dating back to 1980, but it was not recognised as a quasar until decades later.

Finding quasars requires precise observational data from large areas of the sky. The resulting datasets are so large, researchers often use machine-learning models to analyse them and tell quasars apart from other celestial objects. However, these models are trained on existing data, which limits the potential candidates to objects similar to those already known. If a new quasar is more luminous than any other previously observed, the programme might reject it and classify it instead as a star not too distant from Earth.

An automated analysis of data from the European Space Agency’s Gaia satellite passed over J0529-4351 for being too bright to be a quasar, suggesting it to be a star instead. The researchers identified it as a distant quasar last year using observations from the ANU 2.3-metre telescope at the Siding Spring Observatory in Australia. Discovering that it was the most luminous quasar ever observed, however, required a larger telescope and measurements from a more precise instrument. The X-shooter spectrograph on ESO’s VLT in the Chilean Atacama Desert provided the crucial data.

The fastest-growing black hole ever observed will also be a perfect target for the GRAVITY+ upgrade on ESO’s VLT Interferometer (VLTI), which is designed to accurately measure the mass of black holes, including those far away from Earth. Additionally, ESO’s Extremely Large Telescope (ELT), a 39-metre telescope under construction in the Chilean Atacama Desert, will make identifying and characterising such elusive objects even more feasible.

Finding and studying distant supermassive black holes could shed light on some of the mysteries of the early Universe, including how they and their host galaxies formed and evolved. But that’s not the only reason why Wolf searches for them. “Personally, I simply like the chase,” he says. “For a few minutes a day, I get to feel like a child again, playing treasure hunt, and now I bring everything to the table that I have learned since.”

Source: ESO/News



Notes

[1] A few years ago, NASA and the European Space Agency reported that the Hubble Space Telescope had discovered a quasar, J043947.08+163415.7, as bright as 600 trillion Suns. However, that quasar’s brightness was magnified by a ‘lensing’ galaxy, located between us and the distant quasar. The actual luminosity of J043947.08+163415.7 is estimated to be equivalent to about 11 trillion Suns (1 trillion is a million million: 1 000 000 000 000 or 1012).




More information

This research was presented in a paper titled “The accretion of a solar mass per day by a 17-billion solar mass black hole” to appear in Nature Astronomy (doi:10.1038/s41550-024-02195-x).

The team is composed of Christian Wolf (Research School of Astronomy and Astrophysics, Australian National University, Australia [ANU] and Centre for Gravitational Astrophysics, Australian National University, Australia [CGA]), Samuel Lai (ANU), Christopher A. Onken (ANU), Neelesh Amrutha (ANU), Fuyan Bian (European Southern Observatory, Chile), Wei Jeat Hon (School of Physics, University of Melbourne, Australia [Melbourne]), Patrick Tisserand (Sorbonne Universités, CNRS, UMR 7095, Institut d’Astrophysique de Paris, France), and Rachel L. Webster (Melbourne).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.




Links



Contacts

Christian Wolf
Australian National University
Canberra, Australia
Tel: +61(02)-61256373
Cell: +61(0)415330371
Email:
christian.wolf@anu.edu.au

Samuel Lai
Australian National University
Canberra, Australia
Cell: +61 (0) 493418898
Email:
samuel.lai@anu.edu.au

Christopher Onken
Australian National University
Canberra, Australia
Tel: +61(0) 26125 8039
Email:
christopher.onken@anu.edu.au

Rachel L. Webster (study co-author)
University of Melbourne
Melbourne, Australia
Cell: +61(0) 425863209
Email:
r.webster@unimelb.edu.au

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
press@eso.org


Tuesday, February 20, 2024

A high amount of ram

A dwarf spiral galaxy. The centre is not particularly bright and is covered by some dust, while the outer disc and halo wrap around as if swirling water. Across the face of the galaxy, an arc of brightly glowing spots marks areas where new stars are being formed. The galaxy is surrounded by tiny, distant galaxies on a dark background. Credit: ESA/Hubble & NASA, M. Sun

This image features IC 3476, a dwarf galaxy that lies about 54 million light-years from Earth in the constellation Coma Berenices. Whilst this image does not look very dramatic — if we were to anthropomorphise the galaxy, we might say it looks almost serene — the actual physical events taking place in IC 3476 are highly energetic. In fact, the little galaxy is undergoing a process known as ram pressure stripping, which is driving unusually high levels of star formation within regions of the galaxy itself.

We tend to associate the letters ‘ram’ with the acronym RAM, which refers to Random Access Memory in computing. However, ram pressure has a totally distinct definition in physics: it is the pressure exerted on a body when it moves through some form of fluid, due to the overall resistance of the fluid. In the case of entire galaxies experiencing ram pressure, the galaxies are the ‘bodies’ and the intergalactic or intracluster medium (the dust and gas that permeates the space between galaxies, and for the latter the spaces between galaxies in clusters) is the ‘fluid’.

Ram pressure stripping occurs when the ram pressure results in gas being stripped from the galaxy. This stripping away of gas can lead to a reduction in the level of star formation, or even its complete cessation, as gas is absolutely key to the formation of stars. However, the ram pressure can also cause other parts of the galaxy to be compressed, which can actually boost star formation. This is what seems to be taking place in IC 3476: there seems to be absolutely no star formation going on at the edge of the galaxy bearing the brunt of the ram pressure stripping, but then star formation rates within deeper regions of the galaxy seem to be markedly above the average.



Monday, February 19, 2024

What fuels the powerful engine of neutron star mergers?


Around sixty milliseconds after the merger, the simulation shows the jet emitted from the poles of the magnetar (up and down in this still image). The left panel shows the neutron richness of the ejected material. Blue denotes neutron-rich matter, and red denotes matter that contains neutrons and protons in roughly equal proportions. The middle panel shows surfaces of constant rest mass density. The purple curves indicate magnetic field lines. The right panel shows surfaces of constant magnetic field strength. The scale bar shows a length of 500 kilometers. Credit: Kota Hayashi (Max Planck Institute for Gravitational Physics

New computer simulation reveals the dynamo that generates large-scale magnetic fields in merging neutron stars

Merging and colliding neutron stars produce powerful kilonova explosions and gamma-ray bursts. Scientists have long suspected that a large and ultra-strong magnetic field is the engine behind these high-energy phenomena. However, the process that generates this magnetic field has been a mystery until now. Researchers at the Max Planck Institute for Gravitational Physics and at the universities in Kyoto and Toho have revealed the underlying mechanism by performing a super-high resolution computer simulation taking into account all fundamental physics. The researchers showed that ultra-strongly magnetized neutron stars, also known as magnetars, cause very bright kilonova explosions. Telescopic observations could test this prediction in the future.

Neutron stars are compact remnants of supernova explosions and consist of extremely dense matter. They are about 20 kilometers across and have up to twice the mass of our Sun, or almost 700,000 times the mass of our Earth. On August 17, 2017, astronomers observed for the first time gravitational waves, light, and gamma rays from the merger of two neutron stars. This event marked the beginning of a new kind of multi-messenger astronomy, combining gravitational-wave and electromagnetic observations.

Observations of the gravitational waves and the gamma-ray burst emitted during the merger revealed that binary neutron star mergers are the origin of at least a part of short-hard gamma-ray bursts and the heavy elements. “Only by performing a numerical simulation that takes into account all the fundamental physical effects in binary neutron star mergers will we fully understand the complete process and its underlying mechanisms,” explains Masaru Shibata, director of the Computational Relativistic Astrophysics department at the Max Planck Institute for Gravitational Physics in Potsdam. “That’s why we ran a merger simulation that took into account all the implications of Einstein’s theory of relativity and all other fundamental physics, with a spatial resolution more than ten times higher than any previous simulation, and the highest ever.”

What fuels the powerful engine of neutron star mergers?
New computer simulation reveals the dynamo that generates large-scale magnetic fields in merging neutron stars
© Kota Hayashi (Max Planck Institute for Gravitational Physics)
https://www.youtube.com/watch?v=x6qb_kt41Gs

As in the Sun so in the neutron star

High-energy phenomena associated with neutron-star mergers such as kilonova explosions and gamma-ray bursts are most likely driven by magnetohydrodynamics—the interplay between magnetic fields and fluids. This implies that a binary neutron star merger remnant must generate a strong, large-scale magnetic field via a dynamo mechanism.

“For the first time, we could pin down the physical mechanism that generates a large-scale magnetic field from smaller ones in binary neutron star mergers,” says Kenta Kiuchi, group leader in the Computational Relativistic Astrophysics department. “Part of this mechanism is the same that drives our Sun’s magnetic field. In a neutron star merger, the large-scale magnetic field emerges because of instabilities and vortices at the surface where the two neutron stars slam into one another.”

There are two phases of magnetic field amplifications: In a first phase, the Kelvin-Helmholtz instability rapidly amplifies the energy in the magnetic field by a factor of several thousand within a few milliseconds after the merger. “However, this amplified magnetic field still is a small-scale field,” explains Alexis Raboul-Salze, postdoctoral researcher in the Computational Relativistic Astrophysics department. “But after a few milliseconds, there is a second phase of magnetic field amplification due to another instability, the magnetorotational instability. This instability further amplifies the small-scale field and acts as a dynamo on the large-scale field – the same mechanism as in the Sun.”

The resulting highly magnetized massive neutron star born in the collision is hypothetically proposed as a magnetar. About 40 milliseconds after the merger the magnetic fields drives a strong particle wind at relativistic speeds from the poles of the magnetar. This wind forms a jet, which is related to the observed high-energy phenomena. The research group shows that this hypothesis is feasible for the first time.

“Our simulation suggests that the magnetar engine generates very bright kilonova explosions. We can test our prediction by multi-messenger observations in the near future,” concludes Masaru Shibata.




Media contact:

Dr. Elke Müller
Press Officer AEI
Potsdam, Scientific Coordinator
tel:+49 331 567-7303
tel:+49 331 567-7298

elke.mueller@aei.mpg.de

Scientific contacts:

Prof. Masaru Shibata
Director
tel:+49 331 567-7222
tel:+49 331 567-7298

masaru.shibata@aei.mpg.de

Dr. Kenta Kiuchi
Group Leader
tel:+49 331 567-7320

kenta.kiuchi@aei.mpg.de

Dr. Alexis Reboul-Salze
Junior Scientist/Postdoc
tel:+49 331 567-7234

alexis.reboul-salze@aei.mpg.de



Publication:

Kenta Kiuchi, Alexis Reboul-Salze, Masaru Shibata, Yuichiro Sekiguchi
A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers
Nature Astronomy (2024)


Source | DOI


Sunday, February 18, 2024

JWST Photographs Possible Giant Planets Around White Dwarfs

Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star
Credit: NASA/JPL-Caltech


JWST has directly imaged what appear to be two giant exoplanets in orbit around white dwarf stars. This discovery has important implications for the fate of giant planets in our solar system as the Sun evolves into a red giant and eventually becomes a white dwarf.


A planetary nebula appears briefly during the life cycle of most stars, including those like the Sun. Planetary nebulae tend to appear round or elliptical, but they can have dramatically varied shapes, like NGC 5189 shown here. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

The Fate of Most Stars

While brilliant supernova explosions demand our attention when they burst onto the scene, the vast majority of stars will end their lives more quietly, lofting their outer layers into space and forming a glowing planetary nebula that surrounds the star’s exposed core. The core, now a white dwarf containing roughly the mass of the Sun in a sphere roughly the size of Earth, starts out extremely hot and cools slowly over billions of years.

As stars evolve from main-sequence stars to red giants to white dwarfs, it’s clear that close-in planets will meet a fiery fate: as a red giant, the Sun will swell to more than 200 times its current radius, engulfing Mercury, Venus, and possibly Earth. But exactly how the transition affects planets watching things unfold from a distance isn’t yet clear. To learn more, we’ll need to study planets that survived the transformation, and recent observations with JWST may have revealed two planets that fit the bill.

The two white dwarfs and their candidate planets. The object in the upper-left corner of the top row of images is a galaxy.
Credit: Mullally et al. 2024

Investigating Metal-Polluted White Dwarfs

Only a handful of planetary-mass objects have been discovered around white dwarfs, but many more are thought to exist; 25–50% of seemingly solo white dwarfs show metals in their spectra, which suggests that they’re collecting cast-off material from unseen planets or asteroids. If giant planets are common around these “metal-polluted” white dwarfs, it would suggest that 1) these planets are able to survive their home star’s red giant phase, and 2) they play a role in gravitationally nudging material toward the white dwarf.

Susan Mullally (Space Telescope Science Institute) and collaborators pointed JWST at four white dwarfs that may harbor planets. These white dwarfs have been shown to contain metals in their atmospheres and are young enough or close enough that their planets would be relatively bright. Even before carefully removing the white dwarfs’ light from the images, Mullally’s team spotted what they were looking for — a possible giant planet around two of the four white dwarfs.


A comparison of the ages and orbital separations of the two new planet candidates (red triangles), the four giant planets in our solar system (blue stars), and objects with masses less than 12 Jupiter masses discovered previously through direct imaging (black circles). Click to enlarge. Credit: Mullally et al. 2024

Potential Planets on Outlying Orbits

The observations show a reddish object near two of the white dwarfs. If these objects are indeed planets and the same ages as their host white dwarfs (5.3 and 1.6 billion years old), they likely have masses of 1–7 and 1–2 Jupiter masses, respectively. They’re currently orbiting at estimated distances of 11.47 and 34.62 astronomical units (au), which correspond to orbital distances of 5.3 au and 9.7 au when their host stars were on the main sequence — similar to the present-day orbital distances of Jupiter and Saturn.

While the objects appear to be associated with the white dwarfs, it’s not impossible for them to instead be small photobombing objects within our solar system or distant, reddish galaxies meandering in the background. The authors pin the likelihood of their detections being a false positive at 1 in 3,000.

If future JWST observations show that these white dwarfs and their candidate planetary companions march across the sky in step, it will mark the first direct imaging detection of planets similar to the giant planets in our solar system in age, mass, and orbital distance. More than that, it will provide evidence that widely separated planets survive their host stars ballooning into red giants, and that giant planets around white dwarfs are common and help their hosts accrete metal-rich material.

Citation

“JWST Directly Images Giant Planet Candidates Around Two Metal-Polluted White Dwarf Stars,” Susan E. Mullally et al 2024 ApJL 962 L32. doi:10.3847/2041-8213/ad2348