Thursday, June 30, 2022

H1821+243: Chandra Shows Giant Black Hole Spins Slower Than Its Peers

Credit X-ray: NASA/CXC/Univ. of Cambridge/J. Sisk-Reynés et al.;
Radio: NSF/NRAO/VLA;
Optical: PanSTARRS


JPEG (194.9 kb) Large JPEG (3.1 MB)- Tiff (52.8 MB) - More Images



H1821+643 is a quasar powered by a supermassive black hole, located about 3.4 billion light years from Earth. Astronomers used /about/ to determine the spin of the black hole in H1821+643, making it the most massive one to have an accurate measurement of this fundamental property, as described in our press release. Astronomers estimate the actively growing black hole in H1821+643 contains between about three and 30 billion solar masses, making it one of the most massive known. By contrast the supermassive black hole in the center of the Milky Way galaxy weighs about four million suns.

This composite image of H1821+643 contains X-rays from Chandra (blue) that have been combined with radio data from NSF's Karl G. Jansky Very Large Array (red) and an optical image from the PanSTARRS telescope on Hawaii (white and yellow). The researchers used nearly a week's worth of Chandra observing time, taken over two decades ago, to obtain this latest result. The supermassive black hole is located in the bright dot in the center of the radio and X-ray emission.

Because a spinning black hole drags space around with it and allows matter to orbit closer to it than is possible for a non-spinning one, the X-ray data can show how fast the black hole is spinning. The spectrum — that is, the amount of energy as a function wavelength — of H1821+643 indicates that the black hole is rotating at a modest rate compared to other, less massive ones that spin close to the speed of light. This is the most accurate spin measurement for such a massive black hole.

Why is the black hole in H1821+432 spinning only about half as fast as the lower mass cousins? The answer may lie in how these supermassive black holes grow and evolve. This relatively slow spin supports the idea that the most massive black holes like H1821+643 undergo most of their growth by merging with other black holes, or by gas being pulled inwards in random directions when their large disks are disrupted.

Supermassive black holes growing in these ways are likely to often undergo large changes of spin, including being slowed down or wrenched in the opposite direction. The prediction is therefore that the most massive black holes should be observed to have a wider range of spin rates than their less massive relatives.

On the other hand, scientists expect less massive black holes to accumulate most of their mass from a disk of gas spinning around them. Because such disks are expected to be stable, the incoming matter always approaches from a direction that will make the black holes spin faster until they reach the maximum speed possible, which is the speed of light.

A paper describing these results appears in the Monthly Notices of the Royal Astronomical Society and is available at https://arxiv.org/abs/2205.12974 The authors are Julia Sisk-Reynes, Christopher Reynolds, James Matthews, and Robyn Smith, all from the Institute of Astronomy at the University of Cambridge in the UK.

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.


Fast Facts for H1821+243:

Scale: Image is about 6.4 arcmin (5.6 million light-years) across.
Category:
Black Holes, Groups & Clusters of Galaxies
Coordinates (J2000): RA 18h 21m 57.40s | Dec +64° 20´ 37.0"
Constellation:
Draco
Observation Date: 5 observations Jan 17 to Feb 9, 2001
Observation Time: 158 hours 16 minutes (6 days, 14 hours, 16 minutes)
Obs. ID: 1599, 2186, 2310, 2311, 2418
Instrument:
ACIS
References: Sisk-Reynés, J. et al., 2022, MNRAS, 514, 2568; arXiv:2205.12974.
Color Code: X-ray: blue; Radio: red; Optical: red, green, blue
Distance Estimate: About 3.4 billion light-years (z=0.299)





Wednesday, June 29, 2022

Featured Image: The Battle for Star Formation at Taffy Bridge

 

When galaxies clash, is star formation heightened or quenched? The Taffy galaxies (UGC 12914/5) provide an excellent setting to probe this question. These two galaxies, shown above in a representative-color optical image from the Sloan Digital Sky Survey, collided head on just 25–30 million years ago, resulting in a bridge of turbulent gas that stretches across the space between them. A team led by Philip Appleton (California Institute of Technology/Infrared Processing and Analysis Center) carried out new Atacama Large Millimeter/submillimeter Array (ALMA) observations, the locations of which are marked with red circles in the image above, to study this interacting pair of galaxies. The team’s observations of carbon monoxide gas suggest that the filaments and clumps within the bridge that connects the two galaxies are likely gravitationally unbound. Without a source of pressure to keep them together, these potentially star-forming features are likely to dissipate within 2–5 million years. Despite this, star formation presses on in isolated regions. To learn more about the results of this galactic interaction, be sure to check out the full article below!


Citation

“The CO Emission in the Taffy Galaxies (UGC 12914/15) at 60 pc Resolution. I. The Battle for Star Formation in the Turbulent Taffy Bridge,” P. N. Appleton et al 2022 ApJ 931 121. doi:10.3847/1538-4357/ac63b2

By Kerry Hensley




Tuesday, June 28, 2022

Studying Galaxy Growth Spurts in the Early Universe with NASA’s Roman

Spectra of Galaxies within the Hubble Ultra Deep Field
Credits: Science: NASA, ESA, STScI, Casey Papovich (TAMU)
Image Processing: Alyssa Pagan (STScI)


Release ImageS / Relesase Videos



In the American Wild West, high noon was a time for duels and showdowns. When it comes to the history of the universe, cosmic noon featured fireworks of a different sort. Some 2 to 3 billion years after the big bang most galaxies went through a growth spurt, forming stars at a rate hundreds of times higher than we see in our own galaxy, the Milky Way, today. When it launches by May 2027, NASA’s Nancy Grace Roman Space Telescope promises to bring new insights into the heyday of star formation.

Cosmic noon is an important time in the universe’s history because it shaped what galaxies are like today. But many questions remain unanswered. Why did star formation peak and then decline? Why did some galaxies suddenly stop forming stars while others faded out gradually? How important were local influences, like the number of galactic neighbors, in shaping this evolution?

To answer these questions, astronomers need to study a bountiful sample of galaxies from that time period. Roman’s power will lie in its ability to capture thousands of objects of interest in a single view. With such a large survey, scientists won’t have to pick and choose their preferred targets in advance, which can lead to unintended biases.

> “With a field of view 200 times that of the Hubble Space Telescope in infrared light, Roman can change the astronomical landscape by being so efficient,” said Kate Whitaker, assistant professor of Astronomy at the University of Massachusetts in Amherst. Whitaker’s research focuses on studying the regulation of star formation and quenching in massive galaxies in the early universe.

Roman’s wide field of view also will enable astronomers to put individual galaxies into context by seeing how their growth spurts, and subsequent slow-downs, vary depending on their location within the cosmic “web” – the large-scale structure of the universe.

“You take one image, and you get everything. We will see what and where the interesting objects are,” said Casey Papovich, professor of Astronomy at Texas A&M University in College Station, Texas. Papovich’s research includes quantifying the growth and assembly of stellar mass in galaxies in the early universe.

Going Beyond Imagery

While images can help astronomers spot galaxies of interest, much more information can be gleaned by spreading a galaxy’s light out into a spectrum . Papovich, with Vicente (Vince) Estrada-Carpenter of St. Mary’s University in Halifax, Nova Scotia, Canada, and their colleagues, has pioneered a technique for extracting the combined light from all the stars in a galaxy.

By examining a galaxy’s spectrum you can learn about the ages of its stars, its star-formation history, how many heavy chemical elements it contains, and more. By doing this for a large number of early galaxies, astronomers can learn about the processes that drove and eventually brought an end to this period of rapid growth.

Roman’s power can be boosted even further by observing distant galaxies whose light has been distorted by a phenomenon called gravitational lensing. The gravity of an intervening galaxy cluster can magnify and brighten the light from a more distant galaxy, allowing astronomers to study the background galaxy in more detail than would otherwise be available.

Whitaker is already using this technique with Hubble to study the cores of young galaxies versus their outskirts. This work seeks to determine if star formation shuts off from the outside-in or inside-out – that is, from the galaxy’s outskirts to its center or vice versa.

“Galaxy quenching – a sudden end to star formation – can be a fast process on cosmological timescales. As a result, catching one in the act is difficult because they’re so rare,” said Whitaker. “Roman will help us find those rare examples.”

While Roman’s space-based view will provide excellent sharpness and stability, ground-based observatories also will come into play in studying cosmic noon. For example, the Atacama Large Millimeter/submillimeter Array can measure the gas and dust content of distant galaxies. And future 30-meter-class telescopes will be able to measure exquisite details in galaxy spectra due to their ability to collect lots of light.

“Roman and ground-based observatories will complement each other. Roman will single-handedly and efficiently identify and characterize the most interesting galaxies in large fields of view. We then can go back with ground-based telescopes to study them in more detail,” explained Papovich.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the Roman mission, with participation by NASA's Jet Propulsion Laboratory in Southern California, and will provide Roman’s Mission Operations Center. The Space Telescope Science Institute in Baltimore will host Roman’s Science Operations Center and lead the data processing of Roman imaging. Caltech/IPAC in Pasadena, California, will house Roman’s Science Support Center and lead the data processing of Roman spectroscopy.



Credits:

Media Contact:

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Permissions: Content Use Policy

Contact Us: Direct inquiries to the
News Team.

Source: NASA/News


Monday, June 27, 2022

Insights from Binary Stars in the Milky Way

This collage shows dozens of binary star systems seen by the Gaia spacecraft
Credit:
ESA/Gaia/DPAC


Tidal forces are perhaps best known for generating tidal tails and streams in interacting galaxies, but a galaxy’s tidal pull can have subtle effects on binary star systems as well. Credit:
NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team and ESA
 
Many stars travel through space with a binary companion, and large-scale surveys allow us to study enormous numbers of these stellar pairs. What do these surveys tell us about the characteristics of binary stars in the Milky Way?

Stars Awash in the Galactic Tide

The orbital parameters of a binary star system — namely, the distance between the stars and how eccentric (non-circular) their orbits are — can encode information about the formation and evolution of the binary system as well as the evolution of the stars themselves. The orbits of binary stars are susceptible to outside influence, too; gravitational nudges from passing stars, nearby gas clouds, and the overall tidal pull of the galaxy can change a binary system’s orbits over time.

When we examine the orbits of binary systems in the Milky Way with observations from the sky-mapping Gaia spacecraft, we find unexpected trends in the orbital parameters of binary systems near the Sun. Namely, among binary systems separated by large distances (>1,000 au), there are more systems with highly eccentric orbits than expected. What’s the origin of this trend?

Nature vs. Nurture

As Chris Hamilton (Institute for Advanced Study) explains in a recent research article, understanding the current orbits of binary stars in the Milky Way requires separating the effects of nature (the eccentricities that the binary systems are born with) and nurture (the outside gravitational effects of passing stars and the background galactic pull).

Hamilton approached this problem by modeling the effects of the Milky Way’s overall gravitational pull on populations of synthetic binary stars in the outer regions of the galaxy. In order to test the effects of nature as well as nurture, Hamilton modeled populations with different initial eccentricity distributions: uniform (all eccentricities are equally common), thermal (the binaries have reached statistical equilibrium through gravitational interactions; represented by the gray lines in the figure to the right), subthermal (fewer eccentric binaries than the thermal case), and superthermal (more eccentric binaries than the thermal case, as we see near the Sun).


The final distribution of eccentricities (black lines) and best-fitting power laws (green lines) acquired from various initial distributions (red lines). These results show that a superthermal eccentricity distribution, as is seen in binary systems near the Sun, can only arise from a distribution that is initially superthermal. Credit: Adapted from Hamilton 2022


Maybe They’re Born with It, Maybe It’s the Tidal Influence of the Milky Way

The model results show that the tidal pull of the Milky Way tends not to change the eccentricity distribution of a population of binary stars. Put another way, this means that the high number of wide, eccentric binary systems in the solar neighborhood can’t have been caused by the Milky Way’s gravitational influence — another factor, such as the combined effects of individual gravitational nudges from passing stars and gas clouds, must have caused this trend, or binary systems in the solar neighborhood must be born with a similar distribution of eccentricities.

As is so often the case, there’s plenty more work to be done to understand this issue fully. In particular, modeling the effects of gravitational tugs from passing stars and applying new techniques to study the time evolution of binary systems will be critical to reaching a conclusion.

Citation

“On the Phase-mixed Eccentricity and Inclination Distributions of Wide Binaries in the Galaxy,” Chris Hamilton 2022 ApJL 929 L29.doi:10.3847/2041-8213/ac6600

ByKerry Hensley

Saturday, June 25, 2022

Snapshot of a Massive Cluster

Abell 1351
Credit: ESA/Hubble & NASA, H. Ebeling
Acknowledgement: L. Shatz

The massive galaxy cluster Abell 1351 is captured in this image by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. This galaxy cluster lies in the constellation Ursa Major in the northern hemisphere.

This image is filled with streaks of light, which are actually the images of distant galaxies. The streaks are the result of gravitational lensing, an astrophysical phenomenon that occurs when a massive celestial body such as a galaxy cluster distorts spacetime sufficiently strongly to affect the path of light passing through it — almost as if the light were passing through a gigantic lens. Gravitational lensing comes in two varieties — strong and weak — and both can give astronomers an insight into the distribution of mass within a lensing galaxy cluster such as Abell 1351.

This observation is part of an astronomical album comprising snapshots of some of the most massive galaxy clusters. This menagerie of massive clusters demonstrates interesting astrophysical phenomena such as strong gravitational lensing, as well as showcasing spectacular examples of violent galaxy evolution. To obtain this astronomical album, astronomers proposed a Snapshot Program to be slotted into Hubble’s packed observing schedule. These Snapshot Programs are lists of separate, relatively short exposures which can fit into gaps between longer Hubble observations. Having a large pool of Snapshot candidates to dip into allows Hubble to use every second of observing time possible and to maximise the scientific output of the observatory.





Friday, June 24, 2022

Close Encounter More Than 10,000 Years Ago Stirred Up Spirals in an Accretion Disk


The three plots starting from the bottom left are snapshots from the numerical simulation, capturing the system right at the flyby event, 4,000 years after, and 8,000 years after, respectively. The top right image is from the ALMA observations, showing the disk with spirals and the two objects around it, corresponding to the system at 12,000 years after the flyby event. Image credit: Lu et al.

An international research team from China, the U.S., and Germany has used high-resolution observational data from ALMA and discovered a massive accretion disk with two spiral arms surrounding a 32 solar mass protostar in the Galactic Center. This disk could be perturbed by a close encounter with a flyby object, thus leading to the formation of the spiral arms. This finding demonstrates that the formation of massive stars may be similar to that of lower-mass stars through accretion disks and flybys.

Accretion disks around protostars, also known as 'protostellar disks,' are essential components in star formation because they continuously feed gas into protostars from the environment. In this sense, they are stellar cradles where stars are born and raised. Accretion disks surrounding solar-like low-mass protostars have been extensively studied in the last few decades, leading to a wealth of observational and theoretical achievements. For massive protostars, especially early O-type ones of more than 30 solar masses, it is still unclear whether and how accretion disks play a role in their formation. These massive stars are far more luminous than the Sun, with intrinsic luminosities up to several hundreds of thousands of times the solar value, which strongly impact the environment of the entire Galaxy. Therefore, understanding the formation of massive stars is of great importance.

At a distance of about 26,000 light-years away from us, the Galactic Center is a unique and important star-forming environment. The most well-known object here would undoubtedly be the supermassive black hole Sgr A*. Besides that, there is a massive reservoir of dense molecular gas, mainly in the form of molecular hydrogen (H2), which is the raw material for star formation. The gas will start to form stars once gravitational collapse is initiated. However, direct observations of star-forming regions around the Galactic Center are challenging, given the considerable distance and the contamination from foreground gas between the Galactic Center and us. A very high resolution, combined with high sensitivity, is necessary to resolve details of star formation in this region.

The research team used the long-baseline observations of ALMA to achieve a resolution of 40 milliarcseconds. Wecan easily spot a baseball hidden in Osaka from Tokyo at such a resolution. With these high-resolution,high-sensitivityALMA observations,the team has discovered an accretion disk around the Galactic Center. The disk has a diameter of about 4,000 astronomical units and is surrounding a forming early O-type star of 32 solar mass. “This system is among the most massive protostars with accretion disks and represents the first direct imaging of a protostellar accretion disk in the Galactic Center,” said Qizhou Zhang, a co-author and an astrophysicist at the Center for Astrophysics. This discovery suggests that the formation of massive early O-type stars does go through a phase with accretion disks involved, and such a conclusion is valid for the Galactic Center.

What is more interesting is that the disk clearly displays two spiral arms. Such spiral arms resemble those found in spiral galaxies but are rarely seen in protostellar disks. Spiral arms could emerge in accretion disks due to fragmentation induced by gravitational instabilities. However, the disk discovered in this study is hot and turbulent, thus able to balance its gravity. The team detected an object of about three solar masses at about 8,000 astronomical units away from the disk. Through a combined analysis of analytic solutions and numerical simulations, they reproduce a scenario where an object flew by the disk more than 10,000 years ago and perturbed the disk, leading to the formation of spiral arms. "The numerical simulation matches perfectly with the ALMA observations. We conclude that the spiral arms in the disk are relics of the flyby of the intruding object," said Xing Lu, the lead author and an associate researcher at the Shanghai Astronomical Observatory of the Chinese Academy of Sciences.

This finding demonstrates that accretion disks at the early evolutionary stages of star formation are subject to frequent dynamic processes such as flybys, which would substantially influence the formation of stars and planets. It is interesting to note that flybys have also happened in our Solar System. A binary stellar system known as Scholz's Star flew by the solar system about 70,000 years ago, probably penetrating through the Oort cloud and sending comets to the inner solar system. This study suggests that for more massive stars, especially in the high stellar density environment around the Galactic Center, such flybys should also be frequent. "The formation of stars should be a dynamical process, with many mysteries still unresolved," said Xing Lu. "With more upcoming high-resolution ALMA observations, we expect to disentangle these mysteries in star formation."

Scientific Paper




Additional Informaton

These research results were published by X. Lu et al. as "A massive Keplerian protostellar disk with flyby-induced spirals in the Central Molecular Zone" in Nature Astronomy (DOI:10.1038/s41550-022-01681-4).
 
This research was supported by the initial funding of scientific research for high-level talents at Shanghai Astronomical Observatory, JSPS KAKENHI Grant Number JP20K14528, and the National Natural Science Foundation of China grants W820301904 and 12033005.

The original image release was published by the National Astronomical Observatory of Japan (NAOJ)  an ALMA partner on behalf of East Asia.

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Ministerio de Ciencia y Tecnología de Taiwán (MOST), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).

La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Joint ALMA Observatory (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.




Contacts

Nicolás Lira
Education and Public Outreach Coordinator
Joint ALMA Observatory, Santiago - Chile
Phone: +56 2 2467 6519
Cell phone: +56 9 9445 7726
Email: nicolas.lira@alma.cl

Junko Ueda
Public Information Officer
NAOJ
Email: junko.ueda@nao.ac.jp

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Phone::+49 89 3200 6670
Email: pio@eso.org

Amy C. Oliver
Public Information News Manager
National Radio Astronomical Observatory (NRAO), USA
Phone: +1 434 242 9584
Email:
aoliver@nrao.edu


Thursday, June 23, 2022

Astronomers Find Evidence for Most Powerful Pulsar in Distant Galaxy


Top Left:
A giant blue star, much more massive than our Sun, has consumed, through nuclear fusion at its center, all its hydrogen, helium, and heavier elements up to iron. It now has a small iron core (red dot) at its center. Unlike the earlier stages of fusion, the fusion of iron atoms absorbs, rather than releases, energy. The fusion-released energy that has held up the star against its own weight now is gone, and the star will quickly collapse, triggering a supernova explosion. Top Right: The collapse has begun, producing a superdense neutron star with a strong magnetic field at its center (inset). The neutron star, though containing about 1.5 times the mass of the Sun, is only about the size of Manhattan. Bottom Left: The supernova explosion has ejected a fast-moving shell of debris outward into interstellar space. At this stage, the debris shell is dense enough to shroud from view any radio waves coming from the region of the neutron star. Bottom Right: As the shell of explosion debris expands over a few decades, it becomes less dense and eventually becomes thin enough that radio waves from inside can escape. This allowed observations by the VLA Sky Survey to detect bright radio emission created as the rapidly spinning neutron star's powerful magnetic field sweeps through the surrounding space, accelerating charged particles. This phenomenon is called a pulsar wind nebula.
Hi-Res File


Version Without Labels
-- Top Left: A giant blue star, much more massive than our Sun, has consumed, through nuclear fusion at its center, all its hydrogen, helium, and heavier elements up to iron. It now has a small iron core (red dot) at its center. Unlike the earlier stages of fusion, the fusion of iron atoms absorbs, rather than releases, energy. The fusion-released energy that has held up the star against its own weight now is gone, and the star will quickly collapse, triggering a supernova explosion. Top Right: The collapse has begun, producing a superdense neutron star with a strong magnetic field at its center (inset). The neutron star, though containing about 1.5 times the mass of the Sun, is only about the size of Manhattan. Bottom Left: The supernova explosion has ejected a fast-moving shell of debris outward into interstellar space. At this stage, the debris shell is dense enough to shroud from view any radio waves coming from the region of the neutron star. Bottom Right: As the shell of explosion debris expands over a few decades, it becomes less dense and eventually becomes thin enough that radio waves from inside can escape. This allowed observations by the VLA Sky Survey to detect bright radio emission created as the rapidly spinning neutron star's powerful magnetic field sweeps through the surrounding space, accelerating charged particles. This phenomenon is called a pulsar wind nebula. Credit: Melissa Weiss, NRAO/AUI/NSF.
Hi-Res File


A giant blue star, much more massive than our Sun, has consumed, through nuclear fusion at its center, all its hydrogen, helium, and heavier elements up to iron. It now has a small iron core (red dot) at its center. Unlike the earlier stages of fusion, the fusion of iron atoms absorbs, rather than releases, energy. The fusion-released energy that has held up the star against its own weight now is gone, and the star will quickly collapse, triggering a supernova explosion. Credit: Melissa Weiss, NRAO/AUI/NSF.
Hi-Res File


The star's collapse has begun, producing a superdense neutron star with a strong magnetic field at its center (inset). The neutron star, though containing about 1.5 times the mass of the Sun, is only about the size of Manhattan. Credit: Melissa Weiss, NRAO/AUI/NSF.
Hi-Res File


The supernova explosion has ejected a fast-moving shell of debris outward into interstellar space. At this stage, the debris shell is dense enough to shroud from view any radio waves coming from the region of the neutron star. Credit: Melissa Weiss, NRAO/AUI/NSF.
Hi-Res File


As the shell of explosion debris from the supernova expands over a few decades, it becomes less dense and eventually becomes thin enough that radio waves from inside can escape. This allowed observations by the VLA Sky Survey to detect bright radio emission created as the rapidly spinning neutron star's powerful magnetic field sweeps through the surrounding space, accelerating charged particles. This phenomenon is called a pulsar wind nebula. Credit: Melissa Weiss, NRAO/AUI/NSF
. Hi-Res File 
 

VLA images of the location of VT 1137-0337 in 1998, left, and 2018, right. The object became visible to the VLA sometime between these two dates. Credit: Dong & Hallinan, NRAO/AUI/NSF. 
Hi-Res File



Astronomers analyzing data from the VLA Sky Survey (VLASS) have discovered one of the youngest known neutron stars — the superdense remnant of a massive star that exploded as a supernova. Images from the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) indicate that bright radio emission powered by the spinning pulsar’s magnetic field has only recently emerged from behind a dense shell of debris from the supernova explosion.

The object, called VT 1137-0337, is in a dwarf galaxy 395 million light-years from Earth. It first appeared in a VLASS image made in January of 2018. It did not appear in an image of the same region made by the VLA’s FIRST Survey in 1998. It continued to appear in later VLASS observations in 2018, 2019, 2020, and 2022.

“What we’re most likely seeing is a pulsar wind nebula,” said Dillon Dong, a Caltech graduate student who will begin a Jansky Postdoctoral Fellowship at the National Radio Astronomy Observatory (NRAO) later this year. A pulsar wind nebula is created when the powerful magnetic field of a rapidly spinning neutron star accelerates surrounding charged particles to nearly the speed of light.

“Based on its characteristics, this is a very young pulsar — possibly as young as only 14 years, but no older than 60 to 80 years,” said Gregg Hallinan, Dong’s Ph.D advisor at Caltech.

The scientists reported their findings at the American Astronomical Society’s meeting in Pasadena, California.

Dong and Hallinan discovered the object in data from VLASS, an NRAO project that began in 2017 to survey the entire sky visible from the VLA — about 80 percent of the sky. Over a period of seven years, VLASS is conducting a complete scan of the sky three times, with one of the objectives to find transient objects. The astronomers found VT 1137-0337 in the first VLASS scan from 2018.

Comparing that VLASS scan to data from an earlier VLA sky survey called FIRST revealed 20 particularly luminous transient objects that could be associated with known galaxies.

“This one stood out because its galaxy is experiencing a burst of star formation, and also because of the characteristics of its radio emission,” Dong said. The galaxy, called SDSS J113706.18-033737.1, is a dwarf galaxy containing about 100 million times the mass of the Sun.

In studying the characteristics of VT 1137-0337, the astronomers considered several possible explanations, including a supernova, gamma ray burst, or tidal disruption event in which a star is shredded by a supermassive black hole. They concluded that the best explanation is a pulsar wind nebula.

In this scenario, a star much more massive than the Sun exploded as a supernova, leaving behind a neutron star. Most of the original star’s mass was blown outward as a shell of debris. The neutron star spins rapidly, and as its powerful magnetic field sweeps through the surrounding space it accelerates charged particles, causing strong radio emission.

Initially, the radio emission was blocked from view by the shell of explosion debris. As that shell expanded, it became progressively less dense until eventually the radio waves from the pulsar wind nebula could pass through.

“This happened between the FIRST observation in 1998 and the VLASS observation in 2018,” Hallinan said.

Probably the most famous example of a pulsar wind nebula is the Crab Nebula in the constellation Taurus, the result of a supernova that shone brightly in the year 1054. The Crab is readily visible today in small telescopes.

“The object we have found appears to be approximately 10,000 times more energetic than the Crab, with a stronger magnetic field,” Dong said. “It likely is an emerging ‘super Crab’,” he added.

While Dong and Hallinan consider VT 1137-0337 to most likely be a pulsar wind nebula, it also is possible that its magnetic field may be strong enough for the neutron star to qualify as a magnetar — a class of super-magnetic objects. Magnetars are a leading candidate for the origin of the mysterious Fast Radio Bursts (FRBs) now under intense study.

“In that case, this would be the first magnetar caught in the act of appearing, and that, too, is extremely exciting,” Dong said.

Indeed some Fast Radio Bursts have been found to be associated with persistent radio sources, the nature of which also is a mystery. They bear a strong resemblance in their properties to VT 1137-0337, but have shown no evidence of strong variability.

“Our discovery of a very similar source switching on suggests that the radio sources associated with FRBs also may be luminous pulsar wind nebulae,” Dong said.

The astronomers plan to conduct further observations to learn more about the object and to monitor its behavior over time.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Media Contact:

Dave Finley, Public Information Officer
(505) 241-9210

dfinley@nrao.edu




Wednesday, June 22, 2022

NASA’s Webb to Uncover Riches of the Early Universe

Hubble Ultra Deep Field
This Hubble Space Telescope image, known as the Hubble Ultra Deep Field, reveals about 10,000 galaxies and combines ultraviolet, visible, and near-infrared light. Two programs that will use the James Webb Space Telescope will add more detail to this image, capturing thousands of additional galaxies in a fuller range of infrared light. Webb will return both imagery and data known as spectra, providing more details about some of the earliest galaxies to exist in the universe for the first time. This image was captured before the launch of the James Webb Space Telescope. No Webb data are shown in this image. Credits: SCIENCE: NASA, ESA, Steven V.W. Beckwith (STScI), HUDF Team (STScI)

Outlines of Webb’s Ultra Deep Field Observations
This image shows where the James Webb Space Telescope will observe the sky within the Hubble Ultra Deep Field, which consists of two fields. The Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey, led by Steven L. Finkelstein, will point Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) on the primary Hubble Ultra Deep Field (shown in orange), and Webb’s Near-Infrared Camera (NIRCam) on the parallel field (shown in red). The program led by Michael Maseda will observe the primary field (shown in blue) using Webb’s Near-Infrared Spectrograph (NIRSpec). Credits: Science: NASA, ESA, Anton M. Koekemoer (STScI) / Illustration: Alyssa Pagan (STScI)




For decades, telescopes have helped us capture light from galaxies that formed as far back as 400 million years after the big bang – incredibly early in the context of the universe’s 13.8-billion-year history. But what were galaxies like that existed even earlier, when the universe was semi-transparent at the beginning of a period known as the Era of Reionization? NASA’s next flagship observatory, the James Webb Space Telescope, is poised to add new riches to our wealth of knowledge not only by capturing images from galaxies that existed as early as the first few hundred million years after the big bang, but also by giving us detailed data known as spectra. With Webb’s observations, researchers will be able to tell us about the makeup and composition of individual galaxies in the early universe for the first time.

The Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey, co-led by Steven L. Finkelstein, an associate professor at the University of Texas at Austin, will target the same two regions that make up the Hubble Ultra Deep Field – locations in the constellation Fornax where Hubble spent more than 11 days taking deep exposures. To produce its observations, the Hubble Space Telescope targeted nearby areas of the sky simultaneously with two instruments – slightly offset from one another – known as a primary and a parallel field. “We have the same advantage with Webb,” Finkelstein explained. “We’re using two science instruments at once, and they will observe continuously.” They will point Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) on the primary Hubble Ultra Deep Field, and Webb’s Near-Infrared Camera (NIRCam) on the parallel field, getting twice the bang for their “buck” of telescope time.

For the imaging with NIRCam, they’ll observe for over 125 hours. With each passing minute, they’ll obtain more and more information from deeper and deeper in the universe. What do they seek? Some of the earliest galaxies that formed. “We have really good indications from Hubble that there are galaxies in place at a time 400 million years after the big bang,” Finkelstein said. “The ones we see with Hubble are pretty big and very bright. It’s highly likely there are smaller, fainter galaxies that formed even earlier that are waiting to be found.”

This program will use only about one-third of the time Hubble has spent to date on similar investigations. Why? In part, this is because Webb’s instruments were designed to capture infrared light. As light travels through space toward us, it stretches into longer, redder wavelengths due to the expansion of the universe. “Webb will help us push all the boundaries,” said Jennifer Lotz, a coinvestigator on the proposal and director of the Gemini Observatory, part of the National Science Foundation’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory). “And we’re going to release the data immediately to benefit all researchers.”

These researchers will also focus on identifying the metal content in each galaxy, especially in smaller and dimmer galaxies that haven’t yet been thoroughly examined – specifically with the spectra Webb’s NIRISS instrument delivers. “One of the fundamental ways that we trace evolution across cosmic time is by the amount of metals that are in a galaxy,” explained Danielle Berg, an assistant professor at the University of Texas at Austin and a co-investigator on the proposal. When the universe began, there was only hydrogen and helium. New elements were formed by successive generations of stars. By cataloging the contents of each galaxy, the researchers will be able to plot out precisely when various elements existed and update models that project how galaxies evolved in the early universe.

Peeling Back New Layers

Another program, led by Michael Maseda, an assistant professor at the University of Wisconsin-Madison, will examine the primary Hubble Ultra Deep Field using the microshutter array within Webb’s Near-Infrared Spectrograph (NIRSpec). This instrument returns spectra for specific objects depending on which miniature shutters researchers open. “These galaxies existed during the first billion years in the history of the universe, which we have very little information about to date,” Maseda explained. “Webb will provide the first large sample that will give us the chance to understand them in detail.”

We know these galaxies exist because of extensive observations this team has made – along with an international research team – with the ground-based Very Large Telescope’s Multi Unit Spectroscopic Explorer (MUSE) instrument. Although MUSE is the “scout,” identifying smaller, fainter galaxies in this deep field, Webb will be the first telescope to fully characterize their chemical compositions.

These extremely distant galaxies have important implications for our understanding of how galaxies formed in the early universe. “Webb will open a new space for discovery,” explained Anna Feltre, a research fellow at the National Institute for Astrophysics in Italy and a co-investigator. “Its data will help us learn precisely what happens as a galaxy forms, including which metals they contain, how quickly they grow, and if they already have black holes.”

This research will be conducted as part of Webb’s General Observer (GO) programs, which are competitively selected using a dual-anonymous review, the same system that is used to allocate time on the Hubble Space Telescope.

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.



Credits:

Media Contact:

Claire Blome
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Permissions:
Content Use Policy

Contact Us:

Direct inquiries to the
News Team.

Related Links and Documents:



Tuesday, June 21, 2022

Dusty Disks Imaged from NSF’s NOIRLab

PR Image noirlab2212a
Mosaic of a sample of disks found in new survey

PR Image noirlab2212b
Mosaic of a sample of disks found in new survey (labeled)

PR Image noirlab2212c
Dusty disk around HD 34700 A

PR Image noirlab2212d
Dusty disk around HD 169142

PR Image noirlab2212e
Dusty disk around HD 50138

PR Image noirlab2212f
Dusty disk around MWC 614

PR Image noirlab2212g
Dusty disk around MWC 789

PR Image noirlab2212h
Dusty disk around HD 145718



Images from the Gemini South telescope in Chile uncover companions to distant stars

This mosaic of dusty, swirling disks shows a sample of images captured from the International Gemini Observatory, a Program of NSF’s NOIRLab, as part of an unprecedented survey of 44 young massive stars. An international team used Gemini South in Chile to investigate planet formation and uncovered a potential young Jupiter-mass planet, and confirmed the existence of two brown dwarfs. The images will be presented in sessions today at the 240th American Astronomical Society meeting.

This striking image, taken by astronomers using the Gemini South telescope in Chile, is part of a large survey of 44 young, massive stars by the Gemini Planet Imager (GPI) instrument, which imaged their dusty planet-forming disks — likely to become new solar systems — in near-infrared light. The survey found that the disks circling stars up to three times the mass of the Sun tend to have rings, whereas disks around stars that are more massive than three solar masses do not. This suggests that the more massive stars may form planets slightly differently.

Planets form in disks of gas and dust that encircle young stars just a few million years old and GPI is one of a few instruments in the world capable of resolving these disks. Previous observations have indicated that rings, made of large and small dust grains as well as gas, are often seen in these disks. Exactly what creates these rings is uncertain, but they have been attributed to newborn planets interacting with the disk.

Astronomers conducting a survey called Gemini-LIGHTS (Gemini-Large Imaging with GPI Herbig/T-Tauri Survey) have sought to try and answer some of these questions by producing high-resolution images of the disks around a sample of 44 stars.

“We want to answer the fundamental question of how planets form,” said Evan Rich, who is a postdoc at the University of Michigan and the lead author of a new paper describing the results in The Astronomical Journal. In particular, he says the Gemini-LIGHTS survey, “concentrates on stars that are more massive than the Sun to investigate the influence that a parent star's mass might have on the planet-formation process.”

Gemini South captured the images of the disks in near-infrared and polarized light. It found disks around 80% of the 44 targeted stars, and also found one new candidate planet (around V1295 Aquilae) and three brown dwarfs. Two of the brown dwarfs (around the stars (V921 Sco and HD 158643)) had already been identified as candidates by earlier observations and which have now been confirmed through these observations; the third brown dwarf, around the star HD 101412, is a new candidate.

The survey’s key finding, however, is that the disks appear to behave differently depending upon the mass of the star they are circling. “Systems with small dust-grain rings are only found around stars with masses less than three times the mass of the Sun,” said Rich. “This is important because forming planets are thought to create the ringed structure, and our findings suggest that the planet formation process might be different for stars larger than three times the mass of the Sun.”

This information will be presented in a press conference and oral presentation today at the 240th American Astronomical Society Meeting.



More Information

This research was presented in a paper to appear in The Astronomical Journal.

The team is composed of Evan A. Rich (Department of Astronomy, University of Michigan, US), John D. Monnier (Department of Astronomy, University of Michigan, US), Alicia Aarnio (University of North Carolina, US), Anna S. E. Laws (Astrophysics Group, University of Exeter, UK), Benjamin R. Setterholm (Department of Astronomy, University of Michigan, US), David J. Wilner (Center for Astrophysics, Harvard & Smithsonian, US), Nuria Calvet (Department of Astronomy, University of Michigan, US), Tim Harries (Astrophysics Group, University of Exeter, UK), Chris Miller (Department of Astronomy, University of Michigan, US), Claire L. Davies (Astrophysics Group, University of Exeter, UK), Fred C. Adams (Department of Astronomy, University of Michigan & Physics Department, University of Michigan, US), Sean M. Andrews (Center for Astrophysics, Harvard & Smithsonian, US), Jaehan Bae (Department of Astronomy, University of Florida, US), Catherine Espaillant (Department of Astronomy & Institute for Astrophysical Research, Boston University, US), Alexandra Z. Greenbaum (IPAC, Caltech, US), Sasha Hinkley (Astrophysics Group, University of Exeter, UK), Stefan Kraus (Astrophysics Group, University of Exeter, UK), Lee Hartmann (Department of Astronomy, University of Michigan, US), Andrea Isella (Department of Physics & Astronomy, Rice University, US), Melissa McClure (University of Amsterdam, Netherlands), Rebecca Oppenheimer (Astrophysics Department, American Museum of Natural History, US), Laura M. Pérez (Departamento de Astronomía, Universidad de Chile, US), Zhaohuan Zhu (Department of Physics & Astronomy, University of Nevada, US)

NSF’s NOIRLab
(National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O'odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.




Links




Contacts:

Evan Rich
University of Michigan
Email:
earich@umich.edu

Amanda Kocz
Communications Manager
NSF’s NOIRLab
Tel: +1 520 318 8591
Email:
amanda.kocz@noirlab.edu




Monday, June 20, 2022

New Images Using Data From Retired Telescopes Reveal Hidden Features

Infrared-Radio Image of the Large Magellanic Cloud
Credits: Image: ESA, NASA, NASA-JPL, Caltech, Christopher Clark (STScI), S. Kim (Sejong University), T. Wong (UIUC)

Infrared-Radio Image of the Large Magellanic Cloud
Credits: Image: ESA, NASA, NASA-JPL, Caltech, Christopher Clark (STScI), S. Kim (Sejong University), T. Wong (UIUC)

I
nfrared-Radio Image of the Andromeda Galaxy (M31)
Credits: Image: ESA, NASA, NASA-JPL, Caltech, Christopher Clark (STScI), R. Braun (SKA Observatory), C. Nieten (MPI Radioastronomie), Matt Smith (Cardiff University)

Infrared-Radio Image of the Triangulum Galaxy (M33)
Credits: Image: ESA, NASA, NASA-JPL, Caltech, Christopher Clark (STScI), E. Koch (University of Alberta), C. Druard (University of Bordeaux)




New images using data from European Space Agency (ESA) and NASA missions showcase the gas and dust that fill the space between stars in four of the galaxies closest to our own Milky Way. More than striking, the snapshots are also a scientific trove, lending insight into how dramatically the density of dust clouds can vary within a galaxy.

With a consistency similar to smoke, dust is created by dying stars and is one of the materials that forms new stars. The dust clouds observed by space telescopes are constantly shaped and molded by exploding stars, stellar winds, and the effects of gravity. Almost half of all the starlight in the universe is absorbed by dust. Many of the heavy chemical elements essential to forming planets like Earth are locked up in dust grains in interstellar space. Understanding dust is an essential part of understanding our universe.

The observations were made possible through the work of ESA’s Herschel Space Observatory, which operated from 2009 to 2013. Herschel’s super-cold instruments were able to detect the thermal glow of dust, which is emitted as far-infrared light, a range of wavelengths longer than what human eyes can detect.

Herschel’s images of interstellar dust provide high-resolution views of fine details in these clouds, revealing intricate substructures. But the way the space telescope was designed meant that it often couldn’t detect light from clouds that are more spread out and diffuse, especially in the outer regions of galaxies, where the gas and dust become sparse and thus fainter. For some nearby galaxies, that meant Herschel missed up to 30% of all the light given off by dust. With such a significant gap, astronomers struggled to use the Herschel data to understand how dust and gas behaved in these environments. To fill out the Herschel dust maps, the new images combine data from three other missions: ESA’s retired Planck observatory, along with two retired NASA missions, the Infrared Astronomical Satellite (IRAS) and Cosmic Background Explorer (COBE).

The images show the Andromeda galaxy, also known as M31; the Triangulum galaxy, or M33; and the Large and Small Magellanic Clouds – dwarf galaxies orbiting the Milky Way that do not have the spiral structure of the Andromeda and Triangulum galaxies. All four are within 3 million light-years of Earth.

In the images, red indicates hydrogen gas, the most common element in the universe. The image of the Large Magellanic Cloud shows a red tail coming off the bottom left of the galaxy that was likely created when it collided with the Small Magellanic Cloud about 100 million years ago. Bubbles of empty space indicate regions where stars have recently formed, because intense winds from the newborn stars blow away the surrounding dust and gas. The green light around the edges of those bubbles indicates the presence of cold dust that has piled up as a result of those winds. Warmer dust, shown in blue, indicates where stars are forming or other processes have heated the dust.

Many heavy elements in nature – like carbon, oxygen, and iron – can get stuck to dust grains, and the presence of different elements changes the way dust absorbs starlight. This in turn affects the view astronomers get of events like star formation. In the densest dust clouds, almost all the heavy elements can get locked up in dust grains, which increases the dust-to-gas ratio. But in less dense regions, the destructive radiation from newborn stars or shockwaves from exploding stars will smash the dust grains and return some of those locked-up heavy elements back into the gas, changing the ratio once again. Scientists who study interstellar space and star formation want to better understand this ongoing cycle. The Herschel images show that the dust-to-gas ratio can vary within a single galaxy by up to a factor of 20, far more than previously estimated.

“These improved Herschel images show us that the dust ‘ecosystems’ in these galaxies are very dynamic,” said Christopher Clark, an astronomer at the Space Science Telescope Institute in Baltimore, Maryland, who led the work to create the new images.

These results were featured in a press conference at the summer meeting of the American Astronomical Society.



Credits:  
 
Media Contact:

Calla E. Cofield
NASA Jet Propulsion Laboratory, Pasadena, California

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland


Permissions:
Content Use Policy

Contact Us: Direct inquiries to the News Team.



Saturday, June 18, 2022

Dead Star Caught Ripping Up Planetary System

Material Accreting onto the White Dwarf G238-44
This illustration shows a white dwarf star siphoning off debris from shattered objects in a planetary system. The Hubble Space Telescope detects the spectral signature of the vaporized debris that revealed a combination of rocky-metallic and icy material, the ingredients of planets. The findings help describe the violent nature of evolved planetary systems and the composition of its disintegrating bodies. Credits: Illustration: NASA, ESA, Joseph Olmsted (STScI)

Layout of the White Dwarf System G238-44
This illustrated diagram of the planetary system G238-44 traces its destruction. The tiny white dwarf star is at the center of the action. A very faint accretion disk is made up of the pieces of shattered bodies falling onto the white dwarf. The remaining asteroids and planetary bodies make up a reservoir of material surrounding the star. Larger gas giant planets may still exist in the system. Much farther out is a belt of icy bodies such as comets, which also ultimately feed the dead star. Credits: Illustration: NASA, ESA, Joseph Olmsted (STScI)




A star's death throes have so violently disrupted its planetary system that the dead star left behind, called a white dwarf, is siphoning off debris from both the system's inner and outer reaches. This is the first time astronomers have observed a white dwarf star that is consuming both rocky-metallic and icy material, the ingredients of planets.

Archival data from NASA's Hubble Space Telescope and other NASA observatories were essential in diagnosing this case of cosmic cannibalism. The findings help describe the violent nature of evolved planetary systems and can tell astronomers about the makeup of newly forming systems.

The findings are based on analyzing material captured by the atmosphere of the nearby white dwarf star G238-44. A white dwarf is what remains of a star like our Sun after it sheds its outer layers and stops burning fuel though nuclear fusion. "We have never seen both of these kinds of objects accreting onto a white dwarf at the same time," said Ted Johnson, the lead researcher and recent University of California, Los Angeles (UCLA) bachelor's graduate. "By studying these white dwarfs, we hope to gain a better understanding of planetary systems that are still intact."

The findings are also intriguing because small icy objects are credited for crashing into and "irrigating" dry, rocky planets in our solar system. Billions of years ago comets and asteroids are thought to have delivered water to Earth, sparking the conditions necessary for life as we know it. The makeup of the bodies detected raining onto the white dwarf implies that icy reservoirs might be common among planetary systems, said Johnson.

"Life as we know it requires a rocky planet covered with a variety of elements like carbon, nitrogen, and oxygen," said Benjamin Zuckerman, UCLA professor and co-author. "The abundances of the elements we see on this white dwarf appear to require both a rocky and a volatile-rich parent body – the first example we've found among studies of hundreds of white dwarfs."

Demolition Derby

Theories of planetary system evolution describe the transition between a red giant star and white dwarf phases as a chaotic process. The star quickly loses its outer layers and its planets' orbits dramatically change. Small objects, like asteroids and dwarf planets, can venture too close to giant planets and be sent plummeting toward the star. This study confirms the true scale of this violent chaotic phase, showing that within 100 million years after the beginning of its white dwarf phase, the star is able to simultaneously capture and consume material from its asteroid belt and Kuiper belt-like regions.

The estimated total mass eventually gobbled up by the white dwarf in this study may be no more than the mass of an asteroid or small moon. While the presence of at least two objects that the white dwarf is consuming is not directly measured, it's likely one is metal-rich like an asteroid and another is an icy body similar to what's found at the fringe of our solar system in the Kuiper belt.

Though astronomers have cataloged over 5,000 exoplanets, the only planet where we have some direct knowledge of its interior makeup is Earth. The white dwarf cannibalism provides a unique opportunity to take planets apart and see what they were made of when they first formed around the star.

The team measured the presence of nitrogen, oxygen, magnesium, silicon and iron, among other elements. The detection of iron in a very high abundance is evidence for metallic cores of terrestrial planets, like Earth, Venus, Mars and Mercury. Unexpectedly high nitrogen abundances led them to conclude the presence of icy bodies. "The best fit for our data was a nearly two-to-one mix of Mercury-like material and comet-like material, which is made up of ice and dust," Johnson said. "Iron metal and nitrogen ice each suggest wildly different conditions of planetary formation. There is no known solar system object with so much of both."

Death of a Planetary System

When a star like our Sun expands into a bloated red giant late in its life, it will shed mass by puffing off its outer layers. One consequence of this can be the gravitational scattering of small objects like asteroids, comets and moons by any remaining large planets. Like pinballs in an arcade game, the surviving objects can be thrown into highly eccentric orbits.

"After the red giant phase, the white dwarf star that remains is compact – no larger than Earth. The wayward planets end up getting very close to the star and experience powerful tidal forces that tear them apart, creating a gaseous and dusty disk that eventually falls onto the white dwarf's surface," Johnson explained. The researchers are looking at the ultimate scenario for the Sun's evolution, 5 billion years from now. Earth might be completely vaporized along with the inner planets. But the orbits of many of the asteroids in the main asteroid belt will be gravitationally perturbed by Jupiter and will eventually fall onto the white dwarf that the remnant Sun will become. For over two years, the research group at UCLA, the University of California, San Diego and the Kiel University in Germany, has worked to unravel this mystery by analyzing the elements detected on the white dwarf star cataloged as G238-44. Their analysis includes data from NASA's retired Far Ultraviolet Spectroscopic Explorer (FUSE), the Keck Observatory's High Resolution Echelle Spectrometer (HIRES) in Hawaii, and the Hubble Space Telescope's Cosmic Origins Spectrograph (COS) and Space Telescope Imaging Spectrograph (STIS). The team's results were presented at an American Astronomical Society (AAS) press conference on Wednesday, June 15, 2022.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.



Media Contact:

Claire Blome
Space Telescope Science Institute, Baltimore, Maryland

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Science Contact:

Ted Johnson
University of California, Los Angeles, Los Angeles, California

Permissions:
Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents: NASA's Hubble Portal