This Hubble Space Telescope image, known as the Hubble Ultra Deep Field, reveals about 10,000 galaxies and combines ultraviolet, visible, and near-infrared light. Two programs that will use the James Webb Space Telescope will add more detail to this image, capturing thousands of additional galaxies in a fuller range of infrared light. Webb will return both imagery and data known as spectra, providing more details about some of the earliest galaxies to exist in the universe for the first time. This image was captured before the launch of the James Webb Space Telescope. No Webb data are shown in this image. Credits: SCIENCE: NASA, ESA, Steven V.W. Beckwith (STScI), HUDF Team (STScI)
This image shows where the James Webb Space Telescope will observe the sky within the Hubble Ultra Deep Field, which consists of two fields. The Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey, led by Steven L. Finkelstein, will point Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) on the primary Hubble Ultra Deep Field (shown in orange), and Webb’s Near-Infrared Camera (NIRCam) on the parallel field (shown in red). The program led by Michael Maseda will observe the primary field (shown in blue) using Webb’s Near-Infrared Spectrograph (NIRSpec). Credits: Science: NASA, ESA, Anton M. Koekemoer (STScI) / Illustration: Alyssa Pagan (STScI)
For decades, telescopes have helped us capture light from galaxies that formed as far back as 400 million years after the big bang – incredibly early in the context of the universe’s 13.8-billion-year history. But what were galaxies like that existed even earlier, when the universe was semi-transparent at the beginning of a period known as the Era of Reionization? NASA’s next flagship observatory, the James Webb Space Telescope, is poised to add new riches to our wealth of knowledge not only by capturing images from galaxies that existed as early as the first few hundred million years after the big bang, but also by giving us detailed data known as spectra. With Webb’s observations, researchers will be able to tell us about the makeup and composition of individual galaxies in the early universe for the first time.
The Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey, co-led by Steven L. Finkelstein, an associate professor at the University of Texas at Austin, will target the same two regions that make up the Hubble Ultra Deep Field – locations in the constellation Fornax where Hubble spent more than 11 days taking deep exposures. To produce its observations, the Hubble Space Telescope targeted nearby areas of the sky simultaneously with two instruments – slightly offset from one another – known as a primary and a parallel field. “We have the same advantage with Webb,” Finkelstein explained. “We’re using two science instruments at once, and they will observe continuously.” They will point Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) on the primary Hubble Ultra Deep Field, and Webb’s Near-Infrared Camera (NIRCam) on the parallel field, getting twice the bang for their “buck” of telescope time.
For the imaging with NIRCam, they’ll observe for over 125 hours. With each passing minute, they’ll obtain more and more information from deeper and deeper in the universe. What do they seek? Some of the earliest galaxies that formed. “We have really good indications from Hubble that there are galaxies in place at a time 400 million years after the big bang,” Finkelstein said. “The ones we see with Hubble are pretty big and very bright. It’s highly likely there are smaller, fainter galaxies that formed even earlier that are waiting to be found.”
This program will use only about one-third of the time Hubble has spent to date on similar investigations. Why? In part, this is because Webb’s instruments were designed to capture infrared light. As light travels through space toward us, it stretches into longer, redder wavelengths due to the expansion of the universe. “Webb will help us push all the boundaries,” said Jennifer Lotz, a coinvestigator on the proposal and director of the Gemini Observatory, part of the National Science Foundation’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory). “And we’re going to release the data immediately to benefit all researchers.”
These researchers will also focus on identifying the metal content in each galaxy, especially in smaller and dimmer galaxies that haven’t yet been thoroughly examined – specifically with the spectra Webb’s NIRISS instrument delivers. “One of the fundamental ways that we trace evolution across cosmic time is by the amount of metals that are in a galaxy,” explained Danielle Berg, an assistant professor at the University of Texas at Austin and a co-investigator on the proposal. When the universe began, there was only hydrogen and helium. New elements were formed by successive generations of stars. By cataloging the contents of each galaxy, the researchers will be able to plot out precisely when various elements existed and update models that project how galaxies evolved in the early universe.
Peeling Back New Layers
Another program, led by Michael Maseda, an assistant professor at the University of Wisconsin-Madison, will examine the primary Hubble Ultra Deep Field using the microshutter array within Webb’s Near-Infrared Spectrograph (NIRSpec). This instrument returns spectra for specific objects depending on which miniature shutters researchers open. “These galaxies existed during the first billion years in the history of the universe, which we have very little information about to date,” Maseda explained. “Webb will provide the first large sample that will give us the chance to understand them in detail.”
We know these galaxies exist because of extensive observations this team has made – along with an international research team – with the ground-based Very Large Telescope’s Multi Unit Spectroscopic Explorer (MUSE) instrument. Although MUSE is the “scout,” identifying smaller, fainter galaxies in this deep field, Webb will be the first telescope to fully characterize their chemical compositions.
These extremely distant galaxies have important implications for our understanding of how galaxies formed in the early universe. “Webb will open a new space for discovery,” explained Anna Feltre, a research fellow at the National Institute for Astrophysics in Italy and a co-investigator. “Its data will help us learn precisely what happens as a galaxy forms, including which metals they contain, how quickly they grow, and if they already have black holes.”
This research will be conducted as part of Webb’s General Observer (GO) programs, which are competitively selected using a dual-anonymous review, the same system that is used to allocate time on the Hubble Space Telescope.
The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
The Next Generation Deep Extragalactic Exploratory Public (NGDEEP) Survey, co-led by Steven L. Finkelstein, an associate professor at the University of Texas at Austin, will target the same two regions that make up the Hubble Ultra Deep Field – locations in the constellation Fornax where Hubble spent more than 11 days taking deep exposures. To produce its observations, the Hubble Space Telescope targeted nearby areas of the sky simultaneously with two instruments – slightly offset from one another – known as a primary and a parallel field. “We have the same advantage with Webb,” Finkelstein explained. “We’re using two science instruments at once, and they will observe continuously.” They will point Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) on the primary Hubble Ultra Deep Field, and Webb’s Near-Infrared Camera (NIRCam) on the parallel field, getting twice the bang for their “buck” of telescope time.
For the imaging with NIRCam, they’ll observe for over 125 hours. With each passing minute, they’ll obtain more and more information from deeper and deeper in the universe. What do they seek? Some of the earliest galaxies that formed. “We have really good indications from Hubble that there are galaxies in place at a time 400 million years after the big bang,” Finkelstein said. “The ones we see with Hubble are pretty big and very bright. It’s highly likely there are smaller, fainter galaxies that formed even earlier that are waiting to be found.”
This program will use only about one-third of the time Hubble has spent to date on similar investigations. Why? In part, this is because Webb’s instruments were designed to capture infrared light. As light travels through space toward us, it stretches into longer, redder wavelengths due to the expansion of the universe. “Webb will help us push all the boundaries,” said Jennifer Lotz, a coinvestigator on the proposal and director of the Gemini Observatory, part of the National Science Foundation’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory). “And we’re going to release the data immediately to benefit all researchers.”
These researchers will also focus on identifying the metal content in each galaxy, especially in smaller and dimmer galaxies that haven’t yet been thoroughly examined – specifically with the spectra Webb’s NIRISS instrument delivers. “One of the fundamental ways that we trace evolution across cosmic time is by the amount of metals that are in a galaxy,” explained Danielle Berg, an assistant professor at the University of Texas at Austin and a co-investigator on the proposal. When the universe began, there was only hydrogen and helium. New elements were formed by successive generations of stars. By cataloging the contents of each galaxy, the researchers will be able to plot out precisely when various elements existed and update models that project how galaxies evolved in the early universe.
Peeling Back New Layers
Another program, led by Michael Maseda, an assistant professor at the University of Wisconsin-Madison, will examine the primary Hubble Ultra Deep Field using the microshutter array within Webb’s Near-Infrared Spectrograph (NIRSpec). This instrument returns spectra for specific objects depending on which miniature shutters researchers open. “These galaxies existed during the first billion years in the history of the universe, which we have very little information about to date,” Maseda explained. “Webb will provide the first large sample that will give us the chance to understand them in detail.”
We know these galaxies exist because of extensive observations this team has made – along with an international research team – with the ground-based Very Large Telescope’s Multi Unit Spectroscopic Explorer (MUSE) instrument. Although MUSE is the “scout,” identifying smaller, fainter galaxies in this deep field, Webb will be the first telescope to fully characterize their chemical compositions.
These extremely distant galaxies have important implications for our understanding of how galaxies formed in the early universe. “Webb will open a new space for discovery,” explained Anna Feltre, a research fellow at the National Institute for Astrophysics in Italy and a co-investigator. “Its data will help us learn precisely what happens as a galaxy forms, including which metals they contain, how quickly they grow, and if they already have black holes.”
This research will be conducted as part of Webb’s General Observer (GO) programs, which are competitively selected using a dual-anonymous review, the same system that is used to allocate time on the Hubble Space Telescope.
The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
Credits:
Media Contact:
Claire Blome
Space Telescope Science Institute, Baltimore, Maryland
Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland
Permissions: Content Use Policy
Contact Us:
Direct inquiries to the News Team.
Related Links and Documents:
- Cosmological Redshift Infographic
- Galaxies Through Time Video
- Unknown Era: The First Galaxies Infographic