Showing posts with label Orion Nebula. Show all posts
Showing posts with label Orion Nebula. Show all posts

Tuesday, January 14, 2025

Jetting into space

An area in the Orion nebula filled with dark, puffy clouds. On the left side a large area of clouds, crossed by a dark bar, is lit up in red and whitish colours by a protostar within. At the other side a large jet of material ejected by the protostar appears, made of thin, wispy, blue and pink clouds. A couple of foreground stars shine brightly in front of the nebula. Credit: ESA/Hubble & NASA, T. Megeath

Today’s NASA/ESA Hubble Space TelescopePicture of the Week peers into the dusty recesses of the nearest massive star-forming region to Earth, the Orion Nebula. Just 1300 light-years away, the Orion Nebula is visible to the naked eye below the three stars that form the ‘belt’ in the constellation Orion. The nebula is home to hundreds of newborn stars including the subject of this image: the protostars HOPS 150 and HOPS 153.

These protostars get their names from the Herschel Orion Protostar Survey, which was carried out with ESA’s Herschel Space Observatory. The object that can be seen in the upper-right corner of this image is HOPS 150: it’s a binary system, two young protostars orbiting each other. Each has a small, dusty disc of material surrounding it that it is feeding from. The dark line that cuts across the bright glow of these protostars is a cloud of gas and dust, over 2 000 times wider than the distance between Earth and the Sun, falling in on the pair of protostars. Based on the amount of infrared versus other wavelengths of light HOPS 150 is emitting, the protostars are mid-way down the path to becoming mature stars.

Extending across the left side of the image is a narrow, colourful outflow called a jet. This jet comes from the nearby protostar HOPS 153, out of frame. HOPS 153 is a significantly younger stellar object than its neighbour, still deeply embedded in its birth nebula and enshrouded by a cloud of cold, dense gas. While Hubble cannot penetrate this gas to see the protostar, the jet HOPS 153 has emitted is brightly visible as it plows into the surrounding gas and dust of the Orion Nebula.

The transition from tightly swaddled protostar to fully fledged star will dramatically affect HOPS 153’s surroundings. As gas falls onto the protostar, its jets spew material and energy into interstellar space, carving out bubbles and heating the gas. By stirring up and warming nearby gas, HOPS 153 may regulate the formation of new stars in its neighbourhood and even slow its own growth.



Sunday, June 09, 2024

Teardrops in the sky

Young Stellar Object 177-341
Credit: ESO/M. L. Aru et al.

Is it a comet? Is it a spaceship? The object in this Picture of the Week might be a bit hard to recognise at first. It is in fact a young star — but why does it have such an unusual shape?

Young stars are surrounded by a disc of gas and dust: the building materials for planets. When other very bright and massive stars are present nearby, their light heats the young star’s disc, stripping away part of its material. The teardrop-shaped object in this image, 177-341 W, is in the Orion Nebula. The stars eroding away the disc of 177-341 W are out of the frame past the upper-right corner; when their radiation clashes with the material around the young star, it creates the bright, bow-like structure seen here in yellow. The tail extending from the star towards the lower-left corner is material being dragged away from 177-341 W by the stars out of the field of view. This type of objects — ionised protoplanetary discs — are known as “proplyds”.

This observation is presented in a new paper led by Mari-Liis Aru (ESO) and taken with the Multi Unit Spectroscopic Explorer (MUSE) instrument on ESO’s Very Large Telescope (VLT) in Chile. The colours shown in this image map different elements like hydrogen, nitrogen, sulfur and oxygen. But this is just a small fraction of all the data gathered by MUSE, which actually takes thousands of images at different colours or wavelengths simultaneously. This allows astronomers to study the physical properties of protoplanetary discs in great detail, including the amount of mass that they lose. This new paper presents MUSE observations of many other proplyds in Orion, part of a project led by Carlo F. Manara (ESO) which will help astronomers understand how stars and planetary systems form in these stellar nurseries.

Links
Source: ESO/Images


Tuesday, May 07, 2024

Orion Nebula (M42)

Orion Nebula (M42)
Hi-res imaage

Distance from Earth 1,500 light-years

Detail : The Orion Nebula (M42) is a star-forming region in the winter constellation. It is located at a distance of 1,500 light-years from Earth and is known as one of the nearest star-forming regions. Due to its large apparent size, the Orion Nebula is easy to find with the naked eye, and many stars can be seen through an amateur telescope.

At the center of the Orion Nebula is a cluster of massive newborn stars called Trapezium that ionize surrounding hydrogen gas by their ultraviolet light. The ionized gas emits a red glow.

See also the near-infrared image of the center of the Orion Nebula, near Trapezium, that was taken in January 1999 when the Subaru Telescope made its first "First Light" observation.

Instrument: Hyper Suprime-Cam (HSC)

This image was created by combining three different wavelengths: g-band ( 470 nanometers), i-band ( 760 nanometers), and y-band ( 980 nanometers). Blue, green, and red colors were assigned to these wavelengths respectively.

Relevant Links:


Monday, April 24, 2023

A stellar sprinkler

V* V2423 Ori
Credit: ESO/Kirwan et al.

This Picture of the Week shows the young stellar object 244-440 in the Orion Nebula observed with ESO’s Very Large Telescope (VLT) –– the sharpest image ever taken of this object. That wiggly magenta structure is a jet of matter launched close to the star, but why does it have that shape?

Very young stars are often surrounded by discs of material falling towards the star. Some of this material can be expelled into powerful jets perpendicularly to the disc. The S-shaped jet of 244-440 suggests that what lurks at the center of this object isn’t one but two stars orbiting each other. This orbital motion periodically changes the orientation of the jet, similar to a water sprinkler. Another possibility is that the strong radiation from the other stars in the Orion cloud could be altering the shape of the jet.

These observations, presented in a new paper led by Andrew Kirwan at Maynooth University in Ireland, were taken with the Multi Unit Spectroscopic Explorer (MUSE) instrument at ESO’s VLT in Chile. Red, green and blue colours show the distribution of iron, nitrogen and oxygen respectively. But this is just a small fraction of all the data gathered by MUSE, which actually takes thousands of images at different colours or wavelengths simultaneously. This allows astronomers to study not only the distribution of many different chemical elements but also how they move. 

Moreover, MUSE is installed at the VLT’s Unit Telescope 4, which is equipped with an advanced adaptive optics facility that corrects atmospheric turbulence, delivering images sharper than Hubble’s. These new observations will therefore allow astronomers to study with unprecedented detail how stars are born in massive clouds like Orion.

Links


Source: ESO/potw



Wednesday, September 07, 2022

Massive Stars’ Blasts Hitting Orion’s “Sword” Mapped in Unprecedented Detail Using Hawaiʻi Telescope

Infrared image of orion's photo-dissociation region captured by the Keck ii telescope
Credit: Habart et al./W. M. Keck Observatory

Maunakea, Hawaiʻi Astronomers using W. M. Keck Observatory on Hawaiʻi Island have captured from Maunakea the most detailed and complete images ever taken of the zone where the famed constellation of Orion gets zapped with ultraviolet (UV) radiation from massive young stars.

This irradiated neutral zone, called a Photo-Dissociation Region (PDR), is located in the Orion Bar within the Orion Nebula, an active star-forming site found in the middle of the “sword” hanging from Orion’s “belt.” When viewed with the naked eye, the nebula is often mistaken for one of the stars in the constellation; when viewed with a telescope, the photogenic nebula is seen as a glowing gaseous stellar nursery located 1,350 light-years from Earth.

“It was thrilling being the first, together with my colleagues of the ‘PDRs4All’ James Webb Space Telescope team, to see the sharpest images of the Orion Bar ever taken in the near infrared,” said Carlos Alvarez, a staff astronomer at Keck Observatory and co-author of the study.

Because the Orion Nebula is the closest massive star formation region to us and may be similar to the environment in which our solar system was born, studying its PDR – the area that’s heated by starlight – is an ideal place to find clues as to how stars and planets are created.

“Observing photo-dissociation regions is like looking into our past,” said Emilie Habart, an Institut d’Astrophysique Spatiale associate professor at Paris-Saclay University and lead author of a paper on this study. “These regions are important because they allow us to understand how young stars influence the gas and dust cloud they are born in, particularly sites where stars, like the Sun, form.”

The study has been accepted for publication in the journal Astronomy & Astrophysics, and is available in preprint format on arXiv.org.

These pathfinder observations have assisted in the planning of the James Webb Space Telescope (JWST) Early Release Science (ERS) program PDRs4All: Radiative feedback of massive stars (ID1288). The PDRs4All program is described in a Publications of the Astronomical Society of the Pacific paper by Berné, Habart, Peeters et al. (2022).

Methodology

To probe Orion’s PDR, the PDRs4All team used Keck Observatory’s second generation Near-Infrared Camera (NIRC2) in combination with the Keck II telescope’s adaptive optics system. They successfully imaged the region with such extreme detail, the researchers were able to spatially resolve and distinguish the Orion Bar’s different substructures – such as ridges, filaments, globules, and proplyds (externally illuminated photoevaporating disks around young stars) – that formed as starlight blasted and sculpted the nebula’s mixture of gas and dust.


Left: Hubble Space Telescope mosaic of the Orion Bar. Credit: NASA/STScI/Rice Univ./C.O’Dell et al. The NIRC2 wide camera Field of View is shown in the yellow square. Right: Infrared heat map of the Orion Bar obtained with Keck Observatory’s NIRC2 instrument reveals substructures such as proplyds. Credit: Habart et al./W. M. Keck Observatory


“Never before have we been able to observe at a small scale how interstellar matter structures depend on their environments, particularly how planetary systems could form in environments strongly irradiated by massive stars,” said Habart. “This may allow us to better understand the heritage of the interstellar medium in planetary systems, namely our origins.”

Massive young stars emit large quantities of UV radiation that affect the physics and chemistry of their local environment; how this surge of energy the stars inject into their native cloud impacts and shapes star formation is not yet well known.

The new Keck Observatory images of the Orion Bar will help deepen astronomers’ understanding of this process because they reveal in detail where gas in its PDR changes from hot ionized gas, to warm atomic, to cold molecular gas. Mapping this conversion is important because the dense, cold molecular gas is the fuel needed for star formation.

Source:  W. M. Keck Observatory


What's Next

These new observations from Keck Observatory have informed plans for JWST observations of the Orion Bar, which is among JWST’s targets and is expected to be observed in the coming weeks.

“One of the most exciting aspects of this work is seeing Keck play a fundamental role in the JWST era,” said Alvarez. “JWST will be able to dive deeper into the Orion Bar and other PDRs, and Keck will be instrumental in validating JWST’s early science results. Together, the two telescopes can provide unique insight into the characteristics of the gas and chemical composition of PDRs, which will help us understand the nature of these fascinating star-blasted regions.”


About NIRC2

The Near-Infrared Camera, second generation (NIRC2) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

About Adaptive Optics

W. M. Keck Observatory is a distinguished leader in the field of adaptive optics (AO), a breakthrough technology that removes the distortions caused by the turbulence in the Earth’s atmosphere.  Keck Observatory pioneered the astronomical use of both natural guide star (NGS) and laser guide star adaptive optics (LGS AO) and current systems now deliver images three to four times sharper than the Hubble Space Telescope at near-infrared wavelengths. AO has imaged the four massive planets orbiting the star HR8799, measured the mass of the giant black hole at the center of our Milky Way Galaxy, discovered new supernovae in distant galaxies, and identified the specific stars that were their progenitors. Support for this technology was generously provided by the Bob and Renee Parsons Foundation, Change Happens Foundation, Gordon and Betty Moore Foundation, Mt. Cuba Astronomical Foundation, NASA, NSF, and W. M. Keck Foundation.

About W. M. Keck Observatory

The W. M. Keck Observatory telescopes are among the most scientifically productive on Earth. The two 10-meter optical/infrared telescopes atop Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometers, and world-leading laser guide star adaptive optics systems. Some of the data presented herein were obtained at Keck Observatory, which is a private 501(c) 3 non-profit organization operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.


Monday, August 08, 2022

Celestial Cloudscape in the Orion Nebula

Orion Nebula
Credit: ESA/Hubble & NASA, J. Bally
Acknowledgement: M. H. Özsaraç

This celestial cloudscape from the NASA/ESA Hubble Space Telescope captures the colourful region surrounding the Herbig-Haro object HH 505. Herbig-Haro objects are luminous regions surrounding newborn stars, and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. In the case of HH 505, these outflows originate from the star IX Ori, which lies on the outskirts of the Orion Nebula around 1000 light-years from Earth. The outflows themselves are visible as gracefully curving structures at the top and bottom of this image, and are distorted into sinuous curves by their interaction with the large-scale flow of gas and dust from the core of the Orion Nebula.

This observation was captured with Hubble’s Advanced Camera for Surveys (ACS) by astronomers studying the properties of outflows and protoplanetary discs. The Orion Nebula is awash in intense ultraviolet radiation from bright young stars. The shockwaves formed by the outflows are brightly visible to Hubble, but the slower-moving currents of stellar material are also highlighted by this radiation. That allows astronomers to directly observe jets and outflows and learn more about their structures.

The Orion Nebula is a dynamic region of dust and gas where thousands of stars are forming, and is the closest region of massive star formation to Earth. As a result, it is one of the most scrutinised areas of the night sky and has often been a target for Hubble. This observation was also part of a spellbinding Hubble mosaic of the Orion Nebula, which combined 520 ACS images in five different colours to create the sharpest view ever taken of the region.

Monday, March 07, 2022

Hubble's Advanced Camera for Surveys Celebrates 20 Years of Discovery


Hubble's Advanced Camera for Surveys (ACS) forever changed our view of the universe. Two decades into its epic mission, ACS continues to deliver ground-breaking science and stunning images. ACS has taken over 125,000 pictures and spawned numerous discoveries. Here is a portfolio of some of the ACS's most striking images. In this six-panel collage, the photos are (left to right): the Spire in the Eagle Nebula, V838 Monocerotis, the Hubble Ultra Deep Field (HUDF), the Whirlpool Galaxy (M51), Saturn, and the Orion Nebula (M42).Credits: Image: NASA, ESA, STScI 


For 20 years, the Advanced Camera for Surveys (ACS) has unveiled intriguing new secrets of the universe, looking deep into space with unprecedented clarity from onboard NASA's Hubble Space Telescope. Astronauts installed ACS during Hubble Servicing Mission 3B, also known as STS-109, on March 7, 2002. With its wide field of view, sharp image quality, and high sensitivity, ACS has delivered many of Hubble's most impressive images of deep space.

Former astronaut Mike Massimino, one of the two spacewalking astronauts who installed ACS, remembers, "We knew ACS would add so much discovery potential to the telescope, but I don't think anybody really understood everything it could do. It was going to unlock the secrets of the universe."

ACS has lived up to that promise. Following its installation, ACS became Hubble's most frequently used instrument. Among its many accomplishments, the camera has helped map the distribution of dark matter, detected the most distant objects in the universe, searched for massive planets and studied the evolution of clusters of galaxies.

"When ACS was installed on Hubble, the telescope was already famous for taking deep images of the distant universe, like the Hubble Deep Field," explained Tom Brown, Head of the Hubble Space Telescope Mission Office at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. "However, because ACS was so powerful relative to the earlier cameras, it became routine to see very distant galaxies in the background of Hubble images, even when we were looking at nearby objects."

One example of this is a spectacular disrupted galaxy called the Tadpole (UGC 10214). Astronomers photographed the Tadpole shortly after ACS's installation to demonstrate the camera's capabilities. With its long tail of stars, the Tadpole looked like a runaway pinwheel firework. But what was really stunning was the backdrop — a rich tapestry of 6,000 galaxies captured by ACS.

"The Advanced Camera for Surveys represented a new paradigm for Hubble Space Telescope instruments when it was designed. It has lived up to expectations, proving to be one of Hubble's most scientifically productive instruments," said Mark Clampin, Director of the Sciences and Exploration Directorate at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Prior to joining Goddard, Clampin was the ACS Group Lead at STScI, where he worked on three Hubble Servicing Missions. 

In January 2007, an electronics malfunction rendered the two most-used science channels on ACS inoperable. Thanks to engineering ingenuity, spacewalking astronauts on Hubble Servicing Mission 4 (STS-125) repaired the Wide Field Channel, the workhorse responsible for 70 percent of the pre-2007 ACS science. The High Resolution Channel, however, could not be repaired. Still, two decades into its mission, ACS continues to deliver ground-breaking science.

"The Advanced Camera for Surveys has opened our eyes to a deep and active universe for two decades," said Jennifer Wiseman, NASA's Hubble Senior Project Scientist. "We are anticipating still more discoveries with this camera, in conjunction with Hubble's other science instruments, for many years to come."

To date, ACS has taken over 125,000 pictures. These observations have spawned numerous discoveries, some of which are highlighted below.

The Hubble Ultra Deep Field 

In undoubtedly its most important observations, ACS revealed a series of the deepest portraits of the universe ever achieved by humankind. In the original Hubble Ultra Deep Field (HUDF), unveiled in 2004, ACS teamed up with Hubble's Near Infrared Camera and Multi-object Spectrometer (NICMOS) to capture light from galaxies that existed about 13 billion years ago, some 400 to 800 million years after the Big Bang. This million-second-long exposure revealed new insights into some of the first galaxies to emerge from the so-called "dark ages," the time shortly after the Big Bang when the first stars reheated the cold, dark universe. 

In later versions, ACS teamed with other Hubble instruments to refine the depth and reach of the original Hubble Ultra Deep Field. These portraits pushed humanity's view of the universe back to within 435 million years of the Big Bang, capturing images of the earliest objects in the cosmos. They forever changed our view of the universe and spawned innumerable collaborations.

 The Frontier Fields

Following in the spirit of the Hubble Ultra Deep Field, the Frontier Fields extended Hubble's reach even farther with the help of giant cosmic lenses in space. The immense gravity of massive clusters of galaxies warps the light from even-more-distant galaxies beyond, distorting and magnifying the light until those galaxies — too faint to be seen by Hubble directly — become visible. Frontier Fields combined the power of Hubble with the power of these "natural telescopes" to reveal galaxies 10 to 100 times fainter than could be seen by Hubble alone. Astronomers simultaneously used ACS for visible-light imaging and Hubble's Wide Field Camera 3 for its infrared vision.

Over the course of three years, Hubble devoted 840 orbits around the Earth — that's more than 1,330 hours — to six clusters of galaxies and six "parallel fields" — regions near the galaxy clusters. While these parallel fields could not be used for gravitational lensing, Hubble performed "deep field" observations on them — long looks far into the depths of space. Through the power of gravitational lensing, Hubble peered more deeply into space than ever before, while the parallel field observations expanded our knowledge of the early universe that began with the Hubble Deep Fields and Hubble Ultra Deep Field.

Helping the New Horizons Mission by Photographing Pluto

ACS captured the most detailed images ever taken of the dwarf planet Pluto years before the New Horizons flyby. The images reveal an icy, mottled, dark molasses-colored world undergoing seasonal surface and brightness changes. The ACS images were invaluable to planning the details of the New Horizons flyby in 2015 by showing which hemisphere looked more interesting for the spacecraft to take close-up snapshots during its brief encounter.

The Mysterious Fomalhaut b  

In 2008, ACS made the first visible-light snapshot of what was initially thought to be a planet, dubbed Fomalhaut b, orbiting the nearby, bright southern star Fomalhaut. The diminutive-looking object appeared as a dot next to a vast ring of icy debris that ACS observed to be encircling Fomalhaut. In following years, researchers tracked the object along its trajectory. But over time the dot expanded and became fainter as it moved out of sight. Instead of a planet, it is now thought to be an expanding cloud of very fine dust particles from two icy bodies that smashed into each other, according to some researchers. The nature of the object is still being debated, and follow-up studies may unravel this mystery.

The Light Echo of V838 Monocerotis  

The ACS captured an unusual phenomenon in space called a light echo, where light from an erupting star reflects or "echoes" off the dust and then travels to Earth. The echo came from the variable star V838 Monocerotis (V838 Mon). In early 2002, V838 Mon increased in brightness temporarily to become 600,000 times brighter than our Sun. The reason for the eruption is still unclear.

Light from V838 Mon propagated outward through a cloud of dust surrounding the star. Because of the extra distance the scattered light traveled, it reached the Earth years after the light from the stellar outburst itself. ACS monitored the light from the stellar outburst for several years as it continued to reflect off shells of dust surrounding the star. The phenomenon is an analog of a sound produced when an Alpine yodeler's voice echoes off the surrounding mountainsides. The spectacular light echo allowed astronomers to view continuously changing cross-sections of dust surrounding the star. This is a dramatic illustration of the power of ACS and Hubble to monitor phenomena over time. The longevity and consistency of ACS is critical for this type of research. 

Collision of the Milky Way and Andromeda Galaxies

By measuring the tiny, sideways motion of a group of stars in our neighboring Andromeda galaxy, ACS allowed astronomers to calculate that Andromeda and our Milky Way will collide head-on in about 4 billion years from now. Andromeda, also known as M31, is now 2.5 million light-years away, but it is falling toward the Milky Way under the mutual pull of gravity between the two galaxies. The prediction is that they will merge into a single elliptical galaxy similar to the kind commonly seen throughout the universe.

Galaxy Cluster Abell 1689's Gravitational Lens

In 2002, ACS delivered an unprecedented and dramatic new view of the cosmos when it demonstrated the power of gravitational lensing. The ACS peered straight through the center of one of the most massive galaxy clusters known, called Abell 1689. The gravity of the cluster's trillion stars – plus dark matter – acts as a 2-million-light-year-wide "lens" in space. This gravitational lens bends and magnifies the light of galaxies located far behind it, distorting their shapes and creating multiple images of individual galaxies.  

ACS's sharpness, combined with this behemoth natural lens, revealed remote galaxies previously beyond even Hubble's reach. The results shed light on galaxy evolution and dark matter in space.

Mature and "Toddler" Galaxies Far Back in Time

Using ACS to look back in time nearly 9 billion years, an international team of astronomers found mature galaxies in a young universe. The galaxies are members of a cluster of galaxies that existed when the universe was only 5 billion years old. This compelling evidence that galaxies must have started forming just after the Big Bang was bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found galaxies a mere 1.5 billion years after the birth of the cosmos. The early galaxies reside in a still-developing cluster, the most distant proto-cluster ever found. 

The ACS was built especially for studies of such distant objects. These findings further support observations and theories that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early universe agrees with a cosmological model wherein clusters form from the merger of many sub-clusters in a universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known.

Clues about the Accelerating Universe and Dark Energy

Astronomers using ACS found supernovas that exploded so long ago they provide new clues about the accelerating universe and its mysterious "dark energy." ACS can pick out the faint glow of these very distant supernovas. The ACS can then dissect their light to measure their distances, study how they fade, and confirm that they are a special type of exploding star, called a Type Ia supernova, that are reliable distance indicators. Type Ia supernovas glow at a predictable peak brightness, which makes them reliable objects for calibrating vast intergalactic distances.

In 1998, Hubble astronomers found such a far-off supernova that provided the unexpected revelation that galaxies appeared to be moving away from each other at an ever-increasing speed. They've attributed this accelerating expansion to a mysterious factor known as dark energy that is believed to permeate the universe. Since its installation, ACS has been hunting Type Ia supernovas in the early universe to provide supporting evidence.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.



Credits: Release: NASA, ESA 

Media Contact: 

Ann Jenkins
Space Telescope Science Institute, Baltimore, Maryland

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland


Contact Us: Direct inquiries to the News Team.

Related Links and Documents:  


Source: HubbleSite/News


Wednesday, May 19, 2021

NASA's Webb to Study How Massive Stars' Blasts of Radiation Influence Their Environments


The Orion Bar is a diagonal, ridge-like feature of gas and dust in the lower left quadrant of this image of the Orion Nebula. Sculpted by the intense radiation from nearby hot, young stars, the Orion Bar at first glance appears to be shaped like a bar. It is probably prototypical of a photodissociation region, or PDR. Credits: SCIENCE: NASA, ESA, Massimo Robberto (STScI, ESA), Hubble Space Telescope Orion Treasury Project Team IMAGE PROCESSING: Alyssa Pagan (STScI). Hi-res Image

In a nearby stellar nursery called the Orion Nebula, young, massive stars are blasting far-ultraviolet light at the cloud of dust and gas from which they were born. This intense flood of radiation is violently disrupting the cloud by breaking apart molecules, ionizing atoms and molecules by stripping their electrons, and heating the gas and dust. An international team using NASA's James Webb Space Telescope, which is scheduled to launch in October, will study a portion of the radiated cloud called the Orion Bar to learn more about the influence massive stars have on their environments, and even on the formation of our own solar system. 

"The fact that massive stars shape the structure of galaxies through their explosions as supernovas has been known for a long time. But what people have discovered more recently is that massive stars also influence their environments not only as supernovas, but through their winds and radiation during their lives," said one of the team's principal investigators, Olivier Berné, a research scientist at the French National Centre for Scientific Research in Toulouse.

Why the Orion Bar?

While it might sound like a Friday-night watering hole, the Orion Bar is actually a ridge-like feature of gas and dust within the spectacular Orion Nebula. A little more than 1,300 light-years away, this nebula is the nearest region of massive star formation to the Sun. The Orion Bar is sculpted by the intense radiation from nearby, hot, young stars, and at first glance appears to be shaped like a bar. It is a "photodissociation region," or PDR, where ultraviolet light from young, massive stars creates a mostly neutral, but warm, area of gas and dust between the fully ionized gas surrounding the massive stars and the clouds in which they are born. This ultraviolet radiation strongly influences the gas chemistry of these regions and acts as the most important source of heat.

PDRs occur where interstellar gas is dense and cold enough to remain neutral, but not dense enough to prevent the penetration of far-ultraviolet light from massive stars. Emissions from these regions provide a unique tool to study the physical and chemical processes that are important for most of the mass between and around stars. The processes of radiation and cloud disruption drive the evolution of interstellar matter in our galaxy and throughout the universe from the early era of vigorous star formation to the present day.

"The Orion Bar is probably the prototype of a PDR," explained Els Peeters, another of the team's principal investigators. Peeters is a professor at the University of Western Ontario and a member of the SETI Institute. "It's been studied extensively, so it's well characterized. It's very close by, and it's really seen edge on. That means you can probe the different transition regions. And since it's close by, this transition from one region to another is spatially distinct if you have a telescope with high spatial resolution." 

The Orion Bar is representative of what scientists think were the harsh physical conditions of PDRs in the universe billions of years ago. "We believe that at this time, you had 'Orion Nebulas' everywhere in the universe, in many galaxies," said Berné. "We think that it can be representative of the physical conditions in terms of the ultraviolet radiation field in what are called 'starburst galaxies,' which dominate the era of star formation, when the universe was about half its current age." 

The formation of planetary systems in interstellar regions irradiated by massive young stars remains an open question. Detailed observations would allow astronomers to understand the impact of the ultraviolet radiation on the mass and composition of newly formed stars and planets.

In particular, studies of meteorites suggest that the solar system formed in a region similar to the Orion Nebula. Observing the Orion Bar is a way to understand our past. It serves as a model to learn about the very early stages of the formation of the solar system.


This graphic depicts the stratified nature of a photodissociation region (PDR) such as the Orion Bar. Once thought to be homogenous areas of warm gas and dust, PDRs are now known to contain complex structure and four distinct zones. The box at the left shows a portion of the Orion Bar within the Orion Nebula. The box at the top right illustrates a massive star-forming region whose blasts of ultraviolet radiation are affecting a PDR. The box at the bottom right zooms in on a PDR to depict its four, distinct zones: 1) the molecular zone, a cold and dense region where the gas is in the form of molecules and where stars could form; 2) the dissociation front, where the molecules break apart into atoms as the temperature rises; 3) the ionization front, where the gas is stripped of electrons, becoming ionized, as the temperature increases dramatically; and 4) the fully ionized flow of gas into a region of atomic, ionized hydrogen. For the first time, Webb will be able to separate and study these different zones' physical conditions. Credits: NASA, ESA, CSA, Jason Champion (CNRS), Pam Jeffries (STScI), PDRs4ALL ERS Team

Like a Layer Cake in Space

PDRs were long thought to be homogenous regions of warm gas and dust. Now scientists know they are greatly stratified, like a layer cake. In reality, the Orion Bar is not really a "bar" at all. Instead, it contains a lot of structure and four distinct zones. These are:

  • The molecular zone, a cold and dense region where the gas is in the form of molecules and where stars could form;
  • The dissociation front, where the molecules break apart into atoms as the temperature rises;
  • The ionization front, where the gas is stripped of electrons, becoming ionized, as the temperature increases dramatically; 
  • The fully ionized flow of gas into a region of atomic, ionized hydrogen.

"With Webb, we will be able to separate and study the different regions' physical conditions, which are completely different," said Emilie Habart, another of the team's principal investigators. Habart is a scientist with the French Institute of Space Astrophysics and a senior lecturer at Paris-Saclay University. "We will study the passage from very hot regions to very cold ones. This is the first time we will be able to do that."

The phenomenon of these zones is much like what happens with heat from a fireplace. As you move away from the fire, the temperature drops. Similarly, the radiation field changes with distance from a massive star. In the same way, the composition of the material changes at different distances from that star. With Webb, scientists for the first time will resolve each individual region within that layered structure in the infrared and characterize it completely. 

Paving the Way for Future Observations

These observations will be part of the Director's Discretionary-Early Release Science program, which provides observing time to selected projects early in the telescope's mission. This program allows the astronomical community to quickly learn how best to use Webb's capabilities, while also yielding robust science.

One goal of the Orion Bar work is to identify the characteristics that will serve as a "template" for future studies of more distant PDRs. At greater distances, the different zones might blur together. Information from the Orion Bar will be useful for interpreting that data. The Orion Bar observations will be available to the wider science community very soon after their collection. 

"Most of the light that we receive from very distant galaxies is coming from 'Orion Nebulas' situated in these galaxies," explained Berné. "So it makes a lot of sense to observe in great detail the Orion Nebula that is near us in order to then understand the emissions coming from these very distant galaxies that contain many Orion-like regions in them."

Only Possible with Webb

With its location in space, infrared capability, sensitivity, and spatial resolution, Webb provides a unique opportunity to study the Orion Bar. The team will probe this region using Webb's cameras and spectrographs.

"It's really the first time that we have such good wavelength coverage and angular resolution," said Berné. "We're very interested in spectroscopy because that's where you see all the 'fingerprints' that give you the detailed information on the physical conditions. But we also want the images to see the structure and organization of matter. When you combine the spectroscopy and the imaging in this unique infrared range, you get all the information you need to do the science we're interested in."     

The study includes a core team of 20 members but also a large, international, interdisciplinary team of more than 100 scientists from 18 countries. The group includes astronomers, physicists, chemists, theoreticians, and experimentalists.

The James Webb Space Telescope will be the world's premier space science observatory when it launches in 2021. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

For more information about Webb, visit www.nasa.gov/webb.

Ann Jenkins / Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

jenkins@stsci.edu / cpulliam@stsci.edu

Laura Betz
NASA's Goddard Space Flight Center, Greenbelt, Md.

laura.e.betz@nasa.gov

Editor: Lynn Jenner
 

Friday, February 19, 2021

A Map of a Stellar Explosion

This composite, false-color image reveals an explosive outflow of molecular gas within the Orion Nebula. A new study explores another such explosion and examines how it relates to the birth of massive stars.  Credit: ALMA/ESO/NAOJ/NRAO/. Bally/H. Drass et al.

There’s still much we don’t know about the birth of massive stars — stars with more than 8 times the mass of the Sun. A recent study reveals details of a thousand-year-old explosion that might provide clues about the formation of these giants.

 
The clouds of molecular gas in regions like the Orion nebula provide nurseries in which massive stars form and evolve. Credit:ESO/G. Beccari

 An Unexpected Explosion

Several decades ago, astronomers discovered something odd. In a region inside the Orion nebula where massive star formation is underway, scientists detected signs of an explosive outflow: dense molecular gas streaming outward from a central point at rapid speeds. Surprisingly, there was nothing at the center of this explosion.

This one-off discovery was intriguing. One could imagine a number of sudden, energy-liberating events that could occur in a massive star-forming environment — like the formation of a close massive stellar binary, or the merger of two young, massive protostars. And the discovery of several candidate runaway stars at the fringes of the explosion provided another hint to a dynamical origin.

Could this explosion help us understand the process of how massive stars form in their birth environments? Or was it just a fluke event? As years passed without astronomers finding evidence of another, similar outflow, these questions remained unanswered.

This ALMA SiO map of the star-forming region G5.89 shows outflowing molecular gas surrounding an expanding, shell-like HII region (white contours). Two stars moving away from the origin are marked in magenta and cyan. Credit: Adapted from Zapata et al. 2020

Two of Kind 

Forty years later, we now have proof of another such explosive outflow in a massive star-forming environment. In a recent publication led by Luis Zapata (UNAM Radio Astronomy and Astrophysics Institute, Mexico), a team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to confirm the presence of streamers of molecular gas flowing isotropically outward from a central point in the massive stellar birthplace G5.89, which lies roughly 10,000 light-years away from us.

Zapata and collaborators measured 34 molecular filaments in this explosive outflow, finding that the streamers are accelerating as they expand outward. This is consistent with behavior of the Orion explosion and shows that the density of the ejecta is substantially larger than the surrounding medium.

As with the Orion explosive outflow, the point of origin of the filaments contains no source. Previous studies, however, have identified several young, massive stars in the periphery of the G5.89 explosion that are speeding away from the point of origin at roughly the right speed to have been at the center 1,000 years previously at the time of explosion.

A protostar lies embedded in a disk of gas and dust in this visualization. The collision of two protostars could release enough energy to power an explosive molecular outflow — and produce a massive star. Credit: NASA’s Goddard SFC

 Learning about Stellar Birth

What does all this tell us about the origins of massive stars? Explosive outflows like this — caused by dynamical interactions during the birth of massive stars — may be more common than we previously thought!

The authors estimate a rate for such outflows based on our limited observations, finding that there should be one every ~100 years. The fact that this is very close to the rate of supernovae further solidifies the connection of explosive molecular outflows to massive star formation.

Dedicated, high-sensitivity searches for more such outflows in nearby massive star-forming regions will certainly go a long way toward confirming this theory. In the meantime, the authors argue, we should consider revising high-mass star formation models to include dynamical interactions, as these stellar explosions may prove to be regular occurrences!

Bonus

The animation below shows a different view of the authors’ ALMA-observed streamers, traced by CO gas. Two axes give the position of observations, while the third axis and the colors show the radial velocity at each point in the streamers, showing how the ejecta are accelerating as they expand outward. The star marks the origin of the explosive outflow.


Citation

“Confirming the Explosive Outflow in G5.89 with ALMA,” Luis A. Zapata et al 2020 ApJL 902 L47. doi:10.3847/2041-8213/abbd3f

By

Source: American Astronomical Society/NOVA



Monday, August 24, 2020

The Cold Case of Carbon Monoxide

Hubble's sharpest view of the Orion Nebula

Credit: NASA, ESA, M. Robberto ( Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team

Fifty years ago, astronomers discovered carbon monoxide in space. It allowed us to see dark regions of the universe, and helped us understand it more clearly.

Half a century ago, using a National Radio Astronomy Observatory (NRAO) 36-foot telescope in Tuscon, Arizona, three astronomers, R. W. Wilson, K. B. Jefferts, and A. A. Penzias made the first discovery of carbon monoxide (CO) in space. It was a small result, just the observation of a bright radio signal from within the Orion Nebula. The paper announcing the discovery is two pages long. But sometimes a small discovery can change the way we see the universe.

Astronomers can only see atoms and molecules in space by studying their light. The light they absorb and the light they emit. It can be difficult to observe this light because most of the gas in the universe is cold and dark. The first atom to be seen in space was hydrogen, which emits a faint radio light with a wavelength of 21 centimeters. This light could be seen because hydrogen is by far the most abundant element in the universe. Carbon monoxide is much rarer, but the light it emits is bright and distinct. And CO gas tends to be found in cold, dense, interstellar clouds. Its discovery let astronomers study these clouds in a new way.

A visualization of cold carbon monoxide gas in the Sculptor Galaxy.

One of the first surprises was that cold gas clouds are very common in the Milky Way. Before the radio observation of CO, the clouds could only be seen in visible light, and only where they blocked or reflected the light of nearby bright stars. Most were invisible to optical telescopes. With radio telescopes, astronomers could see clouds of gas and dust throughout our galaxy. As radio astronomers discovered more types of molecules in space, they began to understand the complex chemistry that occurs in these interstellar clouds.

Cold carbon monoxide gas emits a clear and distinct radio signal, so it can be used as a good measure of the density and motion of interstellar clouds. This is particularly useful in the study of planet-forming regions within these clouds. The Atacama Large Millimeter/submillimeter Array (ALMA) has observed the light from CO gas to identify clumps within the planet-forming disks around young stars. The clumps indicate where new planets might be forming.

ALMA image of the debris disk surrounding a star in the Scorpius-Centaurus Association known as HIP 73145. The green region maps the carbon monoxide gas that suffuses the debris disk. The red is the millimeter-wavelength light emitted by the dust surrounding the central star. The star HIP 73145 is estimated to be approximately twice the mass of the Sun. The disk in this system extends well past what would be the orbit of Neptune in our solar system, drawn in for scale. The location of the central star is also highlighted for reference.

One of the challenges in optical astronomy is that dusty regions can absorb and scatter much of the optical light emitted by stars. It’s similar to the way fog might hide your view of distant city lights. This is particularly true in the region near the center of our galaxy, and it makes it difficult for astronomers to study the far side of the Milky Way. But the radio light emitted by carbon monoxide penetrates through this region very well. Because of this, radio astronomers have been able to identify gas clouds throughout our galaxy, even within distant spiral arms. This allows astronomers to study the structure of the Milky Way, and how it differs from other spiral galaxies.

The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas.

The CO molecule was detected because NRAO’s 36-foot telescope was capable of observing short radio wavelengths of only a few millimeters. Millimeter-wavelength radio astronomy continues be on the cutting edge of radio technology. Through it, dark regions of the universe have become bright beacons of understanding.

Reference:

Wilson, R. W., K. B. Jefferts, and A. A. Penzias. “Carbon monoxide in the Orion nebula.” The Astrophysical Journal 161 (1970): L43.

Source: National Radio Astronomy Observatory (NRAO)/News


Wednesday, May 20, 2020

Top Ten Discoveries from SOFIA

Ten years ago, NASA’s telescope on an airplane, the Stratospheric Observatory for Infrared Astronomy, or SOFIA, first peered into the cosmos. Since the night of May 26, 2010, SOFIA’s observations of infrared light, invisible to the human eye, have made many scientific discoveries about the hidden universe.

SOFIA’s maiden flight, known as “first light,” observed heat pouring out of Jupiter’s interior through holes in the clouds and peered through the dense dust clouds of the Messier 82 galaxy to catch a glimpse of tens of thousands of stars forming. The observatory was declared fully operational in 2014 — the equivalent to the launch of a space telescope — but it began making discoveries even while completing the testing of its instruments and telescope.

The modified Boeing 747SP flies a nearly 9-foot diameter telescope up to 45,000 feet in altitude, above 99% of the Earth's water vapor to get a clear view of the infrared universe not observable by ground-based telescopes. Its mobility also allows it to capture transitory events in astronomy over remote locations like the open ocean. Because SOFIA lands after each flight, it can be upgraded with the latest technology to respond to some of most pressing questions in science.

Using SOFIA, scientists detected the universe’s first type of molecule in space, unveiled new details about the birth and death of stars and planets, and explained what’s powering supermassive black holes, and how galaxies evolve and take shape, among other discoveries. Here are some of SOFIA’s top discoveries of the last decade:

The Universe’s First Type of Molecule Found at Last 

SOFIA found the first type of molecule to form in the universe, called helium hydride. It was first formed only 100,000 years after the Big Bang as the first step in cosmic evolution that eventually led to the complex universe we know today. The same kind of molecule should be present in parts of the modern universe, but it had never been detected outside of a laboratory until SOFIA found it in a planetary nebula called NGC 7027. Finding it in the modern universe confirms a key part of our basic understanding of the early universe.​

The powerful wind from the newly formed star at the heart of the Orion Nebula is creating the bubble (black) and preventing new stars from forming in its neighborhood. At the same time, the wind is pushing molecular gas (color) to the edges, creating a dense shell around the bubble where future generations of stars can form. Credits: NASA/SOFIA/Pabst et. al. Hi-res image

Weighing a Galactic Wind Provides Clues to the Evolution of Galaxies 

SOFIA found that the wind flowing from the center of the Cigar Galaxy (M82) is aligned along a magnetic field and transports a huge amount of material. Magnetic fields are usually parallel to the plane of the galaxy, but the wind is dragging it so it’s perpendicular. The powerful wind, driven by the galaxy's high rate of star birth, could be one of the mechanisms for material to escape the galaxy. Similar processes in the early universe would have affected the fundamental evolution of the first galaxies.

Composite image of the Cigar Galaxy (also called M82), a starburst galaxy about 12 million light-years away in the constellation Ursa Major. The magnetic field detected by SOFIA, shown as streamlines, appears to follow the bipolar outflows (red) generated by the intense nuclear starburst. The image combines visible starlight (gray) and a tracing of hydrogen gas (red) from the Kitt Peak Observatory, with near-infrared and mid-infrared starlight and dust (yellow) from SOFIA and the Spitzer Space Telescope. Credits: NASA/SOFIA; NASA/JPL-Caltech. Hi-res image

Nearby Planetary System Similar to Our Own 

The planetary system around the star Epsilon Eridani, or eps Eri for short, is the closest planetary system around a star similar to the early Sun. SOFIA studied the infrared glow from the warm dust, confirming that the system has an architecture remarkably similar to our solar system. Its material is arranged in at least one narrow belt near a Jupiter-sized planet.​

Artist's illustration of the Epsilon Eridani system showing Epsilon Eridani b. In the right foreground, a Jupiter-mass planet is shown orbiting its parent star at the outside edge of an asteroid belt. In the background can be seen another narrow asteroid or comet belt plus an outermost belt similar in size to our solar system's Kuiper Belt. The similarity of the structure of the Epsilon Eridani system to our solar system is remarkable, although Epsilon Eridani is much younger than our sun. SOFIA observations confirmed the existence of the asteroid belt adjacent to the orbit of the Jovian planet. Credits: NASA/SOFIA/Lynette Cook.
Hi-res image

Magnetic Fields May Be Feeding Active Black Holes 

Magnetic fields in the Cygnus A galaxy are feeding material into the galaxy’s central black hole. SOFIA revealed that the invisible forces, shown as streamlines in this illustration, are trapping material close to the center of the galaxy where it is close enough the be devoured by the hungry black hole. However, magnetic fields in other galaxies may be preventing black holes from consuming material.

Artist’s conception of the core of Cygnus A, including the dusty donut-shaped surroundings, called a torus, and jets launching from its center. Magnetic fields are illustrated trapping the dust in the torus. These magnetic fields could be helping power the black hole hidden in the galaxy’s core by confining the dust in the torus and keeping it close enough to be gobbled up by the hungry black hole. Credits: NASA/SOFIA/Lynette Cook.Hi-res image

Magnetic Fields May Be Keeping Milky Way’s Black Hole Quiet

This image shows the ring of material around the black hole at the center of our Milky Way galaxy. SOFIA detected magnetic fields, shown as streamlines, that may be channeling the gas into an orbit around the black hole, rather than directly into it. This may explain why our galaxy’s black hole is relatively quiet, while those in other galaxies are actively consuming material.

Streamlines showing magnetic fields layered over a color image of the dusty ring around the Milky Way’s massive black hole. The Y-shaped structure is warm material falling toward the black hole, which is located near where the two arms of the Y-shape intersect. The streamlines reveal that the magnetic field closely follows the shape of the dusty structure. Each of the blue arms has its own field that is totally distinct from the rest of the ring, shown in pink. Credits: Dust and magnetic fields: NASA/SOFIA; Star field image: NASA/Hubble Space Telescope.
Hi-res imge

“Kitchen Smoke” Molecules in Nebula Offer Clues to Building Blocks of Life

SOFIA found that the organic, complex molecules in the nebula NGC 7023 evolve into larger, more complex molecules when hit with radiation from nearby stars. Researchers were surprised to find that the radiation helped these molecules grow instead of destroying them. The growth of these molecules is one of the steps that could lead to the emergence of life under the right circumstances.

Combination of three color images of NGC 7023 from SOFIA (red & green) and Spitzer (blue) show different populations of PAH molecules. . Credit: NASA/DLR/SOFIA/B. Croiset, Leiden Observatory, and O. Berné, CNRS; NASA/JPL-Caltech/Spitzer.
Hi-res image

Dust Survives Obliteration in Supernova 

SOFIA discovered that a supernova explosion can produce a substantial amount of the material from which planets like Earth can form. Infrared observations of a cloud produced by a supernova 10,000 years ago contains enough dust to make 7,000 Earths. Scientists now know that material created by the first outward shock wave can survive the subsequent inward “rebound” wave generated when the first collides with surrounding interstellar gas and dust.

Illustration of a supernova as the powerful blast wave passes through its outer ring before a subsequent inward shock rebounds. SOFIA found the material produced from first outward wave can survive the second inward wave and can become seed material for new stars and planets. Credits: NASA/SOFIA/Symbolic Pictures/The Casadonte Group. Hi-res image

New View of Milky Way’s Center Reveals Birth of Massive Stars 

SOFIA captured an extremely crisp infrared image of the center of our Milky Way galaxy. Spanning a distance of more than 600 light-years, this panorama reveals details within the dense swirls of gas and dust in high resolution, opening the door to future research into how massive stars are forming and what’s feeding the supermassive black hole at our galaxy’s core.

Composite infrared image of the center of our Milky way Galaxy. It spans 600+ lightyears across and is helping scientists learn how many massive stars are forming in our galaxy’s center. New data from SOFIA taken at 25 and 37 microns, shown in blue and green, is combined with data from the Herschel Space Observatory, shown in red (70 microns), and the Spitzer Space Telescope, shown in white (8 microns). SOFIA’s view reveals features that have never been seen before. Credits: NASA/SOFIA/JPL-Caltech/ESA/Herschel.
Hi-res image

What Happens When Exoplanets Collide 

Known as BD +20 307, this double-star system is more than 300 light years from Earth likely had an extreme collision between rocky exoplanets. A decade ago, observations of this system gave the first hints of a collision when they found debris that was warmer than expected to be around mature stars that are at least one billion years old. SOFIA’s observations discovered the infrared brightness from the debris has increased by more than 10%,  a sign that there is now even more warm dust and that a collision occurred relatively recently. A similar event in our own solar system may have formed our Moon.

Artist’s concept illustrating a catastrophic collision between two rocky exoplanets in the planetary system BD +20 307, turning both into dusty debris. Ten years ago, scientists speculated that the warm dust in this system was a result of a planet-to-planet collision. Now, SOFIA found even more warm dust, further supporting that two rocky exoplanets collided. This helps build a more complete picture of our own solar system’s history. Such a collision could be similar to the type of catastrophic event that ultimately created our Moon. Credits: NASA/SOFIA/Lynette Cook.
  Hi-res image

SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP jetliner modified to carry a 106-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is maintained and operated from NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California.

Media Contact

Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.

Felicia Chou
NASA Headquarters, Washington 
202-358-0257

felicia.chou@nasa.gov


Editor: Kassandra Bell