Showing posts with label Herschel Space Observatory. Show all posts
Showing posts with label Herschel Space Observatory. Show all posts

Monday, April 25, 2016

New Herschel maps and catalogues reveal stellar nurseries across the Galactic Plane

Herschel's view of the Galactic Plane. 
Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project

Herschel's view of RCW 120
Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project

Herschel's view of the Galactic Centre
Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project


ESA's Herschel mission releases today a series of unprecedented maps of star-forming hubs in the plane of our Milky Way galaxy. This is accompanied by a set of catalogues of hundreds of thousands of compact sources that span all phases leading to the birth of stars in our Galaxy. These maps and catalogues will be very valuable resources for astronomers, to exploit scientifically and for planning follow-up studies of particularly interesting regions in the Galactic Plane.

During its four years of operations (2009-2013), the Herschel space observatory scanned the sky at far-infrared and sub-millimetre wavelengths. Observations in this portion of the electromagnetic spectrum are sensitive to some of the coldest objects in the Universe, including cosmic dust, a minor but crucial component of the interstellar material from which stars are born.


The Herschel infrared Galactic Plane Survey (Hi-GAL) is the largest of all observing programmes carried out with Herschel, in terms of both observing time – over 900 hours of total observations, equivalent to almost 40 days – and sky coverage – about 800 square degrees, or two percent of the entire sky. Its aim was to map the entire disc of the Milky Way, where most of its stars form and reside, in five of Herschel's wavelength channels: 70, 160, 250, 350 and 500 μm.

Over the past two years, the Hi-GAL team has processed the data to obtain a series of calibrated maps of extraordinary quality and resolution. With a dynamical range of at least two orders of magnitude, these maps reveal the emission by diffuse material as well as huge filamentary structures and individual, point-like sources scattered across the images.


Herschel's view of the Eagle Nebula
Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project 
 

The images provide an unprecedented view of the Galactic Plane, ranging from diffuse interstellar material to denser filamentary structures of gas and dust that fragment into clumps where star formation sets in. They include pre-stellar clumps, protostars in various evolutionary stages and compact cores on the verge of turning into stars, as well as fully-fledged stars and the bubbles carved by their highly energetic radiation.

Today, the team releases the first part of this data set, consisting of 70 maps, each measuring two times two degrees, and provided in the five surveyed wavelengths.

"These maps are not only stunning from an aesthetic point of view, but they represent a rich data set for astronomers to investigate the different phases of star formation in our Galaxy," explains Sergio Molinari from IAPS/INAF, Italy, Principal Investigator for the Hi-GAL Project.

Astronomers have been able to avail of data from Hi-GAL from the very beginning of the observing programme since the team agreed to waive their right to a proprietary period. The observations have been made available through the ESA Herschel Science Archive, including raw data as well as data products generated by systematic pipeline processing. The data has regularly been reprocessed to gradually higher quality and fidelity products.

The present release represents an extra step in the data processing. The newly released maps are accompanied by source catalogues in each of the five bands, which can be directly used by the community to study a variety of subjects, including the distribution of diffuse dust and of star-forming regions across the Galactic Plane.

The maps cover the inner part of the Milky Way, towards the Galactic Centre as seen from the Sun, with Galactic longitudes between +68° and -70°. A second release, with the remaining part of the survey, is foreseen for the end of 2016.

Herschel's view of the War and Peace and Cat's Paw nebulas
Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project


"It is not straightforward to extract compact sources from far-infrared images, where pre-stellar clumps and other proto-stellar objects are embedded in the diffuse interstellar medium that also shines brightly at the same wavelengths," explains Molinari.

"For this reason, we developed a special technique to extract individual sources from the maps, maximising the contrast in order to amplify the compact objects with respect to the background."

result is a set of five catalogues, one for each of the surveyed wavelengths, listing the source position, flux, size, signal-to-noise ratio and other parameters related to their emission. The largest catalogue is the one compiled from the 160-μm maps, with over 300 000 sources.

"The Hi-GAL maps and catalogues provide a complete census of stellar nurseries in the inner Galaxy," says Göran Pilbratt, Herschel Project Scientist at ESA.

"These will be an extremely useful resource for studies of star formation across the Milky Way, helping astronomers to delve into the Galactic Plane and also to identify targets for follow-up observations with other facilities."




Related publication


S. Molinari, et al., "Hi-GAL, the Herschel infrared Galactic Plane Survey: photometric maps and compact source catalogues. First data release for Inner Milky Way: +68°≥ l ≥ −70°", 2016, Astronomy & Astrophysics.  




More information


Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

Herschel was launched on 14 May 2009 and completed science observations on 29 April 2013.


The Herschel infrared Galactic Plane Survey (Hi-GAL) started out as one of the 21 Open Time Key Programmes carried out with the observatory, and later gained additional time in subsequent calls for observing proposals.




Contact

Sergio Molinari
IAPS/INAF
Roma, Italy
Email: Sergio.molinari@iaps.inaf.it
Phone: +39-06-4993-4396

Göran Pilbratt
Herschel Project Scientist
ESA, The Netherlands
Email:
gpilbratt@cosmos.esa.int
Phone: +31-71-565-3621
 


Source:  ESA/Herschel

Thursday, March 26, 2015

Black hole winds pull the plug on star formation

Black-hole wind sweeping away galactic gas
Copyright ESA/ATG medialab
JPG (1.32 MB) - TIFF (9.46MB)

Black-hole wind
Copyright ESA/ATG medialab

Galactic merger hosting a supermassive black hole
Copyright: NASA/SDSS/S. Veilleux

Galactic outflow
Copyright: ESA/ATG medialab


Astronomers using ESA’s Herschel space observatory have found that the winds blowing from a huge black hole are sweeping away its host galaxy’s reservoir of raw star-building material. 

Found at the hearts of most galaxies, supermassive black holes are extremely dense and compact objects with masses between millions and billions of times that of our Sun. 

Many are relatively passive, like the one sitting at the centre of our Milky Way. However, some of them are devouring their surroundings with a great appetite. 

These active black holes not only feed on nearby gas but also expel some of it as powerful winds and jets. Astronomers have long suspected these outflows to be responsible for draining galaxies of their interstellar gas, in particular the gas molecules from which stars are born. 

This could eventually affect a galaxy’s star-forming activity, slowing it down or possibly quenching it entirely. 

Until now, it had not been possible to capture a complete view of this process. While astronomers were able to detect winds very close to black holes using X-ray telescopes, and to trace much larger galactic outflows of gas molecules through infrared observations, they had not succeeded at finding both in the same galaxy. 

A new study has changed the scene, detecting winds driven by one particular black hole from the smallest to largest scales.  

“This is the first time that we have seen a supermassive black hole in action, blowing away the galaxy’s reservoir of star-making gas,” explains Francesco Tombesi from NASA’s Goddard Space Flight Center and the University of Maryland, USA, who led the research published this week in Nature

Combining infrared observations from ESA’s Herschel space observatory with new data from the Japanese/US Suzaku X-ray satellite, the astronomers detected the winds close to the central black hole as well as their global effect in pushing galactic gas away in a galaxy known as IRAS F11119+3257. 

The winds start small and fast, gusting at about 25% the speed of light near the black hole and blowing away about the equivalent of one solar mass of gas every year. 

As they progress outwards, the winds slow but sweep up an additional few hundred solar masses of gas molecules per year and push it out of the galaxy. 

This is the first solid proof that black-hole winds are stripping their host galaxies of gas by driving large-scale outflows. 

The new finding supports the view that black holes might ultimately stop stars forming in their host galaxies

“Herschel has already revolutionised our understanding of how stars are born. This new result is now helping us understand why and how star formation in some galaxies can be globally affected and even switched off entirely,” says Göran Pilbratt, Herschel Project Scientist at ESA. 

“The culprit of this cosmic ‘whodunnit’ has been found. As many suspected, a central black hole can power large-scale gas outflows, quenching the formation of stars.” 

Read more about this discovery


More information
 
“Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy,” by F. Tombesi, et al., is published in the 26 March 2015 issue of the journal Nature

The study is based on observations performed with the Photoconductor Array Camera and Spectrometer (PACS) instrument on ESA’s Herschel space observatory, as well as on data from the Japanese/US Suzaku mission. 

 
For further information, please contact:
 
Markus Bauer
ESA Science and Robotic Exploration Communication Officer
Tel: +31 71 565 6799; +34 91 8131 199
Mob: +31 61 594 3954
Email:
markus.bauer@esa.int

Francesco Tombesi
X-ray Astrophysics Laboratory
NASA Goddard Space Flight Center
Greenbelt, MD, USA
and Department of Astronomy and CRESST
University of Maryland, MD, USA
Tel: +1 301 405 3615 / +1 301 286 2661
Email:
ftombesi@astro.umd.edu

Göran Pilbratt
Herschel Project Scientist
Tel: +31 71 565 3621
Email:
gpilbratt@cosmos.esa.int


Source: ESA/Herschel

Monday, August 18, 2014

Protostars in Orion

OMC-2 FIR 4
Credit: Herschel image: ESA/Herschel/Ph. André, D. Polychroni, A. Roy, V. Könyves, N. Schneider for the Gould Belt survey Key Programme; inset and layout: ESA/ATG medialab.

Results from Herschel may have helped to solve a puzzle surrounding our own Sun's past. By studying very young stars in the Orion Nebula, astronomers have been able to gain an insight into how the Sun may have been behaving in its youth.

By using the HIFI spectrometer to detect the far-infrared light at very specific frequencies, the team obtained the chemical fingerprint of a range of atoms and molecules within the clump of gas and dust in which the stars are forming. This also allows a study of the temperature, and showed that the gas and dust are relatively warm, though still at around -200 Celsius. It is thought that the Sun formed in a similar environment, and so studies of such regions allow astronomers to examine one possible history of the Sun's life.

The mystery about our own Sun relates to evidence for a particular form, or isotope, of the element beryllium in meteorites found on Earth. This particular isotope, called beryllium-10, is relatively unusual in that it is not formed in the fusion reactions within stars, or in the supernova explosions which occur when massive stars die. Rather, it is formed when very energetic particles slam into heavier, and more common, elements such as oxygen.

Beryllium-10 doesn't normally hang around, though, because it decays into a specific set of lighter elements. The fact that breyllium-10 is present means that it was being created as the rocks formed, which suggests the that material in the early Solar System was being bombarded by very energetic particles. The big question has been whether these particles were produced by the young Sun, or whether they originated further afield in the deaths of massive stars.

One way of gaining a handle on that question is to study stars at a similar stage of their life - hence the interest in the young stars in Orion. An interesting result from the latest study was the relative amounts of molecules containing hydrogen combined with other atoms such as carbon, oxygen and nitrogen. In most star-forming environments the nitrogen-bearing molecules such as diazenylium (N2H+) are destroyed relatively easily, leaving an over-abundance of molecules such as hydrogen carbonate (HCO).

However, in the case of this particular clump, known as "OMC-2 FIR4", it appears that the HCO has been destroyed almost as quickly as the N2H+. The only explanation for the destruction of both types of molecule is a surprisingly high rate of energetic particles - and at a rate easily high enough to explain the presence of beryllium-10 in the meteorites. While it doesn't rule out other possibilities, it is strong evidence that the Sun may have been much more active in its youth.  

DETAILED INFORMATION 

Object Name: OMC-2 FIR 4
Type of Object: Starforming region
Science category: Star formation
Image Scale: The image is around 2.5 degrees across
Coordinates: Right Ascension: 5h 35m 27s ; Declination: −5° 9′ 55
Constellation: Orion the Hunter
Instrument: Image: SPIRE and PACS; Study: HIFI
Wavelengths: Image: 70 (blue), 160 (green), 250 (red) microns; Study: 480-1244 GHz
Distance of Object: 1500 light years
Date of Release: 01/07/2014

Key Programme:
Image: Gould Belt Survey
Study: CHESS (Chemical Herschel Surveys of Star forming regions)

Publication:
Ceccarelli et al. (2014) ApJ 790 L1, "Herschel finds evidence for stellar wind particles in a protostellar envelope: is this what happened to the young Sun? http://iopscience.iop.org/2041-8205/790/1/L1/

Further information: 

Monday, June 16, 2014

Herschel Sees Budding Stars and a Giant, Strange Ring

The Herschel Space Observatory has uncovered a weird ring of dusty material while obtaining one of the sharpest scans to date of a huge cloud of gas and dust, called NGC 7538. Image credit: ESA/NASA/JPL-Caltech/Whitman College.  ›Full image and caption

The Herschel Space Observatory has uncovered a weird ring of dusty material while obtaining one of the sharpest scans to date of a huge cloud of gas and dust, called NGC 7538. The observations have revealed numerous clumps of material, a baker's dozen of which may evolve into the most powerful kinds of stars in the universe. Herschel is a European Space Agency mission with important NASA contributions.

"We have looked at NGC 7538 with Herschel and identified 13 massive, dense clumps where colossal stars could form in the future," said paper lead author Cassandra Fallscheer, a visiting assistant professor of astronomy at Whitman College in Walla Walla, Washington, and lead author of the paper published in The Astrophysical Journal. "In addition, we have found a gigantic ring structure and the weird thing is, we're not at all sure what created it."

NGC 7538 is relatively nearby, at a distance of about 8,800 light-years and located in the constellation Cepheus. The cloud, which has a mass on the order of 400,000 suns, is undergoing an intense bout of star formation. Astronomers study stellar nurseries such as NGC 7538 to better learn how stars come into being. Finding the mysterious ring, in this case, came as an unexpected bonus. 

The cool, dusty ring has an oval shape, with its long axis spanning about 35 light-years and its short axis about 25 light-years. Fallscheer and her colleagues estimate that the ring possesses the mass of 500 suns. Additional data from the James Clerk Maxwell Telescope, located at the Mauna Kea Observatory in Hawaii, further helped characterize the odd ovoid. Astronomers often see ring and bubble-like structures in cosmic dust clouds. The strong winds cast out by the most massive stars, called O-type stars, can generate these expanding puffs, as can their explosive deaths as supernovas. 

But no energetic source or remnant of a deceased O-type star, such as a neutron star, is apparent within the center of this ring. It is possible that a big star blew the bubble and, because stars are all in motion, subsequently left the scene, escaping detection. 

The observations were taken as part of the Herschel OB Young Stellar objects (HOBYS) Key Programme. The "OB" refers to the two most massive kinds of stars, O-type and B-type. These bright blue, superhot, short-lived stars end up exploding as supernovas, leaving behind either incredibly dense neutron stars or even denser black holes. 

Stars of this caliber form from gassy, dusty clumps with initial masses dozens of times greater than the sun's; the 13 clumps spotted in NGC 7358, some of which lie along the edge of the mystery ring, all are more than 40 times more massive than the sun. The clumps gravitationally collapse in on themselves, growing denser and hotter in their cores until nuclear fusion ignites and a star is born. For now, early in the star-formation process, the clumps remain quite cold, just a few tens of degrees above absolute zero. At these temperatures, the clumps emit the bulk of their radiation in the low-energy, submillimeter and infrared light that Herschel was specifically designed to detect.

As astronomers continue probing these budding O-type giants in NGC 7358, the follow-up observations with other telescopes should also help in solving the puzzle of the humongous, dusty ring. "Further research to determine the mechanism responsible for creating the ring structure is necessary," said Fallscheer. 

Herschel is a European Space Agency mission, with science instruments provided by consortia of European institutes and with important participation by NASA. While the observatory stopped making science observations in April 2013, after running out of liquid coolant as expected, scientists continue to analyze its data. NASA's Herschel Project Office is based at the Jet Propulsion Laboratory in Pasadena, California. JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community.

More information is online at:

Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov


Wednesday, April 30, 2014

Well-behaved, Young Galaxy Surprises Astronomers

The young galaxy SDSS090122.37+181432.3, also known as S0901, is seen here as the bright arc to the left of the central bright galaxy. Credit: NASA/STScI; S. Allam and team; and the Master Lens Database, L. A. Moustakas, K. Stewart, et al (2014).  Full image and caption

Scientists have discovered a young galaxy acting in unexpectedly mature ways. The galaxy, called S0901, is rotating in a calm manner typical of more developed galaxies like our own spiral Milky Way.

"Usually, when astronomers examine galaxies in an early era, they find that turbulence plays a much greater role than it does in modern galaxies. But S0901 is a clear exception to that pattern," said James Rhoads of Arizona State University, Tempe. 

It has taken the light from the galaxy 10 billion years to reach us across space, so we are seeing it when it was comparatively young. 

"This galaxy is the equivalent of a 10-year-old. I can tell you from watching my kids' classes that 10-year-olds like to fidget! S0901 is unusual because it's not fidgeting, and instead is very well behaved." Rhoads is lead author of the research, appearing in the May 20 issue of the Astrophysical Journal.

The discovery was made using the Herschel space observatory, a European Space Agency mission with important NASA contributions.

"This is a truly surprising result that reminds us that we still don't understand many details of the evolution of the universe. Facilities like Herschel help us understand this complex story," said Paul Goldsmith, U.S. Herschel Project Scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 

When galaxies form, they accumulate mass because their gravity attracts vast, external gas clouds. As the gas clouds enter a particular galaxy, they fall into haphazard orbits. These disordered paths cause turbulence in the host galaxy, which can drive star formation.

To investigate the internal conditions of forming galaxies, Rhoads and Sangeeta Malhotra, also from Arizona State University, and colleagues targeted two young galaxies, one of them being S0901. 

Using a cosmic magnifier known as a gravitational lens, the researchers got a better view of the galaxies than they would have otherwise. An instrument on Herschel, the Heterodyne Instrument for the Far-Infrared (HIFI), was then able to pick up the signature of ionized carbon, revealing the motion of the gas molecules in the galaxies. This motion was much smoother than anticipated in the S0901 galaxy. Results for the second galaxy hinted at a calm rotation too, but were less clear.

"Galaxies 10 billion years ago were making stars more actively than they do now," says Malhotra. "They usually also show more turbulence, likely because they are accumulating gas faster than a modern galaxy does. But here we have cases where an early galaxy combines the calm rotation of a modern one with the active star formation of their early peers."

More observations with other telescopes should help reveal if other galaxies behave in similarly grown-up ways, or if S0901 is oddly ahead of its time.

 
Herschel is a European Space Agency mission, with science instruments provided by consortia of European institutes and with important participation by NASA. While the observatory stopped making science observations in April 2013, after running out of liquid coolant as expected, scientists continue to analyze its data. NASA's Herschel Project Office is based at JPL. JPL contributed mission-enabling technology for two of Herschel's three science instruments, including HIFI. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. Caltech manages JPL for NASA. 

More information is online at these websites:

Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.

whitney.clavin@jpl.nasa.gov

Tuesday, April 29, 2014

Glowing jewels in the Galactic Plane

Copyright: ESA/PACS & SPIRE Consortium, S. Molinari, Hi-GAL Project
    The majority of the stars in our Galaxy, the Milky Way, reside in a single huge disc, known as the Galactic Plane, spanning 100 000 light-years across. The Sun also resides in this crowded stellar hub, lying roughly halfway between its centre and its outer edges.

    This disc is filled with a diffuse mixture of gas and dust – the interstellar medium – that pervades space, filling the large gaps found between stars. Occasionally, these clouds of gas and dust cool, becoming denser and denser until they spark star formation, giving rise to new generations of stars.

    This image is part of Hi-GAL, a survey of the Galactic Plane completed with ESA’s Herschel Space Observatory. Peering at the sky in infrared light, Herschel could detect the glow of dust particles dispersed between stars. This minor – but crucial – component of the interstellar medium allows astronomers to investigate how stars are born in the Milky Way, and how they affect their environment as they age.

    Nestled in the Milky Way’s disc are pockets of gas and dust that have been heated by nearby newborn stars, causing them to glow brightly like cosmic gems. Through their higher temperatures, these regions glow at shorter infrared wavelengths and are depicted in violet and green, while the colder material in the surroundings – only a few tens of degrees above absolute zero – appears redder.

    Laced amongst the stars is an intricate network of filaments sprinkled with tiny white spots: these are denser clumps of gas and dust that will likely evolve and give birth to new stars.

    The image combines observations from the PACS and SPIRE instruments on Herschel. It spans about 12º on the longer side, corresponding to some 24 times the diameter of the full Moon. This is 1/30th of the entire Galactic Plane survey.

    This image was first published in OSHI, the Online Showcase of Herschel Images, in 2011. 

Wednesday, March 19, 2014

Herschell completes largest survey of cosmic dust in local Universe

Collage of galaxies in the Herschel Reference Survey at infrared/submillimetre wavelengths by Herschel (left) and at visible wavelengths from the Sloan Digital Sky Survey (SDSS, right). The Herschel image is coloured with blue representing cold dust and red representing warm dust; the SDSS image shows young stars in blue and old stars in red. Together, the observations plot young, dust-rich spiral/irregular galaxies in the top left, with giant dust-poor elliptical galaxies in the bottom right. Copyright: ESA/Herschel/HRS-SAG2 and HeViCS Key Programmes/Sloan Digital Sky Survey/ L. Cortese (Swinburne University)

Collage of galaxies included in the Herschel Reference Survey, the largest census of cosmic dust in the local Universe. The galaxies are presented in false-colour to highlight different dust temperatures, with blue and red representing colder and warmer regions respectively. The collage is presented with dust-rich, spiral and irregular galaxies in the top left, and giant, dust-poor elliptical galaxies in the bottom-right. The images were composed from PACS and SPIRE observations at 100, 160 and 250 microns. Copyright ESA/Herschel/HRS-SAG2 and HeViCS Key Programmes/L. Cortese (Swinburne University)
.
Collage of galaxies included in the Herschel Reference Survey as seen at visible wavelengths in images obtained by the Sloan Digital Sky Survey. The colour distribution highlights different stellar ages, with red and blue indicating older and younger stars, respectively. Copyright: Sloan Digital Sky Survey/L. Cortese (Swinburne University)

The largest census of dust in local galaxies has been completed using data from ESA’s Herschel space observatory, providing a huge legacy to the scientific community. 

Cosmic dust grains are a minor but fundamental ingredient in the recipe of gas and dust for creating stars and planets. But despite its importance, there is an incomplete picture of the dust properties in galaxies beyond our own Milky Way. 

Key questions include how the dust varies with the type of galaxy, and how it might affect our understanding of how galaxies evolve. 

Before concluding its observations in April 2013, Herschel provided the largest survey of cosmic dust, spanning a wide range of nearby galaxies located 50–80 million light-years from Earth. 

The catalogue contains 323 galaxies with varying star formation activity and different chemical compositions, observed by Herschel’s instruments across far-infrared and submillimetre wavelengths. 

A sample of these galaxies is displayed in a collage, arranged from dust-rich in the top left to dust-poor in the bottom right. 

The dust-rich galaxies are typically spiral or irregular, whereas the dust-poor ones are usually elliptical. Blue and red colours represent cooler and warmer regions of dust, respectively. 

Dust is gently heated across a range of temperatures by the combined light of all of the stars in each galaxy, with the warmest dust being concentrated in regions where stars are being born. 

For comparison, the galaxies are also shown in visible light images obtained by the Sloan Digital Sky Survey. 

Here, blue corresponds to young stars – hot, massive stars that burn through their fuel very quickly and are therefore short-lived. 

Conversely, red stars are older population – they are less massive and cooler, and therefore live for longer. 

The Herschel observations allow astronomers to determine how much light is emitted by the dust as a function of wavelength, providing a means to study the physical properties of the dust. 

For example, a galaxy forming stars at a faster rate should have more massive, hot stars in it, and thus the dust in the galaxy should also be warmer. In turn, that means that more of the light emitted by the dust should come out at shorter wavelengths. 

However, the data show greater variations than expected from one galaxy to another based on their star formation rates alone, implying that other properties, such as its chemical enrichment, also play an important role. 

By allowing astronomers to investigate these correlations and dependences, the survey provides a much-needed local benchmark for quantifying the role played by dust in galaxy evolution throughout the history of the Universe. 

The data will complement observations being made by other telescopes, such as the ground-based Atacama Large Millimeter Array in Chile, which will allow astronomers to look at dust in galaxies to the very edge of the observable Universe.

More information:

“PACS photometry of the Herschel Reference Survey – far-infrared/sub-millimeter colours as tracers of dust properties in nearby galaxies,” by L. Cortese et al., is published in the Monthly Notices of the Royal Astronomical Society, 18 March 2014.


For further information, please contact:
 
Markus Bauer


ESA Science and Robotic Exploration Communication Officer



Tel: +31 71 565 6799



Mob: +31 61 594 3954



Email:
markus.bauer@esa.int

Luca Cortese
Swinburne University of Technology, Australia
Email:
lcortese@swin.edu.su

Göran Pilbratt
ESA Herschel Project Scientist
Tel: +31 71 565 3621

Email:
gpilbratt@rssd.esa.int

Source: ESA/Herschel


Thursday, January 23, 2014

Herschel discovers water vapour around dwarf planet Ceres

Copyright: ESA/ATG medialab

ESA’s Herschel space observatory has discovered water vapour around Ceres, the first unambiguous detection of water vapour around an object in the asteroid belt. 

With a diameter of 950 km, Ceres is the largest object in the asteroid belt, which lies between the orbits of Mars and Jupiter. But unlike most asteroids, Ceres is almost spherical and belongs to the category of ‘dwarf planets’, which also includes Pluto. 

It is thought that Ceres is layered, perhaps with a rocky core and an icy outer mantle. This is important, because the water-ice content of the asteroid belt has significant implications for our understanding of the evolution of the Solar System.

Water detection on Ceres
Copyright: Adapted from Küppers et al. 

When the Solar System formed 4.6 billion years ago, it was too hot in its central regions for water to have condensed at the locations of the innermost planets, Mercury, Venus, Earth and Mars. Instead, it is thought that water was delivered to these planets later during a prolonged period of intense asteroid and comet impacts around 3.9 billion years ago. 

While comets are well known to contain water ice, what about asteroids? Water in the asteroid belt has been hinted at through the observation of comet-like activity around some asteroids – the so-called Main Belt Comet family – but no definitive detection of water vapour has ever been made. 

Now, using the HIFI instrument on Herschel to study Ceres, scientists have collected data that point to water vapour being emitted from the icy world’s surface. 

“This is the first time that water has been detected in the asteroid belt, and provides proof that Ceres has an icy surface and an atmosphere,” says Michael Küppers of ESA’s European Space Astronomy Centre in Spain, lead author of the paper published in Nature.

Artist’s impression of Ceres
Copyright: ESA/ATG medialab/Küppers et al.

Although Herschel was not able to make a resolved image of Ceres, the astronomers were able to derive the distribution of water sources on the surface by observing variations in the water signal during the dwarf planet’s 9-hour rotation period. Almost all of the water vapour was seen to be coming from just two spots on the surface. 

“We estimate that approximately 6 kg of water vapour is being produced per second, requiring only a tiny fraction of Ceres to be covered by water ice, which links nicely to the two localised surface features we have observed,” says Laurence O’Rourke, Principal Investigator for the Herschel asteroid and comet observation programme called MACH-11, and second author on the Nature paper. 

The most straightforward explanation of the water vapour production is through sublimation, whereby ice is warmed and transforms directly into gas, dragging the surface dust with it, and thus exposing fresh ice underneath to sustain the process. Comets work in this fashion. 

The two emitting regions are about 5% darker than the average on Ceres. Able to absorb more sunlight, they are then likely the warmest regions, resulting in a more efficient sublimation of small reservoirs of water ice. 

An alternative possibility is that geysers or icy volcanoes – cryovolcanism – play a role in the dwarf planet’s activity. 

Much more detailed information on Ceres is expected soon, as NASA’s Dawn mission is currently en route there for an arrival in early 2015. It will provide close-up mapping of the surface and monitor how the water activity is generated and varies with time. 

“Herschel’s discovery of water vapour outgassing from Ceres gives us new information on how water is distributed in the Solar System. Since Ceres constitutes about one fifth of the total mass of asteroid belt, this finding is important not only for the study of small Solar System bodies in general, but also for learning more about the origin of water on Earth,” says Göran Pilbratt, ESA’s Herschel Project Scientist.

“Localised sources of water vapour on dwarf planet (1) Ceres,” by M. Küppers et al. is published in Nature 23 January 2014. 

Ceres was observed on four occasions between November 2011 and March 2013 initially as part of the MACH-11 (Measurements of 11 Asteroids and Comets with Herschel) Guaranteed Time Programme, and complemented by two additional Director’s Discretionary Time observations that confirmed the tentative detection and measured the variation in water vapour as a function of rotation period. 

For further information, please contact:
 
Markus Bauer

ESA Science and Robotic Exploration Communication Officer


Tel: +31 71 565 6799


Mob: +31 61 594 3 954


Email:
markus.bauer@esa.int

Michael Küppers
European Space Agency, ESAC
Email:
michael.kueppers@sciops.esa.int

Laurence O’Rourke
Programme PI for MACH-11
European Space Agency, ESAC
Email:
Laurence.O’Rourke@esa.int

Göran Pilbratt
ESA Herschel Project Scientist
Tel: +31 71 565 3621
Email:
gpilbratt@rssd.esa.int

Source: ESA/Herschel


Monday, December 16, 2013

Herschel spies active argon in Crab Nebula

Herschel image and spectrum of the Crab Nebula, with emission lines from the molecular ion argon hydride. Credit: ESA/Herschel/PACS, SPIRE/MESS Key Programme Supernova Remnant Team.  Hi-Res Image
 
Herschel (red) and Hubble (blue) composite image of the Crab Nebula. Credit: ESA/Herschel/PACS/MESS Key Programme Supernova Remnant Team; NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Hi-Res Image

Using ESA's Herschel Space Observatory, a team of astronomers has found first evidence of a noble-gas based molecule in space. A compound of argon, the molecule was detected in the gaseous filaments of the Crab Nebula, one of the most famous supernova remnants in our Galaxy. While argon is a product of supernova explosions, the formation and survival of argon-based molecules in the harsh environment of a supernova remnant is an unforeseen surprise. 

Just like a group of people, the periodic table of chemical elements has its share of team players and loners. While some elements tend to react more easily with other species, forming molecules and other compounds, others hardly ever take part in chemical reactions and are mainly found in isolation. 'Inert' elements par excellence are the noble gases: helium, neon, argon, krypton, xenon and radon.

The name of one of them – argon – derives from the Greek word for idle, to emphasise its highly inert nature. But noble gases are not entirely inactive. While at first scientists doubted that chemical compounds could even contain noble gases, several such species are now known and have been extensively studied in the laboratory.

Things are more complex in space. Over the decades, astronomers have detected atoms and ions of noble gases in a variety of cosmic environments, ranging from the Solar System to the atmospheres of stars, from dense nebulae to the diffuse interstellar medium. But the search for noble-gas based compounds had until now proved unsuccessful, suggesting that these almost inert elements might have a hard time reacting with other species in space.

A new study, led by Michael Barlow from University College London, UK, and based on data from ESA's Herschel Space Observatory, has found the first evidence of such a compound in space. The results are published in the journal Science.

The team of astronomers has detected emission from argon hydride (ArH+), a molecular ion containing the noble gas argon, in the Crab Nebula. A wispy and filamentary cloud of gas and dust, the Crab Nebula is the remnant of a supernova explosion that was observed by Chinese astronomers in the year 1054.

"At first, the discovery seemed bizarre," comments Barlow.

"With hot gas still expanding at high speeds after the explosion, a supernova remnant is a harsh, hostile environment, and one of the places where we least expected to find a noble-gas based molecule," he adds.

Argon hydride is produced when ions of argon (Ar+) react with hydrogen molecules (H2), but these two species are usually found in different regions of a nebula. While ions form in the most energetic regions, where radiation from a star or stellar remnant ionises the gas, molecules take shape in the denser, colder pockets of gas that are shielded from this powerful radiation.


"But we soon realised that even in the Crab Nebula, there are places where the conditions are just right for a noble gas to react and combine with other elements.

"There, in the transition regions between ionised and molecular gas, argon hydride can form and survive," explains Barlow.

This new picture was supported by the comparison of the Herschel data with observations of the Crab Nebula performed at other wavelengths, which revealed that the regions where they had found ArH+ also exhibit higher concentrations of both Ar+ and H2. There, argon ions can react with hydrogen molecules forming argon hydride and atomic hydrogen.

In the partly ionised gas filling these regions, molecules collide frequently with ions and free electrons. These collisions excite the molecular structure of ArH+ making it rotate; in turn, molecular rotations produce the emission features detected in the spectrum of the Crab Nebula by Herschel.

"The discovery was truly serendipitous: we were observing the Crab Nebula to study its dust content. But then, on top of the emission from dust, we found two emission lines that had never been seen before," says co-author Bruce Swinyard, also from University College London.

The identification of these lines was a challenging task. To this end, the astronomers exploited two extensive databases of molecular spectra and, after lengthy investigation, they matched the observed features with two characteristic lines emitted by ArH+.

"And there's icing on the cake: from a molecule's emission, we can determine the isotope of the elements that form it – something that we can't do when we see only ions," adds Swinyard.

The Herschel data indicate that the argon hydride found in the Crab Nebula is made up of the argon isotope 36Ar. This is the first time that astronomers could identify the isotopic nature of an element in a supernova remnant.

"Finding that argon in the Crab Nebula consists of 36Ar was not surprising because this is the dominant isotope of argon across the Universe.

"And it's also the main argon isotope to be synthesised in the nuclear reactions during supernova explosions, so its detection in the Crab Nebula confirms that this iconic nebula was created by the explosive death of a massive star," explains Barlow.

The astronomers are planning further observations with other facilities to seek new emission lines in the Crab Nebula's spectrum, possibly from molecules containing different isotopes of argon. The detection of such a molecule would enable them to study the ratio of different isotopes produced by supernovae and to learn more about the nuclear reactions that take place when a massive star dies.

"This is not only the first detection of a noble-gas based molecule in space, but also a new perspective on the Crab Nebula. Herschel has directly measured the argon isotope we expect to be produced via explosive nucleosynthesis in a core-collapse supernova, refining our understanding of the origin of this supernova remnant," concludes Göran Pilbratt, Herschel Project Scientist at ESA.

Background information

The results described in this article are reported in "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", by M. J. Barlow et al., published in Science, 342, 6163, 1343-1345, 13 December 2013. DOI: 10.1126/science.124358213.

The argon isotope found in the Crab Nebula is different from the one that dominates in Earth's atmosphere, 40Ar, which derives from the decay of a radioactive isotope of potassium (40K) present in our planet's rocks. 
At almost one per cent, argon is the third most abundant gas in the atmosphere of Earth after nitrogen and oxygen, and was discovered at the end of the 19th century.

The study is based on data collected with the Spectral and Photometric Imaging Receiver (SPIRE) on board ESA's Herschel Space Observatory. The team of astronomers detected two emission lines corresponding to the first two rotational transitions of argon hydride (ArH+) at frequencies of 617.5 GHz and 1234.6 GHz, respectively. To identify the lines, they made use of two extensive databases of molecular lines: the Cologne Database for Molecular Spectroscopy (CDMS) and the Madrid Molecular Spectroscopy Excitation (MADEX) code.

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

The SPIRE instrument contains an imaging photometer (camera) and an imaging spectrometer. The camera operates in three wavelength bands centred on 250, 350 and 500 µm, and so can make images of the sky simultaneously in three sub-millimetre colours; the spectrometer covers the wavelength range between 194 and 671 μm. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA  (UK); and NASA (USA).

Herschel was launched on 14 May 2009 and completed science observations on 29 April 2013.

Contacts

Michael J. Barlow
Department of Physics & Astronomy
University College London
London, UK
Email:
mjb@star.ucl.ac.uk
Phone: +44-20-7679-7160
Mobile: +44-77-5894-5482


Bruce M. Swinyard
Department of Physics & Astronomy
University College London
London, UK
Email
: bms@star.ucl.ac.uk; bruce.swinyard@stfc.ac.uk
Phone: +44-20-7679-1352
Mobile: +44-79-0834-3567


Göran Pilbratt
Herschel Project Scientist
Research and Scientific Support Department
Science and Robotic Exploration Directorate
ESA, The Netherlands
Email:
gpilbratt@rssd.esa.int
Phone: +31-71-565-3621




Monday, October 14, 2013

A Galactic bubble with a large surprise

RCW 120 is a bubble blown by a central star (not visible at these infrared wavelengths) that has exerted enough pressure in the bubble ‘walls’ that material can begin collapsing into the next generation of star. The bright knot in the bottom right of the bubble is one such stellar embryo, which is surrounding by material amounting to 2000 solar masses. The star already has a mass of about 8–10 Suns, and will likely grow larger still. RCW 120 lies about 4300 light-years away.
The image was created from data collected using the PACS and SPIRE instruments on ESA’s Herschel space observatory, covering wavelengths of 100µm (blue), 160µm (green) and 250µm (red). Copyright: ESA/PACS/SPIRE/HOBYS Consortia 

Nestled within the shell around this large bubble is an embryonic star that is already a hefty eight times more massive than our Sun. 
 
This image, by ESA’s Herschel space observatory, was originally presented in the first announcement of scientific results  from the mission in May 2010. 

This week Herschel scientists will meet again at ESA’s ESTEC establishment in the Netherlands to present, discuss, and take stock of the scientific breakthroughs of the entire mission at The Universe Explored by Herschel symposium. 

The Galactic bubble shown in this image was just one of many surprising results of the mission. 

It is about 4300 light-years away and has been blown by a star at its centre. The star is not visible at these infrared wavelengths but pushes on the surrounding dust and gas with nothing more than the power of its starlight. 

The pressure exerted on the surrounding material is such that it has begun collapsing into new stars. 

The bright knot to the right of the base of the bubble is an unexpectedly large, embryonic star, revealed to Herschel’s infrared detectors by heating up the surrounding dense clumps of gas and dust. 

Herschel’s observations have shown that it already contains at least eight times the mass of our Sun, and that it is still surrounded by an additional 2000 solar masses of gas and dust from which it can feed further. 

Not all of the material will fall onto the star, however, as some will be blasted away by the intense radiation emitted by the star. Some stars reach an impressive 150 solar masses, but just how large this stellar embryo will grow remains to be seen. 

This week, scientists will not only discuss star formation, but also what the Herschel space observatory has revealed about planetary system evolution, galaxy formation, the interstellar medium and more. A full programme can be found here

Herschel was launched on 14 May 2009 and completed science observations on 29 April 2013. 

Source: ESA



Wednesday, October 02, 2013

Herschel throws new light on oldest cosmic light

Cosmologists have achieved a first detection of a long-sought component in the Cosmic Microwave Background (CMB). This component, known as B-mode polarisation, is caused by gravitational lensing, the bending of light by massive structures as it travels across the Universe. The result is based on the combination of data from the South Pole Telescope and ESA's Herschel Space Observatory. This detection is a milestone along the way to the possible discovery of another kind of B-mode signal in the polarised CMB - a signal produced by gravitational waves less than a second after the Universe began.

E-modes and B-modes in the CMB polarisation (left and right panels, respectively) and the gravitational potential of the large-scale distribution of matter that is lensing the CMB (central panel) from SPT and Herschel data. Credit: Image from D. Hanson, et al., 2013, Physical Review Letters, 111, 141301

The Cosmic Microwave Background is the most ancient light that has travelled almost unimpeded across the Universe, and it contains a wealth of information about the origin and nature of the cosmos. During their journey, photons from the CMB have encountered a multitude of galaxies and galaxy clusters and have been deflected by these large concentrations of matter.

This phenomenon, known as gravitational lensing, imprints a subtle distortion on the pattern of the CMB that encodes details about the large-scale distribution of structure in the Universe. In recent years, cosmologists have detected the signature of gravitational lensing on the CMB temperature using data from ground-based and space-borne experiments, including the first all-sky image of this effect achieved using ESA's Planck satellite.

Gravitational lensing of the Cosmic Microwave Background
Credit: ESA and the Planck Collaboration

A small portion of the CMB is polarised, and gravitational lensing also affects this part of the signal. In fact, the polarised CMB is an additional and even richer treasure trove than the unpolarised signal to use to explore the Universe's past. Now a team of cosmologists studying the polarised CMB has detected in it the signature of gravitational lensing, opening new and exciting possibilities to study the distribution of matter across the cosmos. This result is also the first detection of the elusive second component of the CMB polarisation – the long-sought B-modes.

The study is based on the combination of data from SPTpol, the polarisation-sensitive receiver on the National Science Foundation's South Pole Telescope (SPT), and the SPIRE instrument on board ESA's Herschel Space Observatory. The SPT is a ground-based telescope, located in Antarctica, to observe the CMB to very high angular resolution in a small patch of the southern sky.

"The CMB is partially polarised: this means that it carries additional directional information, like the light that can be observed using polarised glasses," explains Joaquin Vieira from the California Institute of Technology in Pasadena and University of Illinois at Urbana-Champaign, USA. Vieira led the Herschel survey that enabled this result.

"The pattern we observe in polarised light can be split in two distinctive components: we call these E-modes and B-modes. In the case of CMB polarisation, these two components carry very different and complementary information about both the early and the late Universe."

The CMB is the glow from the early Universe, when it first became transparent to radiation, about 380 000 years after the Big Bang. There are fluctuations in both the temperature of the CMB and its polarisation, which represent tiny differences in density and pressure at that epoch. The polarisation of the CMB has a distinctive pattern of E- and B-modes that dates back to the early Universe. But this pattern, and in particular the intensity of the B-mode component, underwent substantial changes as the polarised CMB propagated across the Universe.

"When gravitational lensing distorts the polarised CMB photons, it transforms part of the E-modes into B-modes," explains Vieira.

Only a small fraction of the CMB is polarised, so it is a very weak signal and extremely difficult to detect. The E-mode component of CMB polarisation, which has a stronger intensity than the B-mode one, was first observed in 2002 with the ground-based Degree Angular Scale Interferometer (DASI), and with a variety of other experiments in the following years. The B-modes are an extremely weak signal and, until now, had remained undetected.

"In our study, we combined the polarised CMB observed by SPT with independent data from Herschel. This technique allowed us to finally spot the B-modes induced by gravitational lensing," comments Vieira.

The cosmologists detected the B-mode signal due to gravitational lensing in the data from SPT. To make their detection more robust, they added complementary observations from Herschel to trace the large-scale distribution of galaxies that cause the lensing.

Joint observation from the South Pole Telescope (left panel) and Herschel (right panel)
Credit: Image from G. Holder et al., 2013,
The Astrophysical Journal Letters, 771, L16

"Herschel offers us a good data set to reconstruct the gravitational potential of the galaxies that are distorting the CMB," says Vieira.

"Including the Herschel data in our analysis made the SPTpol data less sensitive to instrumental effects and was key to isolating the lensing-induced B-mode signal."

With its wide spectral coverage ranging from far-infrared to sub-millimetre wavelengths, Herschel is sensitive to the Cosmic Infrared Background (CIB). In contrast to the CMB, which is the diffuse light from the early Universe, the CIB is a cumulative background, and arose with the formation of stars and galaxies, which started  several hundreds of millions of years after the Big Bang.

Whilst stars shine primarily at ultraviolet wavelengths, over the entire age of the Universe roughly half of this energy has been absorbed by cosmic dust within galaxies; this cold dust reradiates starlight at longer, far-infrared wavelengths. For this reason, the CIB encapsulates the cosmic history of star formation.

Galaxies tend to group in galaxy clusters, which are embedded in dark matter halos, and these large concentrations of dark and normal matter are what causes the gravitational lensing of the CMB. For this reason, there is a very strong correlation between the gravitationally-lensed CMB and the CIB detected by Herschel, as the latter traces the lenses responsible for the deflection. By locating points in the sky where more (or fewer) galaxies are present, the extra information contained in the Herschel data allowed the team to see the gravitational lensing effect more clearly.

The effect of gravitational lensing on the Cosmic Microwave Background.
Credit: Image from G. Holder et al., 2013, 
The Astrophysical Journal Letters, 771, L16 

This first result opens a new era in the study of the gravitationally-lensed CMB. So far, cosmologists have successfully studied gravitational lensing on the CMB temperature, but this signal is subject to a large degree of intrinsic noise, and it will be extremely difficult to improve significantly on the best current results. Studying the effect of gravitational lensing in the polarised CMB, instead, is expected to provide a much cleaner probe of the underlying distribution of matter causing the lensing.

"Polarisation holds the key to the future of gravitational lensing studies of the CMB," comments Duncan Hanson from McGill University in Montréal, Canada, who is first author of the paper reporting the discovery.

"This field is in its early stages right now, but as we collect more and more data, we will be able to study the large-scale distribution of matter with ever greater precision."

The study was based on observations with SPTpol together with Herschel data of a large patch of the sky, measuring 100 square degrees, that overlaps with the survey performed with SPTpol.

"It is great to see this ingenious use of Herschel data in achieving the first detection of B-modes in the CMB polarisation, which are fluctuations at a level of one in about ten million," comments Göran Pilbratt, Herschel Project Scientist at ESA.

"This work displays yet another use of the treasure trove of the available Herschel data," he adds.

Apart from its application to gravitational lensing, the discovery of B-modes is a milestone because it proves that it is possible to detect such a signal. Worldwide, cosmologists are still searching for a different type of B-modes, those created by primordial gravitational waves, using experiments including SPT and Planck.

Cosmologists believe that the Universe began with a very early phase of accelerated expansion known as inflation. During this very rapid phase, which boosted the size of the Universe exponentially, it is thought that gravitational waves were also generated.

"Gravitational waves are ripples in the fabric of space-time, and we think that those produced during inflation left an imprint in the B-mode component of the CMB polarisation," explains co-author Stephen Hoover from the Kavli Institute for Cosmological Physics at the University of Chicago, USA.

Finding such a signal would provide crucial information to study the very early Universe and inflation. Detection of B-modes induced by primordial gravitational waves, however, may prove even more complex as they are expected to have very different properties to those caused by gravitational lensing. Since primordial B-modes become apparent on much larger angular scales than those probed in this study, cosmologists will need to scan and analyse the signal on larger portions of the sky. Besides, cosmologists are still in the dark as to the amplitude and shape of the signal they are looking for, due to the many theoretical uncertainties that are still plaguing inflation.

"The fact that we were able to detect B-modes in the CMB polarisation at all is a great experimental success. We're all eager to find out whether this will be followed by the even more exciting discovery of primordial gravitational waves," concludes  Vieira.

Background information

The results described in this article are reported by D. Hanson and colleagues in the paper "Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope", published in Physical Review Letters, 111, 141301 (2013).

The study is based on data from SPTpol, the polarisation-sensitive instrument of the National Science Foundation's South Pole Telescope (SPT), and from the SPIRE instrument on board ESA's Herschel Space Observatory.

The Cosmic Microwave Background (CMB) originated when photons last scattered off electrons at the epoch of recombination, when the Universe was about 380 000 years old. Since the scattering process polarises light, a small fraction of the CMB (less than ten per cent) is polarised.

Polarised light carries additional, directional information, and its pattern has two geometrical components. One way to split the polarised fraction of the CMB in its two components is into E-modes and B-modes, which are defined in a way that resembles the patterns of electric (E) and magnetic (B) fields in electromagnetism.

The pattern of E-modes is aligned either tangentially or radially; it would look the same when reflected in a mirror – something that scientists call 'even parity'. In contrast, the pattern of B-modes is aligned at an angle of 45 degrees with respect to that of E-modes: this creates a 'handedness', meaning that the pattern changes orientation when reflected in a mirror.

These two components of the CMB polarisation carry different, complementary information. Of the two components, E-modes have a higher intensity than B-modes.

Gravitational lensing, the bending of light caused by massive objects, also affects the CMB as it propagates across the large-scale distribution of structure that started populating the Universe a few hundred million years after the Big Bang. Massive bodies such as galaxies and galaxy clusters act as lenses and deflect the path of photons, causing distortions to the image of distant sources. The effect of the distortion on the CMB polarisation is a mixing of E- and B-modes: part of the signal contained in E-modes is transferred to the B-modes.

Like ordinary glass lenses, a gravitational lens is most effective when located half way between the source of light and the observer. In a cosmological context, the galaxies that most contribute to lens the CMB are those located at a redshift z~2. These galaxies are best probed through the longest-wavelength band on the SPIRE instrument on Herschel, which is centred on 500 microns.

The data from Herschel contained information about the distribution of the galaxies that are distorting the CMB (and its polarised component) via gravitational lensing. As such, they provided extra leverage to make the detection of the B-modes induced by gravitational lensing on the CMB polarisation more robust.
Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

The SPIRE instrument contains an imaging photometer (camera) and an imaging spectrometer. The camera operates in three wavelength bands centred on 250, 350 and 500 µm, and so can make images of the sky simultaneously in three sub-millimetre colours; the spectrometer covers the wavelength range between 194 and 671 μm. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA  (UK); and NASA (USA).

Herschel was launched on 14 May 2009 and completed science observations on 29 April 2013.

The SPT is a 10-metre diameter telescope located at the Amundsen-Scott South Pole Station, Antarctica. It is supported by the National Science Foundation, the Kavli Foundation and the Betty Moore Foundation.

Contacts

Joaquin Vieira
California Institute of Technology
Pasadena, CA, USA
and University of Illinois at Urbana-Champaign
Urbana, IL, USA
Email:
vieira@caltech.edu
Phone: +1-949-887-5795

Duncan Hanson
McGill University
Montréal, QC, Canada
Email:
dhanson@physics.mcgill.ca
Phone: +1-514-398-6517

Stephen Hoover
Kavli Institute for Cosmological Physics
University of Chicago
Chicago, IL, USA
Email:
hoover@kicp.uchicago.edu
Phone: +1-773-834-2103

Göran Pilbratt
Herschel Project Scientist
Research and Scientific Support Department
Science and Robotic Exploration Directorate
ESA, The Netherlands
Email:
gpilbratt@rssd.esa.int
Phone: +31-71-565-3621