Friday, July 31, 2020

ALMA Finds Possible Sign of Neutron Star in Supernova 1987A

Artist's illustration of SN1987A
This artist's illustration of Supernova 1987A shows the dusty inner regions of the exploded star's remnants (red), in which a neutron star might be hiding. This inner region is contrasted with the outer shell (blue), where the energy from the supernova is colliding (green) with the envelope of gas ejected from the star prior to its powerful detonation. Credit: NRAO/AUI/NSF, B. Saxton. Hi-Res File

"The blob" in Supernova 1987A
Extremely high-resolution ALMA images revealed a hot “blob” in the dusty core of Supernova 1987A (inset), which could be the location of the missing neutron star. The red color shows dust and cold gas in the center of the supernova remnant, taken at radio wavelengths with ALMA. The green and blue hues reveal where the expanding shock wave from the exploded star is colliding with a ring of material around the supernova. The green represents the glow of visible light, captured by NASA's Hubble Space Telescope. The blue color reveals the hottest gas and is based on data from NASA's Chandra X-ray Observatory. The ring was initially made to glow by the flash of light from the original explosion. Over subsequent years the ring material has brightened considerably as the explosion's shock wave slams into it.Credit: ALMA (ESO/NAOJ/NRAO), P. Cigan and R. Indebetouw; NRAO/AUI/NSF, B. Saxton; NASA/ESA. Hi-Res File

Multiwavelength image of SN1987A
This colorful, multiwavelength image of the intricate remains of Supernova 1987A is produced with data from three different observatories. The red color shows dust and cold gas in the center of the supernova remnant, taken at radio wavelengths with ALMA. The green and blue hues reveal where the expanding shock wave from the exploded star is colliding with a ring of material around the supernova. The green represents the glow of visible light, captured by NASA's Hubble Space Telescope. The blue color reveals the hottest gas and is based on data from NASA's Chandra X-ray Observatory. The ring was initially made to glow by the flash of light from the original explosion. Over subsequent years the ring material has brightened considerably as the explosion's shock wave slams into it. Credit: ALMA (ESO/NAOJ/NRAO), P. Cigan and R. Indebetouw; NRAO/AUI/NSF, B. Saxton; NASA/ESA. Hi-Res File

Supernova 1987A resides 163,000 light-years away in the Southern Sky in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Credit: NRAO/AUI/NSF, IAU, Sky & Telescope. Hi-Res File

Video zooming into the dusty core of Supernova 1987A, revealing a hot “blob” as seen with ALMA, which could be the location of the missing neutron star. The red color shows dust and cold gas in the center of the supernova remnant, taken at radio wavelengths with ALMA. The green and blue hues reveal where the expanding shock wave from the exploded star is colliding with a ring of material around the supernova. The green represents the glow of visible light, captured by NASA's Hubble Space Telescope. The blue color reveals the hottest gas and is based on data from NASA's Chandra X-ray Observatory. The ring was initially made to glow by the flash of light from the original explosion. Over subsequent years the ring material has brightened considerably as the explosion's shock wave slams into it.Credit: ALMA (ESO/NAOJ/NRAO), P. Cigan and R. Indebetouw; NRAO/AUI/NSF, B. Saxton; NASA/ESA. Download Video



Two teams of astronomers have made a compelling case in the 33-year-old mystery surrounding Supernova 1987A. Based on observations of the Atacama Large Millimeter/submillimeter Array (ALMA)  and a theoretical follow-up study, the scientists provide new insight for the argument that a neutron star is hiding deep inside the remains of the exploded star. This would be the youngest neutron star known to date.

Ever since astronomers witnessed one of the brightest explosions of a star in the night sky, creating Supernova

1987A (SN 1987A), they have been searching for a compact object that should have formed in the leftovers from the blast.

Because particles known as neutrinos were detected on Earth on the day of the explosion (23 February 1987), astronomers expected that a neutron star had formed in the collapsed center of the star. But when scientists could not find any evidence for that star, they started to wonder whether it subsequently collapsed into a black hole instead. For decades the scientific community has been eagerly awaiting a signal from this object that has been hiding behind a very thick cloud of dust.

The “blob”

Recently, observations from the ALMA radio telescope provided the first indication of the missing neutron star after the explosion. Extremely high-resolution images revealed a hot “blob” in the dusty core of SN 1987A, which is brighter than its surroundings and matches the suspected location of the neutron star.

“We were very surprised to see this warm blob made by a thick cloud of dust in the supernova remnant,” said Mikako Matsuura from Cardiff University and a member of the team that found the blob with ALMA. “There has to be something in the cloud that has heated up the dust and which makes it shine. That’s why we suggested that there is a neutron star hiding inside the dust cloud.”

Even though Matsuura and her team were excited about this result, they wondered about the brightness of the blob. “We thought that the neutron star might be too bright to exist, but then Dany Page and his team published a study that indicated that the neutron star can indeed be this bright because it is so very young,” said Matsuura.

Dany Page is an astrophysicist at the National Autonomous University of Mexico, who has been studying SN 1987A from the start. “I was halfway through my PhD when the supernova happened,” he said, “it was one of the biggest events in my life that made me change the course of my career to try to solve this mystery. It was like a modern holy grail.”

The theoretical study by Page and his team, published today in The Astrophysical Journal, strongly supports the suggestion made by the ALMA team that a neutron star is powering the dust blob. “In spite of the supreme complexity of a supernova explosion and the extreme conditions reigning in the interior of a neutron star, the detection of a warm blob of dust is a confirmation of several predictions,” Page explained.

These predictions were the location and the temperature of the neutron star. According to supernova computer models, the explosion has “kicked away” the neutron star from its birthplace with a speed of hundreds of kilometers per second (tens of times faster than the fastest rocket). The blob is exactly at the place where astronomers think the neutron star would be today. And the temperature of the neutron star, which was predicted to be around 5 million degrees Celsius, provides enough energy to explain the brightness of the blob.

Not a pulsar or a black hole

Contrary to common expectations, the neutron star is likely not a pulsar. “A pulsar’s power depends on how fast it spins and on its magnetic field strength, both of which would need to have very finely tuned values to match the observations,” said Page, “while the thermal energy emitted by the hot surface of the young neutron star naturally fits the data.”

“The neutron star behaves exactly like we expected,” added James Lattimer of Stony Brook University in New York, and a member of Page’s research team. Lattimer has also followed SN 1987A closely, having published prior to SN 1987A predictions of a supernova’s neutrino signal that subsequently matched the observations. “Those neutrinos suggested that a black hole never formed, and moreover it seems difficult for a black hole to explain the observed brightness of the blob. We compared all possibilities and concluded that a hot neutron star is the most likely explanation.”

This neutron star is a 25 km wide, extremely hot ball of ultra-dense matter. A teaspoon of its material would weigh more than all the buildings within New York City combined. Because it can only be 33 years old, it would be the youngest neutron star ever found. The second youngest neutron star that we know of is located in the supernova remnant Cassiopeia A and is 330 years old.

Only a direct picture of the neutron star would give definite proof that it exists, but for that astronomers may need to wait a few more decades until the dust and gas in the supernova remnant become more transparent.

Detailed ALMA images

Even though many telescopes have made images of SN 1987A, none of them have been able to observe its core with such high precision as ALMA. Earlier (3-D) observations with ALMA already showed the types of molecules found in the supernova remnant and confirmed that it produced massive amounts of dust.

“This discovery builds upon years of ALMA observations, showing the core of the supernova in more and more detail thanks to the continuing improvements to the telescope and data processing,” said Remy Indebetouw of the National Radio Astronomy Observatory and the University of Virginia, who has been a part of the ALMA imaging team.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.




Media contact:

Iris Nijman
inijman@nrao.edu
+1 (434) 242 9584



This research is presented in two papers:


The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).


Thursday, July 30, 2020

Stunning Space Butterfly Captured by ESO Telescope

New ESO’s VLT image of the NGC 2899 planetary nebula

NGC 2899 in the constellation of Vela

The sky around NGC 2899



Videos

ESOcast 227 Light: Stunning Space Butterfly Captured by ESO Telescope
ESOcast 227 Light: Stunning Space Butterfly Captured by ESO Telescope

Zooming in on the planetary nebula NGC 2899
Zooming in on the planetary nebula NGC 2899



Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas — known as NGC 2899 — appears to float and flutter across the sky in this new picture from ESO’s Very Large Telescope (VLT). This object has never before been imaged in such striking detail, with even the faint outer edges of the planetary nebula glowing over the background stars.

NGC 2899’s vast swathes of gas extend up to a maximum of two light-years from its centre, glowing brightly in front of the stars of the Milky Way as the gas reaches temperatures upwards of ten thousand degrees. The high temperatures are due to the large amount of radiation from the nebula’s parent star, which causes the hydrogen gas in the nebula to glow in a reddish halo around the oxygen gas, in blue. 

This object, located between 3000 and 6500 light-years away in the Southern constellation of Vela (The Sails), has two central stars, which are believed to give it its nearly symmetric appearance. After one star reached the end of its life and cast off its outer layers, the other star now interferes with the flow of gas, forming the two-lobed shape seen here. Only about 10–20% of planetary nebulae [1] display this type of bipolar shape.

Astronomers were able to capture this highly detailed image of NGC 2899 using the FORS instrument installed on UT1 (Antu), one of the four 8.2-metre telescopes that make up ESO’s VLT in Chile. Standing for FOcal Reducer and low dispersion Spectrograph, this high-resolution instrument was one of the first to be installed on ESO’s VLT and is behind numerous beautiful images and discoveries from ESO. FORS has contributed to observations of light from a gravitational wave source, has researched the first known interstellar asteroid, and has been used to study in depth the physics behind the formation of complex planetary nebulae.

This image was created under the ESO Cosmic Gems programme, an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The programme makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.




Notes

[1] Unlike what their common name suggests, planetary nebulae have nothing to do with planets. The first astronomers to observe them merely described them as planet-like in appearance. They are instead formed when ancient ultraviolet radiation energises and lights up these moving shells, causing them to shine brightly for thousands of years until they ultimately disperse slowly through space, making planetary nebulae relatively short-lived phenomena on astronomical timescales.



More information
ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Links



Contacts

Bárbara Ferreira pio@eso.org

Source: ESO/News


Wednesday, July 29, 2020

Scientists find remnant of dismembered star cluster at galaxy edge

Artist’s impression of the thin stream of stars torn from the Phoenix globular cluster, wrapping around the Milky Way (left). Astronomers targeted bright red giant stars (artist’s impression, right) to measure the chemical composition of the disrupted Phoenix globular cluster. Credit: James Josephides, Swinburne Astronomy

Led by PhD student Zhen Wan and his supervisor Professor Geraint Lewis, an international team of astronomers has found a shredded globular cluster on the edge of the Milky Way, the remnant of a type of ancient structure that no longer exists.

An international team of astronomers has discovered the remnant of an ancient collection of stars that was torn apart by our own galaxy, the Milky Way, more than two billion years ago.

The extraordinary discovery of this shredded ‘globular cluster’ is surprising, as the stars in this galactic archaeological find have much lower quantities of heavier elements than in other such clusters. The evidence strongly suggests the original structure was the last of its kind, a globular cluster whose birth and life were different to those remaining today.

Our Galaxy is home to about 150 globular clusters, each a ball of a million or so stars that orbit in the Galaxy’s tenuous stellar halo. These globular clusters are old and have witnessed the growth of the Milky Way over billions of years.

The study, published in Nature, was led by University of Sydney PhD student, Zhen Wan, and his supervisor, Professor Geraint Lewis, as part of the S5 international collaboration.

Using the Anglo-Australian Telescope in outback New South Wales, this collaboration measured the speeds of a stream of stars in the Phoenix constellation, revealing them to be remnants of a globular cluster that was pulled apart by the gravity of the Milky Way about two billion years ago.

Mr Wan said: “Once we knew which stars belonged to the stream, we measured their abundance of elements heavier than hydrogen and helium; something astronomers refer to as metallicity. We were really surprised to find that the Phoenix Stream has a very low metallicity, making it distinctly different to all of the other globular clusters in the Galaxy.

“Even though the cluster was destroyed billions of years ago, we can still tell it formed in the early Universe from the composition of its stars.”

After the Big Bang, only hydrogen and helium existed in any substantial amount in the Universe. These elements formed the first generation of stars many billions of years ago. It is within these and later stellar generations that heavier elements were formed, such as the calcium, oxygen and phosphorous that in part make up your bones.

Observations of other globular clusters have found that their stars are enriched with heavier elements forged in earlier generations of stars. Current formation theories suggest that this dependence on previous stars means that no globular cluster should be found unenriched and that there is a minimum metallicity ‘floor’ below which no cluster can form. 

But the metallicity of the Phoenix Stream progenitor sits well below this minimum, posing a significant problem for our ideas of globular cluster origins.

“This stream comes from a cluster that, by our understanding, shouldn’t have existed,” said co-author Associate Professor Daniel Zucker from Macquarie University.

S5 team leader, Dr Ting Li from Carnegie Observatories, said: “One possible explanation is that the Phoenix Stream represents the last of its kind, the remnant of a population of globular clusters that was born in radically different environments to those we see today.”

While potentially numerous in the past, this population of globular clusters was steadily depleted by the gravitational forces of the Galaxy, which tore them to pieces, absorbing their stars into the main body of the galactic system. This means that the stream is a relatively temporary phenomenon, which will dissipate in time.

“We found the remains of this cluster before it faded forever into the Galaxy’s halo,” Mr Wan said.

As yet, there is no clear explanation for the origins of the Phoenix Stream progenitor cluster and where it sits in the evolution of galaxies remains unclear.

Professor Lewis said: “There is plenty of theoretical work left to do. There are now many new questions for us to explore about how galaxies and globular clusters form, which is incredibly exciting.”

Professor Geraint Lewis in his office at the University of Sydney School of Physics.

Is the Phoenix Stream unique? “In astronomy, when we find a new kind of object, it suggests that there are more of them out there,” said co-author Dr Jeffrey Simpson from the University of New South Wales. While globular clusters like the progenitor of the Phoenix Stream may no longer exist, their remnants may live on as faint streams.”

Dr Li said: “The next question to ask is whether there are more ancient remnants out there, the leftovers of a population that no longer exists. Finding more such streams will give us a new view of what was going on in the early Universe.”

“This is a regime we have hardly explored. It’s a very exciting time,” she said.

The stars that time forgot

Lead author: Zhen Wan


Tuesday, July 28, 2020

The ultimate RAVE: final data release published

RAVE observed nearly half a million stars of our Galaxy. The Sun is located at the centre of the coordinate system. Credit: AIP/K. Riebe, the RAVE Collaboration; Milky Way image (background): R. Hurt (SSC); NASA/JPL-Caltech. 
Hi-res Image

Map of the night sky centered on the Milky Way, with stars observed by RAVE. More than 6000 observation fields mainly from the southern sky (below the celestial equator, red line) with about half a million stars have been observed. Credit: AIP/K. Riebe, the RAVE Collaboration; Milky-Way image (background): ESO/S. Brunier. 
Hi-res Image

The stars observed by RAVE are from the southern celestial hemisphere, since the UK-Schmidt telescope is located in Australia. There are only a few observation fields in the area of the Milky Way disk (central part), because in this crowded area it is much harder to collect and analyse individual stars. Credit: AIP/K. Riebe, the RAVE Collaboration.
Hi-res Image

Sequence of RAVE observations from 2003 to 2013. Colors encode the heliocentric radial velocity of each star, from red for < -50 km/s over orange, yellow and cyan to blue for > 50 km/s. Later, colors depict [M/H] for selected classes of stars. Credit: Kristin Riebe (visualisation), the RAVE Collaboration. Videos


How do the stars in our Milky Way move? For more than a decade RAVE, one of the first and largest systematic spectroscopic surveys, studied the motion of Milky Way stars. The RAVE collaboration now published the results for over half a million observations in its 6th and final data release. RAVE succeeded in measuring the velocities, temperatures, compositions and distances for different types of stars. The unique database enables scientists to systematically disentangle the structure and evolution history of our Galaxy.

The RAdial Velocity Experiment RAVE is a spectroscopic survey of stars in the southern hemisphere. RAVE was designed to get a representative census of the movements and of the atmospheric properties of stars in the wider neighbourhood of the Sun. By means of spectroscopy, the light of a star is decomposed into its rainbow colours. By analysing the spectra, the radial velocity of a star – the movement of the stars in the direction of the observer's view, can be determined. Furthermore, stellar spectra also enable scientists to determine stellar parameters like temperatures, surface gravities, and composition. In order to trace the structure and shape of our galaxy, RAVE successfully measured 518,387 spectra for 451,783 Milky Way stars.

Astronomers are not only used to think in long time scales – their projects also are often many-year endeavours. RAVE observed the sky for almost every clear night between 2003 and 2013 at the 1.2-metre UK Schmidt telescope of the Anglo-Australian Observatory in Siding Spring, Australia. RAVE utilized a dedicated fibre-optical setup to simultaneously take spectra of up to 150 stars in a single observation. Only with this massive multiplexing such a large number of targets was achievable – the largest spectroscopic survey before RAVE featured only some 14000 targets. In this way the survey obtained a representative sample of the stars around our Sun that are located roughly in a volume 15000 light years across.

Over the past 15 years, an increasing number of stars and refined data products have been released. The final RAVE data release not only provides for the first time the spectra of all stars in the RAVE sample; the stars were also matched with stars from the DR2 catalogue of the satellite mission Gaia. Thanks to the exquisite distances and proper motions measured by Gaia, considerably improved stellar temperatures, surface gravities and the chemical composition of the stellar atmospheres could be derived.

“The RAVE data releases have provided new insights into the motion of stars and chemical structure of our Milky Way,” says Matthias Steinmetz, leader of the RAVE collaboration and scientific chairman of the Leibniz Institute for Astrophysics Potsdam (AIP). “The final data release concludes one of the first systematic spectroscopic Galactic Archaeology surveys. It’s really exciting to think about finishing this 15-year project. Thanks to RAVE, we have gained new insights into the structure and composition of our Milky Way. “ ­­

Some of the key results of RAVE include the determination of the minimum speed needed for a star to escape the gravitational pull of the Milky Way. The results confirmed that dark matter, an invisible component of the Universe of yet unknown nature, dominates the mass of our Galaxy. With RAVE it could be shown that the Milky Way disk is asymmetric and wobbles owing to the interaction with spiral arms and the infall of satellite galaxies. RAVE also allowed for the identification of stellar streams in the solar environment. These streams of stars are the residues of torn apart old dwarf galaxies that have merged into our Milky Way in the past. The chemical element abundances of the observed stars hold important clues to the chemical composition and the subsequent metal enrichment of the interstellar medium traced by stars of different ages and metallicities. With RAVE, astronomers efficiently searched for the very first stars, which are very metal-poor and give clues about the earliest epochs of star formation and the chemical evolution in the Milky Way.

The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the AIP. More than 100 refereed scientific articles based on RAVE data were published since the first data release.

Source: Leibniz Institute for Astrophysics Potsdam (AIP)




Science Contact

Prof. Dr. Matthias Steinmetz,

0331 7499 800, 



Media Contact

Franziska Gräfe,

03331 7499 803

presse@aip.de




RAVE Website

www.rave-survey.org




Publications

The Sixth Data Release of the Radial Velocity Experiment (RAVE) -- I: Survey Description, Spectra and Radial Velocities

arXiv: https://arxiv.org/abs/2002.04377

Astronomical Journal: https://iopscience.iop.org/article/10.3847/1538-3881/ab9ab9

The Sixth Data Release of the Radial Velocity Experiment (RAVE) -- II: Stellar Atmospheric Parameters, Chemical Abundances and Distances

arXiv: https://arxiv.org/abs/2002.04512

Astronomical Journal: https://iopscience.iop.org/article/10.3847/1538-3881/ab9ab8

The key areas of research at the Leibniz Institute for Astrophysics Potsdam (AIP) are cosmic magnetic fields and extragalactic astrophysics. A considerable part of the institute's efforts aim at the development of research technology in the fields of spectroscopy, robotic telescopes, and e-science. The AIP is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory of Potsdam founded in 1874. The latter was the world's first observatory to emphasize explicitly the research area of astrophysics. The AIP has been a member of the Leibniz Association since 1992.


Monday, July 27, 2020

CfA Scientists and Team Take a Look Inside the Central Engine of a Solar Flare for the First Time

Observations of the Sept. 10, 2017, solar flare and the standard solar flare model. Left: Observations in extreme ultraviolet (grayscale background) and microwave (red to blue indicate increasing frequencies). Light orange curves are selected magnetic field lines from the matching theoretical model. Right: Numerical simulation of the flare. The reconnection current sheet is shown as the thin orange-purple feature located between the erupting magnetic flux rope and the flare arcade. Microwave sources from relativistic electrons are observed to fill the entire region surrounding the current sheet. Credit: NJIT-CSTR, B. Chen, S. Yu; CfA, C. Shen; Solar Dynamics Observatory.  Low Resolution (jpg)

Observation of a large solar flare on Sept. 10, 2017 in extreme ultraviolet (grayscale background, by NASA's Solar Dynamics Observatory) and microwaves (red to blue indicate increasing frequencies, observed by the Expanded Owens Valley Solar Array). Light orange curves are selected magnetic field lines from the matching theoretical solar eruptive flare model. The flare is driven by the eruption of a twisted magnetic flux rope (illustrated by a bundle of color curves threading the dark cavity). Microwave sources are observed throughout the region below the cavity where a large-scale reconnection current sheet — the flare's "central engine" — is located, providing crucial measurements for its physical properties. Credit: NJIT-CSTR, B. Chen, S. Yu; NASA Solar Dynamics Observatory. High Resolution (jpg) - Low Resolution (jpg)


According to the study—which closely examined a large solar flare accompanied by a powerful eruption captured on September 10, 2017, by the NJI's Owens Valley Solar Array (EOVSA), at microwaves—the intense energy powering the flare is the result of an enormous electric current "sheet" stretching more than 40,000 kilometers—greater than the length of three Earths placed side-by-side—through the core flaring region, where opposing magnetic field lines approach, break, and reconnect.

"During large eruptions on the Sun, particles such as electrons can get accelerated to high energies," said Kathy Reeves, astrophysicist, CfA, and co-author on the study. "How exactly this happens is not clearly understood, but it is thought to be related to the Sun's magnetic field." Bin Chen, professor of physics at NJIT and lead author on the study added, “It has long been suggested that the sudden release of magnetic energy through the reconnection current sheet is responsible for these major eruptions, yet there has been no measurement of its magnetic properties. With this study, we’ve finally measured the details of the magnetic field of a current sheet for the first time, giving us a new understanding of the central engine of the Sun’s solar flares."

Measurements taken during the study also indicate a magnetic, bottle-like structure located at the top of the flare's loop-shaped base, or flare arcade, at a height of nearly 20,000 kilometers above the surface of the Sun. The study suggests that this is the primary site where a solar flare’s highly energetic electrons are trapped and accelerated to nearly the speed of light.

"We found that there were a lot of accelerated particles just above the bright, flaring loops," said Reeves. "The microwaves, coupled with modeling, tells us there is a minimum in the magnetic field at the location where we see the most accelerated particles, and a strong magnetic field in the linear, sheet-like structure further above the loops."

The sheet-like structure and the loops seem to be working in concert, with significant magnetic energy being pumped into the current sheet at an estimated rate of 10-100 billion trillion joules per second, and 99% of the flare’s relativistic electrons were observed congregating at the magnetic bottle. "While the current sheet seems to be the place where the energy is released to get the ball rolling, most of the electron acceleration appears to be occurring in this other location, the magnetic bottle," said Dale Gary, director, EOVSA and co-author on the study. "Others have proposed such a structure in solar flares before, but we can truly see it now in the numbers." Chen added, "What our data showed was a special location at the bottom of the current sheet—the magnetic bottle—appears to be crucial in producing or confining the relativistic electrons."

The study results were achieved through a combination of microwave observations from EOVSA and extreme ultra-violet imaging observations from the Smithsonian Astrophysical Observatory's Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO). The observations were combined with analytical and numerical modeling—based on a 1990s theoretical model of solar flare physics—to help scientists understand the structure of the magnetic field during a large solar eruption.

"Our model was used for computing the physics of the magnetic forces during this eruption, which manifests as a highly twisted 'rope' of magnetic field lines, or magnetic flux rope," said Reeves. "It is remarkable that this complicated process can be captured by a straightforward analytical model, and that the predicted and measured magnetic fields match so well."

Performed by Chengcai Shen, astrophysicist, CfA, the simulations allowed the team to resolve the thin reconnection current sheet and capture it in detail. "Our simulation results match both the theoretical prediction on magnetic field configuration during a solar eruption and reproduce a set of observable features from this particular flare, including magnetic strength and plasma inflow/outflows around the reconnecting current sheet," said Shen. “It is a powerful tool to compare theoretical expectations and observations in detail."

For the team, the study provides answers to long-unanswered questions about the Sun and its solar flares. "The place where all the energy is stored and released in solar flares has been invisible until now," said Gary. "To play on a term from cosmology, it is the Sun's 'dark energy problem,' and previously we’ve had to infer indirectly that the flare's magnetic reconnection sheet existed." For solar physics, the measurements represent a better understanding of the Sun, as well as providing a path to revealing the truth behind the current sheet, and the magnetic bottle and its role in particle acceleration. According to Chen, "There are certainly huge prospects out there for us to study that address these fundamental questions."

The current study builds on the team’s quantitative measurements of the evolving magnetic field strength directly follow a solar flare's ignition, published in Science earlier this year.

About Center for Astrophysics | Harvard & Smithsonian

Headquartered in Cambridge, Mass., the Center for Astrophysics | Harvard & Smithsonian (CfA) is a collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

Amy Oliver
Public Affairs
Center for Astrophysics | Harvard & Smithsonian
Fred Lawrence Whipple Observatory
520-879-4406

amy.oliver@cfa.harvard.edu


Source: Harvard-Smithsonian Center for Astrophysics (CfA)



Friday, July 24, 2020

A Spiral Galaxy with a Huge Magnetic Field

The spiral galaxy NGC 4217 has a huge magnetic field, that is shown here as green lines. The radio data for this visualisation were recorded with the Karl G. Jansky Very Large Array (VLA). The image of the galaxy shown from the side is taken from data from the Sloan Digital Sky Survey and Kitt Peak National Observatory. © Composite image: Y. Stein, with the support of J. English. VLA radio data: Y. Stein & R.-J. Dettmar as part of CHANG-ES led by J. Irwin. Optical data: SDSS. Ionised hydrogen (in red): R. Rand (0.9m KPNO telescope). Software code: A. Miskolczi & Y. Stein (adapted from Linear Integral Convolution code).



New cosmic magnetic field structures discovered in the galaxy NGC 4217

Superbubbles, giant loops and X-shaped magnetic field structures – this galaxy boasts a veritable wealth of shapes. How such structures are formed is a mystery. Some clues are provided by a new study led by Yelena Stein within the framework of the CHANG-ES project (“Continuum HAlos in Nearby Galaxies -- an EVLA Survey”). Rainer Beck, a scientist from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany, participated in the study. For a comprehensive image of the magnetic field structures, the researchers combined different methods that enabled them to visualise the ordered and chaotic magnetic fields of the galaxy both along the line of sight and perpendicular to it.

The results are published online in the journal  "Astronomy & Astrophysics" on July 21, 2020.

Spiral galaxies such as our Milky Way can have sprawling magnetic fields. There are various theories about their formation, but so far the process is not well understood. An international research team has now analysed the magnetic field of the Milky Way-like galaxy NGC 4217 in detail on the basis of radio astronomical observations and has discovered as yet unknown magnetic field structures. The data suggest that star formation and star explosions, so-called supernovae, are responsible for the visible structures.

The analysed data had been compiled in the project “Continuum Halos in Nearby Galaxies”, where radio waves were utilised to measure 35 galaxies. “Galaxy NGC 4217 is of particular interest to us,” explains Yelena Stein, who began the study at the Chair of Astronomy at Ruhr-Universität Bochum under Professor Ralf-Jürgen Dettmar and who currently works at the Centre de Données astronomiques de Strasbourg. NGC 4217 is similar to the Milky Way and is only about 67 million light years away, which means relatively close to it, in the Ursa Major constellation. The researchers therefore hope to successfully transfer some of their findings to our home galaxy.

Magnetic fields and origins of star formation

When evaluating the data from NGC 4217, the researchers found several remarkable structures. The galaxy has an X-shaped magnetic field structure, which has also been observed in other galaxies, extending far outwards from the galaxy disk, namely over 20,000 light years.

In addition to the X-shape, the team found a helix structure and two large bubble structures, also called superbubbles. The latter originate from places where many massive stars explode as supernovae, but also where stars are formed that emit stellar winds in the process. Researchers therefore suspect a connection between these phenomena.

“It is fascinating that we discover unexpected phenomena in every galaxy whenever we use radio polarisation measurements,” points out Rainer Beck from MPIfR in Bonn, one of the authors of the study. “Here in NGC 4217, it is huge magnetic gas bubbles and a helix magnetic field that spirals upwards into the galaxy’s halo.”

The analysis moreover revealed large loop structures in the magnetic fields along the entire galaxy. “This has never been observed before,” explains Yelena Stein. “We suspect that the structures are caused by star formation, because at these points matter is thrown outward.”

Image shows magnetic field structures

For their analysis, the researchers combined different methods that enabled them to visualise the ordered and chaotic magnetic fields of the galaxy both along the line of sight and perpendicular to it. The result was a comprehensive image of the structures.

To optimise the results, Yelena Stein combined the data evaluated by means of radio astronomy with an image of NGC 4217 that was taken in the visible light range. “Visualising the data was important to me,” stresses Stein. “Because when you think about galaxies, magnetic fields is not the first thing that comes to mind, although they can be gigantic and display unique structures. The image is supposed to shift the magnetic fields more into focus.”

Source: Max Planck Institute for  Radio Astronomy/News



Background Information

CHANG-ES: the “Continuum Halos in Nearby Galaxies, an EVLA Survey” project brings together scientists from all over the globe in order to investigate the occurrence and origin of galaxy halos by means of radio observations.

Image Composition: Composite image by Yelena Stein of the Centre de Données astronomiques de Strasbourg (CDS) with the support of Jayanne English (University of Manitoba). VLA radio data from Yelena Stein and Ralf-Jürgen Dettmar (Ruhr University Bochum). The observations are part of the project Continuum Halos in Nearby Galaxies – an EVLA Survey (CHANG-ES) led by Judith Irwin (Queen’s University, Canada). The optical data are from the Sloan Digital Sky Survey. The ionised hydrogen data (red) are from the 0.9m telescope of the Kitt Peak National Observatory, collected by Richard J. Rand of the University of New Mexico. The software code for tracing the magnetic field lines was adapted from the Linear Integral Convolution code provided by Arpad Miskolczi of Ruhr University.

Funding: The research was funded by the Hans Böckler Foundation and the German Research Foundation (DFG Research Unit 1254). Data were received from the Sloan Digital Sky Survey III – financed by the Alfred P. Sloan Foundation and participating institutions, the National Science Foundation (NSF) and the Office of Science of the U.S. Department of Energy (DOE) – and from the Wide-field Infrared Survey Explorer (WISE) – financed by the National Aeronautics and Space Administration (NASA). The National Radio Astronomy Observatory (NRAO) is a facility of the NSF, operated under cooperative agreement by Associated Universities, Inc.

The team from the Ruhr-Universität Bochum, the Centre de Données astronomiques de Strasbourg and the Max Planck Institute for Radio Astronomy in Bonn, together with US-American and Canadian colleagues, published their report in the journal Astronomy and Astrophysics, released online on 21 July 2020. The research team consists of Yelena Stein, Ralf-Jürgen Dettmar, Rainer Beck, Judith Irwin, Theresa Wiegert, Arpad Miskolczi, Q. Daniel Wang, Jayanne English, Richard Henriksen, Michael Radica and Jiangtao Li. Rainer Beck is affiliated with the MPIfR.



Contact

Dr. Rainer Beck
Phone:+49 228 525-313
Max-Planck-Institut für Radioastronomie, Bonn


Dr. Yelena Stein
Centre de Données astronomiques de Strasbourg, Université de Strasbourg, France.


Prof. Dr. Ralf-Jürgen Dettmar
Phone:+49 234 3223-454
Fakultät für Physik und Astronomie, Ruhr-Universität Bochum


Dr. Norbert Junkes
Press and Public Outreach
Phone:+49 228 525-399
Max-Planck-Institut für Radioastronomie, Bonn




Original Paper


Y. Stein et al., Astronomy & Astrophysics (July 21, 2020). DOI: 10.1051/0004-6361/202037675



Links

Fundamental Physics in Radio Astronomy

Research Department "Fundamental Physics in Radio Astronomy" at MPIfR, Bonn, Germany



CHANG-ES

Continuum Halos in Nearby Galaxies, an EVLA Survey (CHANG-ES)



NRAO
National Radio Astronomy Observatory (NRAO)



VLA
Karl G. Jansky Very Large Array (VLA)



SDSS

Sloan Digital Sky Survey (SDSS)



RUB, Chair of Astronomy
Chair of Astronomy, Ruhr-Universität Bochum (RUB)



CDS

Centre de Données astronomiques de Strasbourg (CDS)



Galactic Magnetic Fields
Scholarpedia article "Galactic Magnetic Fields" by Rainer Beck/MPIfR



Parallel Press Releases and Image Releases

Magnetic field of a spiral Galaxy
NRAO Image Release, 21 July 2020


RUB Press Release, 21 July 2020

Observatoire astronomique de Strasbourg Press Release, 21 July 2020



Thursday, July 23, 2020

First Ever Image of a Multi-Planet System around a Sun-like Star Captured by ESO Telescope

First ever image of a multi-planet system around a Sun-like star

First ever image of a multi-planet system around a Sun-like star (uncropped, with annotations)

First ever image of a multi-planet system around a Sun-like star (uncropped, without annotations)

Location of TYC 8998-760-1 in the constellation of Musca


Videos

ESOcast 226 Light: First Image of a Multi-Planet System Around a Sun-like Star
ESOcast 226 Light: First Image of a Multi-Planet System Around a Sun-like Star

View of the orbit of two exoplanets around TYC 8998-760-1
View of the orbit of two exoplanets around TYC 8998-760-1

A ‘fly to’ TYC 8998-760-1
A ‘fly to’ TYC 8998-760-1



The European Southern Observatory’s Very Large Telescope (ESO’s VLT) has taken the first ever image of a young, Sun-like star accompanied by two giant exoplanets. Images of systems with multiple exoplanets are extremely rare, and — until now — astronomers had never directly observed more than one planet orbiting a star similar to the Sun. The observations can help astronomers understand how planets formed and evolved around our own Sun.

Just a few weeks ago, ESO revealed a planetary system being born in a new, stunning VLT image. Now, the same telescope, using the same instrument, has taken the first direct image of a planetary system around a star like our Sun, located about 300 light-years away and known as TYC 8998-760-1.

This discovery is a snapshot of an environment that is very similar to our Solar System, but at a much earlier stage of its evolution,” says Alexander Bohn, a PhD student at Leiden University in the Netherlands, who led the new research published today in The Astrophysical Journal Letters

Even though astronomers have indirectly detected thousands of planets in our galaxy, only a tiny fraction of these exoplanets have been directly imaged,” says co-author Matthew Kenworthy, Associate Professor at Leiden University, adding that “direct observations are important in the search for environments that can support life.” The direct imaging of two or more exoplanets around the same star is even more rare; only two such systems have been directly observed so far, both around stars markedly different from our Sun. The new ESO’s VLT image is the first direct image of more than one exoplanet around a Sun-like star. ESO’s VLT was also the first telescope to directly image an exoplanet, back in 2004, when it captured a speck of light around a brown dwarf, a type of ‘failed’ star.

Our team has now been able to take the first image of two gas giant companions that are orbiting a young, solar analogue,” says Maddalena Reggiani, a postdoctoral researcher from KU Leuven, Belgium, who also participated in the study. The two planets can be seen in the new image as two bright points of light distant from their parent star, which is located in the upper left of the frame (click on the image to view the full frame). By taking different images at different times, the team were able to distinguish these planets from the background stars.

The two gas giants orbit their host star at distances of 160 and about 320 times the Earth-Sun distance. This places these planets much further away from their star than Jupiter or Saturn, also two gas giants, are from the Sun; they lie at only 5 and 10 times the Earth-Sun distance, respectively. The team also found the two exoplanets are much heavier than the ones in our Solar System, the inner planet having 14 times Jupiter’s mass and the outer one six times.

Bohn’s team imaged this system during their search for young, giant planets around stars like our Sun but far younger. The star TYC 8998-760-1 is just 17 million years old and located in the Southern constellation of Musca (The Fly). Bohn describes it as a “very young version of our own Sun.

These images were possible thanks to the high performance of the SPHERE instrument on ESO’s VLT in the Chilean Atacama desert. SPHERE blocks the bright light from the star using a device called coronagraph, allowing the much fainter planets to be seen. While older planets, such as those in our Solar System, are too cool to be found with this technique, young planets are hotter, and so glow brighter in infrared light. By taking several images over the past year, as well as using older data going back to 2017, the research team have confirmed that the two planets are part of the star’s system.

Further observations of this system, including with the future ESO Extremely Large Telescope (ELT), will enable astronomers to test whether these planets formed at their current location distant from the star or migrated from elsewhere. ESO’s ELT will also help probe the interaction between two young planets in the same system. Bohn concludes: “The possibility that future instruments, such as those available on the ELT, will be able to detect even lower-mass planets around this star marks an important milestone in understanding multi-planet systems, with potential implications for the history of our own Solar System.”

Source: ESO/News



More Information

This research was presented in the paper “Two Directly Imaged, Wide-orbit Giant Planets around the Young, Solar Analog TYC 8998-760-1” to appear in The Astrophysical Journal Letters (https://doi.org/10.3847/2041-8213/aba27e).

The team is composed of Alexander J. Bohn (Leiden Observatory, Leiden University, The Netherlands), Matthew A. Kenworthy (Leiden Observatory), Christian Ginski (Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands and Leiden Observatory), Steven Rieder (University of Exeter, Physics Department, UK), Eric E. Mamajek (Jet Propulsion Laboratory, California Institute of Technology, USA and Department of Physics & Astronomy, University of Rochester, USA), Tiffany Meshkat (IPAC, California Institute of Technology, USA), Mark J. Pecaut (Rockhurst University, Department of Physics, USA), Maddalena Reggiani (Institute of Astronomy, KU Leuven, Belgium), Jozua de Boer (Leiden Observatory), Christoph U. Keller (Leiden Observatory), Frans Snik (Leiden Observatory) and John Southworth (Keele University, UK).

For external comment on the paper, please contact ESO Astronomer Carlo Manara (cmanara@eso.org), who did not participate in the study. 

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.




Links



Contacts

Alexander Bohn
Leiden Observatory, University of Leiden
Leiden, The Netherlands
Tel: +31 (0)71 527 8150
Email:
bohn@strw.leidenuniv.nl

Matthew Kenworthy
Leiden Observatory, University of Leiden
Leiden, The Netherlands
Tel: +31 64 172 0331
Email:
kenworthy@strw.leidenuniv.nl

Maddalena Reggiani
Institute of Astronomy, KU Leuven
Leuven, Belgium
Tel: +32 16 19 31 99
Email:
maddalena.reggiani@kuleuven.be

Carlo Manara (astronomer who did not participate in the study; contact for external comment)
European Southern Observatory
Garching bei München, Germany
Tel: +49 (0) 89 3200 6298
Email:
cmanara@eso.org

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email:
pio@eso.org



Wednesday, July 22, 2020

A Stellar Flyby Makes Some Waves

Artist's impression of the dusty circumstellar disk surrounding UX Tauri A. A new study has discovered that this disk is being perturbed by the fly-by of another star in the UX Tauri system. Credit: NASA/JPL/Caltech

An example of spiral arms detected in a protoplanetary disk, MWC 758
Credit: NASA/ESA/ESO/M. Benisty et al

The intensity (top) and radial velocities (bottom) of the molecular gas observed in UX Tauri reveals a disk around both UX Tau A (top star in both images) and UX Tau C (bottom star), as well as a stream of gas connecting the two. Curves tracing the spiral arms in the disk surrounding UX Tau A are overlaid in the top image. [Adapted from Zapata et al. 2020]

The gaseous, dusty disks surrounding newly born stars can reveal a wealth of information about how distant stellar systems form and evolve. In a new study, scientists have now watched the interaction of two such disks in a stellar flyby.

Spotting Spirals

In the past decade, new instrumentation has led to a dramatic improvement in our views of circumstellar environments. We’ve spotted remarkable structure in the dusty disks that surround newborn stars — including, in many cases, pronounced spiral arms.

The presence of these spiral arms has provoked much discussion and debate. Are they caused by gravitational instabilities in the gas and dust? Or are they produced by perturbations from unseen, newborn planets orbiting within the disks? While both of these explanations could be at play in different systems, there’s an additional possibility to consider: the arms could be excited by tidal interactions with another star.

In a new study led by Luis Zapata (UNAM Radio Astronomy and Astrophysics Institute, Mexico), a team of scientists has used the sensitive and high-angular-resolution observations of the Atacama Large Millimeter/submillimeter Array (ALMA), located in Chile, to understand how tidal interactions with an orbiting star might be responsible for spiral arms observed in UX Tauri.

A New Disk Found

Located ~450 light-years away, the UX Tauri system consists of four stars: UX Tau A (the main star), UX Tau B (a binary star), and UX Tau C (a close companion that lies just to UX Tau A’s south). Past observations have revealed a disk of gas and dust around UX Tau A exhibiting distinct spiral arms.

Zapata and collaborators have now followed up with detailed ALMA observations to explore the structure of the molecular gas and dust in UX Tau. In addition to further resolving the disk around UX Tau A, the team was also able to detect — for the first time — molecular gas swirling in a disk around UX Tau C. What’s more, the observations reveal tidal interactions between the two disks that surround these stars.

Drama in UX Tau

What do these findings mean? Zapata and collaborators suggest that we’re witnessing a close flyby of UX Tau C as it progresses on a wide, evolving, and eccentric orbit around the disk of UX Tau A. As UX Tau C plowed through UX Tau A’s circumstellar disk, it captured some of the gas, forming its own disk. Through its motion and this tidal interaction, UX Tau C also excited the observed spiral arms in UX Tau A’s disk.

The drama spotted in UX Tauri represents one of the few cases of binary disk interactions that have been mapped out in molecular gas — but this is likely a common occurrence, since stars often occur in multiple-star systems. Sensitive observations like the ALMA detections presented here will likely reveal more such interactions in the future, shining additional light on the process of star and planet formation.

Citation

“Tidal Interaction between the UX Tauri A/C Disk System Revealed by ALMA,” Luis A. Zapata et al 2020 ApJ 896 132. doi:10.3847/1538-4357/ab8fac

By Susanna Kohler

Source: American Astronomical Society (AAS)



Tuesday, July 21, 2020

Gamma-ray Scientists "Dust Off" Intensity Interferometry, Upgrade Technology with Digital Electronics, Larger Telescopes, and Improved Sensitivity

Artist's conception illustrating improved angular resolution, as was achieved using a scalable version of the intensity interferometry technique developed at VERITAS.  Credit: M. Weiss. High Resolution (jpg) - Low Resolution (jpg)

Led by astronomers from the Center for Astrophysics | Harvard & Smithsonian and the University of Utah, VERITAS (Very Energetic Radiation Imaging Telescope Array System) scientists measured the angular diameters of Beta Canis Majoris—a blue giant star located 500 light-years from the sun—and Epsilon Orionis—a blue supergiant star located 2,000 light-years from the sun.

"A proper understanding of stellar physics is important for a massive range of astronomical fields, from exoplanet studies to cosmology, and yet they are often seen as point sources of light due to their great distances from Earth," said Nolan Matthews, University of Utah. "Interferometry has been widely successful in achieving the angular resolution needed to spatially resolve stars and we've demonstrated the capability to perform optical intensity interferometry measurements with an array of many telescopes that in turn will help to improve our understanding of stellar systems." Michael Daniel, Operations Manager, VERITAS, added, "Resolving something the size of a coin on the moon is a marvelous thing. Knowing if that coin is a dime or a nickel is something even more special still. If you want that level of detail, then you want intensity interferometry to work on this scale."

VERITAS used all four of its gamma-ray telescopes, located at the Fred Lawrence Whipple Observatory in Amado, Arizona, to increase its coverage and provide greater resolution for observation.

"This is the first demonstration of the original Hanbury Brown and Twiss technique using an array of optical telescopes," said David Kieda, astronomer, University of Utah, and Principal Investigator. "Modern electronics allow us to computationally combine light signals from each telescope. The resulting instrument has the optical resolution of a football-field-sized reflector."

Typically observing dark, moonless skies for Cherenkov light—blue flashes indicative of the presence of gamma-rays—VERITAS scientists made use of the nights surrounding the full moon to conduct the study. "The moon doesn’t disrupt observations for intensity interferometry,” said Daniel. "This opens up new scientific horizons for the VERITAS telescopes and similar facilities."

The first telescopes to perform stellar measurements using intensity interferometry were the Narrabri telescopes in the 1970s. "Narrabri measured 32 stars in the southern hemisphere, and to significantly improve upon that result required a large leap in technology," said Wystan Benbow, Director, VERITAS. "Right now we are pathfinding for the future Cherenkov Telescope Array (CTA); we have proven that we can add 100 telescopes to this design, enabling astronomers to image features on stellar surfaces with unparalleled optical resolution."

The future for intensity interferometry is bright, and VERITAS scientists have a few ideas about where it could go, from creating a larger catalog of stars, to measuring space objects and phenomena, like the properties of interacting binary star systems, rapidly rotating stars, and potentially the pulsation of Cepheid variables, among others.

Having previously measured the apparent diameter of some very small stars in the sky using the asteroid occultation method, the study is one more indicator that gamma-ray telescopes, and their scientists, are more than meets the eye.

"New technology is a science multiplier," said Peter Kurczynski, Program Director for Advanced Technologies and Instrumentation at the National Science Foundation, which contributed funding for the project. "It enables discoveries that would be otherwise impossible." Benbow added, "There's great potential for intensity interferometry to make leaps forward now that we know it can work on gamma-ray telescopes. We're excited to see, and create, what comes next."

The VERITAS SII project was supported with AST and PHYS grants from the National Science Foundation, and by the University of Utah. The results of the study are published in Nature Astronomy.

About VERITAS

VERITAS (Very Energetic Radiation Imaging Telescope Array System) is a ground-based array of four, 12-m optical reflectors for gamma-ray astronomy located at the Center for Astrophysics | Harvard & Smithsonian, Fred Lawrence Whipple Observatory in Amado, Arizona. VERITAS is the world's most sensitive very-high-energy gamma-ray observatory, and it detects gamma rays via the extremely brief flashes of blue "Cherenkov" light they create when they are absorbed in Earth's atmosphere.

VERITAS is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, and the Smithsonian Institution, NSERC in Canada, and the Helmholtz Association in Germany.

The VERITAS Collaboration consists of about 80 scientists from 20 institutions in the United States, Canada, Germany and Ireland.

For more information about VERITAS visit http://veritas.sao.arizona.edu

About Center for Astrophysics | Harvard & Smithsonian

Headquartered in Cambridge, Mass., the Center for Astrophysics | Harvard & Smithsonian (CfA) is a collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

Amy Oliver
Public Affairs
Center for Astrophysics | Harvard & Smithsonian
Fred Lawrence Whipple Observatory
520-879-4406

amy.oliver@cfa.harvard.edu


Source: Harvard-Smithsonian Center for Astrophysics (CfA)/News