Showing posts with label stellar mass black holes. Show all posts
Showing posts with label stellar mass black holes. Show all posts

Saturday, April 05, 2025

Monthly Roundup: News from the High-Energy Universe

The star-forming region 30 Doradus shines in this multiwavelength image from the Chandra X-ray Observatory, the Hubble Space Telescope, the Spitzer Space Telescope, and the Atacama Large Millimeter/submillimeter Array. This is the deepest X-ray image ever made of this region. Credit:
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand

Gamma-ray flux as a function of time since the neutrino’s arrival for different intergalactic magnetic field strengths. Stronger magnetic fields lead to lower flux and later arrival times. The gray lines show the five-sigma detection limits of different instruments. Credit: Fang et al. 2025

This Monthly Roundup covers three investigations of the high-energy universe, from a hunt for a cosmic particle accelerator in the Milky Way to an examination of a fading quasar in the distant past.

Investigating the Most Energetic Neutrino Ever Detected

In February 2023, the Cubic Kilometre Neutrino Telescope (KM3NeT) — a neutrino telescope at the bottom of the Mediterranean Sea — detected a particle called a muon with an energy of roughly 100 petaelectronvolts (a hundred quadrillion electronvolts). The muon was likely produced by an incoming neutrino with an energy of 220 petaelectronvolts — the highest-energy neutrino ever observed.

The orientation of the event suggests an astrophysical origin, but the source of this neutrino is unknown. One possibility is that the neutrino arose in a transient event that produced extremely high-energy cosmic rays: relativistic charged particles like protons, electrons, and atomic nuclei. Cosmic rays could produce neutrinos and gamma rays through interactions with photons of the cosmic microwave background. The neutrinos zip off into space, unhindered by intervening gas or magnetic fields, while the cosmic rays can be waylaid for thousands of years, caught up in the magnetic fields that lace the space between galaxies. Gamma rays fall in between the two extremes, slowed slightly by interactions with the photons of the extragalactic background. Repeated interactions between the gamma rays and background photons create a cascade of gamma rays across a range of energies.

Detecting this gamma-ray cascade would provide a valuable clue in the search for the origin of the ultra-high-energy neutrino detected in 2023. In a recent research article, Ke Fang (Wisconsin IceCube Particle Astrophysics Center) and collaborators estimated the flux of gamma rays that would be associated with this high-energy neutrino. The team’s estimates accounted for varying distances to the source as well as different strengths of the intergalactic magnetic field. The stronger the magnetic field, the weaker the gamma-ray flux when it arrives at Earth, and the later the arrival time at Earth.

For weak magnetic fields, the gamma-ray cascade should have arrived at Earth hours or days after the neutrino was detected in 2023. These gamma rays are potentially detectable as long as the magnetic field is weaker than 3 × 10-13 Gauss. For magnetic field strengths greater than 3 × 10-13 Gauss, the gamma rays wouldn’t arrive until more than a decade later, and they would likely be too faint to detect. If no gamma rays are detected, the non-detection could be used to place a lower limit on the strength of the intergalactic magnetic field.

LHAASO’s Water Cherenkov Detector Array (left) and Kilometer Square Array (right) observations of the region around the gamma-ray source HESS J1858+020. Black solid circles and black crosses represent extended and pointlike sources, respectively, resolved in this work. Dashed circles show sources resolved by LHAASO in previous work. The cyan symbols show the locations of gamma-ray sources identified by other facilities. Credit: LHAASO Collaboration 2025

The Hunt for a Galactic PeVatron

Across the universe, charged particles are being accelerated to near the speed of light, achieving energies in the petaelectronvolt, or PeV, range. The sources of these particles are called PeVatrons, and observations have revealed that these cosmic particle accelerators exist in the Milky Way. Supernovae, massive stars, pulsars, and pulsar wind nebulae are all candidate PeVatrons. To find out more, astronomers look to gamma rays, which can be produced when cosmic rays interact with dense matter.

Recently, the Large High Altitude Air Shower Observatory (LHAASO) collaboration investigated a possible galactic PeVatron called G35.6−0.4. G35.6−0.4 is a radio source that is thought to be associated with the gamma-ray source HESS J1858+020. Observations of this region show a supernova remnant and an H II region containing multiple X-ray point sources.

To learn more about the origins of the gamma rays from this complex region, the collaboration used data from LHAASO, a ground-based gamma-ray and cosmic-ray observatory. Data from two of LHAASO’s detectors show five gamma-ray sources throughout the region, one of which may be associated with the previously detected gamma-ray source HESS J1858+020. The team also amassed data from other sources, pulling together a picture of the molecular and atomic gas and massive stars present in the region.

Because of the crowded nature of this area, this investigation wasn’t able to clearly point to the source of the gamma rays. The authors outlined three possible sources for the gamma rays: 1) winds from hidden massive stars or outflows from protostars within the H II region, 2) particles escaping from the supernova remnant and interacting with nearby molecular clouds, and 3) an as-yet-undetected pulsar wind nebula. While none of these scenarios is a clear front-runner, neither could any of them be ruled out (though the supernova remnant scenario faces the greatest feasibility challenges). Future searches for massive stars or pulsar wind nebulae in this region may provide further clues.

JWST spectrum of the quasar HSC J2239+0207 (blue line)
Credit: Lyu et al. 2025

Fading Light from a Quasar at Cosmic Dawn

For the third and final article, we’re looking back into the distant past at one of the most powerful objects in the universe: a quasar. Quasars are extraordinarily luminous galactic centers in the early universe, powered by accretion of gas onto a growing black hole. Because of their extreme brightness, quasars are visible from billions of light-years away, giving researchers a glimpse into the early evolution of supermassive black holes.

Jianwei Lyu (吕建伟; University of Arizona) and collaborators investigated HSC J2239+0207, a quasar located at a redshift of z = 6.2498, when the universe was roughly 900 million years old. This redshift places the quasar near the end of the epoch of reionization, when the formation of the first stars and galaxies ionized the universe’s abundant neutral hydrogen gas. This quasar is an intriguing target because previous observations have shown that the black hole that powers it is roughly 15 times more massive than expected for the stellar mass of its host galaxy. The quasar’s accretion rate is low, indicating that the black hole may be nearing the end of its growth spurt.

Lyu’s team analyzed JWST spectra of this quasar, estimating the black hole’s mass to be roughly 300 million solar masses (about 75 times more massive than the Milky Way’s supermassive black hole) and its accretion rate to be just 40% of the theoretical limit. This is unusual, since quasars at this point in the universe’s history typically have accretion rates at or above the theoretical limit. The unexpectedly low accretion rate for HSC J2239+0207 could mean that the black hole’s growth is slowing down. However, the authors caution that it could be a temporary slowdown caused by a lack of fuel rather than a permanent shutdown.

The team also investigated a gas cloud located one arcsecond from the quasar. This object could be several things: an isolated high-redshift galaxy, a galaxy falling toward the quasar host galaxy, tidally disrupted material stripped from a galaxy passing nearby, or material blown out of the quasar host galaxy by the quasar itself. The authors favor this final scenario, which is indicative of black hole feedback at work.

Feedback may be the reason that this black hole is so massive compared to the stellar mass of its host galaxy. Powerful radiation and winds from the black hole could have suppressed the rate of star formation as the black hole grew. With the black hole’s activity winding down, star formation should have a chance to ramp up, bringing the galaxy into alignment with the expected stellar mass–black hole mass relation.

By Kerry Hensley

Citation

“Cascaded Gamma-Ray Emission Associated with the KM3NeT Ultrahigh-Energy Event KM3-230213A,” Ke Fang et al 2025 ApJL 982 L16. doi:10.3847/2041-8213/adbbec

“An Enigmatic PeVatron in an Area Around H II Region G35.6−0.5,” Zhen Cao et al 2025 ApJ 979 70. doi:10.3847/1538-4357/ad991d

“Fading Light, Fierce Winds: JWST Snapshot of a Sub-Eddington Quasar at Cosmic Dawn,” Jianwei Lyu et al 2025 ApJL 981 L20. doi:10.3847/2041-8213/adb613



Sunday, February 14, 2021

Hubble Uncovers Concentration of Small Black Holes

The amount of mass a black hole can pack away varies widely from less than twice the mass of our Sun to over a billion times our Sun's mass. Midway between are intermediate-mass black holes weighing roughly hundreds to tens of thousands of solar masses. So, black holes come small, medium, and large.   Image Credit: NASA, ESA, T. Brown, S. Casertano, and J. Anderson (STScI).  Science Credit: NASA, ESA, and E. Vitral and G. Mamon (Institut d'Astrophysique de Paris (IAP)).  Hi-res image

Astronomers found something they weren't expecting at the heart of the globular cluster NGC 6397: a concentration of smaller black holes lurking there instead of one massive black hole.

Globular clusters are extremely dense stellar systems, which host stars that are closely packed together. These systems are also typically very old — the globular cluster at the focus of this study, NGC 6397, is almost as old as the universe itself. This cluster resides 7,800 light-years away, making it one of the closest globular clusters to Earth. Due to its very dense nucleus, it is known as a core-collapsed cluster.

At first, astronomers thought the globular cluster hosted an intermediate-mass black hole. These are the long-sought "missing link" between supermassive black holes (many millions of times our Sun's mass) that lie at the cores of galaxies, and stellar-mass black holes (a few times our Sun's mass) that form following the collapse of a single massive star. Their mere existence is hotly debated. Only a few candidates have been identified to date.

"We found very strong evidence for an invisible mass in the dense core of the globular cluster, but we were surprised to find that this extra mass is not 'point-like' (that would be expected for a solitary massive black hole) but extended to a few percent of the size of the cluster," said Eduardo Vitral of the Paris Institute of Astrophysics (IAP) in Paris, France.

To detect the elusive hidden mass, Vitral and Gary Mamon, also of IAP, used the velocities of stars in the cluster to determine the distribution of its total mass, that is the mass in the visible stars, as well as in faint stars and black holes. The more mass at some location, the faster the stars travel around it.

The researchers used previous estimates of the stars' tiny proper motions (their apparent motions on the sky), which allow for determining their true velocities within the cluster. These precise measurements for stars in the cluster's core could only be made with Hubble over several years of observation. The Hubble data were added to well-calibrated proper motion measurements provided by the European Space Agency's Gaia space observatory which are less precise than Hubble's observations in the core.

"Our analysis indicated that the orbits of the stars are close to random throughout the globular cluster, rather than systematically circular or very elongated," explained Mamon. These moderate-elongation orbital shapes constrain what the inner mass must be.


Astronomers on the hunt for an intermediate-mass black hole at the heart of the globular cluster NGC 6397 found something they weren’t expecting: a concentration of smaller black holes lurking there instead of one massive black hole.
 
The researchers conclude that the invisible component can only be made of the remnants of massive stars (white dwarfs, neutron stars, and black holes) given its mass, extent, and location. These stellar corpses progressively sank to the cluster's center after gravitational interactions with nearby less massive stars. This game of stellar pinball is called "dynamical friction," where, through an exchange of momentum, heavier stars are segregated in the cluster's core and lower-mass stars migrate to the cluster's periphery.

"We used the theory of stellar evolution to conclude that most of the extra mass we found was in the form of black holes," said Mamon. Two other recent studies had also proposed that stellar remnants, in particular, stellar-mass black holes, could populate the inner regions of globular clusters. "Ours is the first study to provide both the mass and the extent of what appears to be a collection of mostly black holes in the center of a core-collapsed globular cluster," added Vitral.

The astronomers also note that this discovery raises the possibility that mergers of these tightly packed black holes in globular clusters may be an important source of gravitational waves, ripples through spacetime. Such phenomena could be detected by the Laser Interferometer Gravitational-Wave Observatory experiment, which is funded by the National Science Foundation and operated by Caltech in Pasadena, California and MIT in Cambridge, Massachusetts.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.



 

Media Contacts:

Claire Andreoli
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

claire.andreoli@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4514

villard@stsci.edu

Bethany Downer
ESA/Hubble Space Telescope

bethany.downer@esahubble.org

Science Contacts:

Eduardo Vitral
Institut d'Astrophysique de Paris (IAP), Paris, France

vitral@iap.fr

Dr. Gary A. Mamon
Institut d'Astrophysique de Paris (IAP), Paris, France

gam@iap.fr

Editor: Lynn Jenner
 


Sunday, August 05, 2018

Finding the Happy Medium of Black Holes

Black Hole Ilustration
Credit: X-ray: NASA/CXC/ICE/M.Mezcua et al.; 
Infrared: NASA/JPL-Caltech; 
Illustration: NASA/CXC/A.Hobart





This image shows data from a massive observing campaign that includes NASA's Chandra X-ray Observatory. These Chandra data have provided strong evidence for the existence of so-called intermediate-mass black holes (IMBHs). Combined with a separate study also using Chandra data, these results may allow astronomers to better understand how the very largest black holes in the early Universe formed, as described in our latest press release.

The COSMOS ("cosmic evolution survey") Legacy Survey has assembled data from some of the world's most powerful telescopes spanning the electromagnetic spectrum. This image contains Chandra data from this survey, equivalent to about 4.6 million seconds of observing time. The colors in this image represent different levels of X-ray energy detected by Chandra. Here the lowest-energy X-rays are red, the medium band is green, and the highest-energy X-rays observed by Chandra are blue. Most of the colored dots in this image are black holes. Data from the Spitzer Space Telescope are shown in grey. The inset shows an artist's impression of a growing black hole in the center of a galaxy. A disk of material surrounding the black hole and a jet of outflowing material are also depicted.

Two new separate studies using the Chandra COSMOS-Legacy survey data and other Chandra data have independently collected samples of IMBHs, an elusive category of black holes in between stellar mass black holes and the supermassive black holes found in the central regions of massive galaxies.

One team of researchers identified 40 growing black holes in dwarf galaxies. Twelve of them are located at distances more than five billion light years from Earth and the most distant is 10.9 billion light years away, the most distant growing black hole in a dwarf galaxy ever seen. Most of these sources are likely IMBHs with masses that are about 10,000 to 100,000 times that of the Sun.

A second team found a separate, important sample of possible IMBHs in galaxies that are closer to Earth. In this sample, the most distant IMBH candidate is about 2.8 billion light years from Earth and about 90% of the IMBH candidates they discovered are no more than 1.3 billion light years away.

They detected 305 galaxies in their survey with black hole masses less than 300,000 solar masses. Observations with Chandra and with ESA's XMM-Newton of a small part of this sample show that about half of the 305 IMBH candidates are likely to be valid IMBHs. The masses for the ten sources detected with X-ray observations were determined to be between 40,000 and 300,000 times the mass of the Sun.

IMBHs may be able to explain how the very biggest black holes, the supermassive ones, were able to form so quickly after the Big Bang. One leading explanation is that supermassive black holes grow over time from smaller black holes "seeds" containing about a hundred times the Sun's mass. Some of these seeds should merge to form IMBHs. Another explanation is that they form very quickly from the collapse of a giant cloud of gas with a mass equal to hundreds of thousands of times that of the Sun. There is yet to be a consensus among astronomers on the role IMBHs may play.

A paper describing the COSMOS-Legacy result by Mar Mezcua (Institute for Space Sciences, Spain) and colleagues was published in the August issue of the Monthly Notices of the Royal Astronomical Society and is available online. The paper by Igor Chilingarian (Harvard-Smithsonian Center for Astrophysics) on the closer IMBH sample is being published in the August 10th issue of The Astrophysical Journal and is available online.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.



Fast Facts for COSMOS Legacy Survey:

Category: Black Holes, Cosmology/Deep Fields/X-ray Background
Constellation: Sextans
Observation Date: 68 pointings between Nov 2012 and March 2014
Observation Time: 1277 hours (53 days 5 hours)
Obs. ID: 15207-15262, 15590, 15591, 15598, 15600, 15604-15606, 15649, 15653, 15655, 16544, 16562
Instrument: ACIS
References: Mezcua, M. et al., 2018, MNRAS, 478, 2576; arXiv:1802.01567; [Non-COSMOS study: Chilingarian, I. et al., 2018, ApJ, 873, 1; arXiv:1805.01467]
Distance Estimate: About 410 million to 11.0 billion light years