Showing posts with label Masers. Show all posts
Showing posts with label Masers. Show all posts

Friday, December 13, 2024

Astronomers Discover Magnetic Loops Around Supermassive Black Hole

Artist concept of NGC1068, featuring its powerful black hole and accretion disc, and never before seen polarization in water masers outside of our galaxy. Credit: NSF/AUI/NSF NRAO/S.Dagnello - Hi-Res File



For the first time, astronomers using the High Sensitivity Array — a multi-facility network supported by the U.S. National Science Foundation National Radio Astronomy Observatory — have observed evidence of magnetic filaments in the accretion disk surrounding a nearby galaxy’s supermassive black hole

NGC 1068 is a well-known, relatively nearby, bright galaxy with a supermassive black hole at its center. Despite its status as a popular target for astronomers, however, its accretion disk is obscured by thick clouds of dust and gas. A few light-years in diameter, the outer accretion disk is dotted by hundreds of distinct water maser sources that hinted for decades at deeper structures. Masers are distinct beacons of electromagnetic radiation that shine in microwave or radio wavelengths; in radio astronomy, water masers observed at a frequency of 22 GHz are particularly useful because they can shine through much of the dust and gas that obscures optical wavelengths.

Led by astronomer Jack Gallimore of Bucknell University, an international team of astronomers and students set out to observe NGC 1068 with twin goals in mind: astrometric mapping of the galaxy’s radio continuum and measurements of polarization for its water masers. “NGC 1068 is a bit of a VIP among active galaxies,” says co-author C. M. Violette Impellizzeri. “It is unusually powerful, with a black hole and an edge-on accretion disk. And because it is so nearby, it has been really, really well-studied in detail.” Gallimore and his team set out to look at NGC 1068 in a completely new way, however.

Observations of this nature relied upon the recently upgraded High Sensitivity Array (HSA), which consists of the NSF NRAO telescopes at the Karl G. Jansky Very Large Array, the Very Long Baseline Array, and the Green Bank Telescope networked together and fully supported by NSF NRAO. By measuring the polarization of water masers as well as the continuum of radio emissions from NGC 1068, the team generated a map revealing the compact radio source now known as NGC 1068* as well as mysterious extended structures of more faint emissions.

Mapping the astrometric distribution of NGC 1068 and its water masers revealed that they are spread along filaments of structure. “It really came out in these new observations, that these filaments of maser spots line up like beads on a string,” Gallimore summarized. The team was stunned to see that there’s a clear offset — a displacement angle — between the radio continuum showing the structures at the galaxy’s core and the locations of the masers themselves. “The configuration is unstable, so we are probably observing the source of a magnetically-launched outflow.”

HSA measurements of the polarization of these water masers revealed striking evidence of magnetic fields. “No one has ever seen polarization in water masers outside of our galaxy,” Gallimore emphasized. Similar to the looping structures seen on our Sun’s surface as prominences, the polarization pattern of these water masers clearly indicates that magnetic fields are also at the root of these light-year-scale structures as well. “Looking at the filaments, and seeing that the polarization vectors are perpendicular to them, that’s the key to confirming that they are magnetically driven structures. It’s exactly what you’d expect to see,” Gallimore summarizes.

Previous studies of the region hinted at patterns usually associated with magnetic fields, but such conclusions remained beyond the reach of observing technology until recently. “Only the HSA has the combination of resolution and sensitivity needed to map out magnetic fields using polarized light,” says Gallimore. Impellizzeri adds, “There have been a lot of upgrades that the NSF NRAO facilities have undergone. All of the telescopes have had significant improvements. And so one of the reasons we decided that it was worth redoing these observations, instead of just going back to the archive, was that we knew we would get much better data now.”

Their findings reveal evidence of a compact central radio source (the galaxy’s supermassive black hole), clear polarization of the water masers indicating structure within NGC 1068’s magnetic fields, and spectacular extended features across the continuum of radio frequencies. Together, these findings indicate that magnetic fields are the underlying drivers of these phenomena.

Plenty of mysteries remain, however. Within the radio continuum map, for instance, there is a diffuse, faint protrusion that the team nicknamed “the foxtail,” which extends northward from the central region.

Gallimore says, “We said to ourselves, when we set out to do this, ‘let’s see if we can really push the limits and get a good continuum as well as polarization data.’ And both of those goals succeeded. With the NSF NRAO High Sensitivity Array, we detected water megamaser polarization for the first time, and we also made a really amazing continuum map that we’re still trying to wrap our minds around.”

About NRAO

The National Radio Astronomy Observatory (NRAO) and the Green Bank Observatory (GBO) are major facilities of the U.S. National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.



Tuesday, January 17, 2023

Hydrogen Masers Reveal New Secrets of a Massive Star to ALMA Scientists


Scientists studying masers— naturally occurring lasers that amplify microwave radio emissions— around the massive star MWC 349A discovered a 500 km/s jet of material launching out of the star’s gas disk from within the winds that are flowing away from the star. The bigger surprise is that the jet may be caused by magnetic forces. This artist’s conception shows a zoomed in view of MWC 349A and its surrounding disk of gas and dust that are being shaped by the winds and high-speed jet. Credit: ALMA (ESO/NAOJ/NRAO), M. Weiss (NRAO/AUI/NSF).
Hi-res File


The massive star MWC 349A is one of the brightest radio sources in the sky. But, at 3,900 light-years away from Earth, scientists needed help to see what’s really going on, and in this case, to discover a jet of material blasting out from the star’s gas disk at 500 km/s. Previously hidden amongst the winds flowing out from the star, the jet was discovered using the combined resolving power of ALMA’s Band 6 (right) and Band 7 (left), and hydrogen masers— naturally occurring lasers that amplify microwave radio emissions, shown here in this ALMA science image. The revelation may help scientists to better understand the nature and evolution of massive stars. Credit: ALMA (ESO/NAOJ/NRAO), S. Prasad/CfA.
Hi-res File



Scientists used the unique hydrogen radio recombination lines on MWC 349A to reveal hidden collimated jets

While using the Atacama Large Millimeter/submillimeter Array (ALMA) to study the masers around oddball star MWC 349A scientists discovered something unexpected: a previously unseen jet of material launching from the star’s gas disk at impossibly high speeds. What’s more, they believe the jet is caused by strong magnetic forces surrounding the star. The discovery could help researchers to understand the nature and evolution of massive stars and how hydrogen masers are formed in space. The new observations were presented today in a press conference at the 241st meeting of the American Astronomical Society (AAS) in Seattle, Washington.

Located roughly 3,900 light-years away from Earth in the constellation Cygnus, MWC 349A’s unique features make it a hot spot for scientific research in optical, infrared, and radio wavelengths. The massive star— roughly 30 times the mass of the Sun— is one of the brightest radio sources in the sky, and one of only a handful of objects known to have hydrogen masers. These masers amplify microwave radio emissions, making it easier to study processes that are typically too small to see. It is this unique feature that allowed scientists to map MWC 349A’s disk in detail for the first time.

“A maser is like a naturally occurring laser,” said Sirina Prasad, an undergraduate research assistant at the Center for Astrophysics | Harvard & Smithsonian (CfA), and the primary author of the paper. “It’s an area in outer space that emits a really bright kind of light. We can see this light and trace it back to where it came from, bringing us one step closer to figuring out what’s really going on.” 

Leveraging the resolving power of ALMA’s Band 6, developed by the US National Science Foundation’s National Radio Astronomy Observatory (NRAO), the team was able to use the masers to uncover the previously unseen structures in the star’s immediate environment. Qizhou Zhang, a senior astrophysicist at CfA, and the project’s principal investigator added, “We used masers generated by hydrogen to probe the physical and dynamic structures in the gas surrounding MWC 349A and revealed a flattened gas disk with a diameter of 50 au, approximately the size of the Solar System, confirming the near-horizontal disk structure of the star. We also found a fast-moving jet component hidden within the winds flowing away from the star.” 

The observed jet is ejecting material away from the star at a blistering 500 km per second. That’s akin to traveling the distance between San Diego, California and Phoenix, Arizona in the literal blink of an eye. According to researchers, it is probable that a jet moving this fast is being launched by a magnetic force. In the case of MWC 349A, that force could be a magnetohydrodynamic wind— a type of wind whose movement is dictated by the interplay between the star’s magnetic field and gases present in its surrounding disk.

“Our previous understanding of MWC 349A was that the star was surrounded by a rotating disk and photo-evaporating wind. Strong evidence for an additional collimated jet had not yet been seen in this system. Although we don’t yet know for certain where it comes from or how it is made, it could be that a magnetohydrodynamic wind is producing the jet, in which case the magnetic field is responsible for launching rotating material from the system,” said Prasad. “This could help us to better understand the disk-wind dynamics of MWC 349A, and the interplay between circumstellar disks, winds, and jets in other star systems.”




About NRAO

The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.</ div>

 About ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.


Media Contact:

Amy C. Oliver
Public Information Officer, ALMA
Public Information & News Manager, NRAO
+1 434 242 9584

aoliver@nrao.edu




Monday, December 20, 2021

Our Milky Way may be more fluffy, less wiry


In a map of the Milky Way, the neighboring spiral arm just beyond the Sun is known as the Perseus arm. Astronomers created this map by measuring the locations of natural radio sources known as masers (pink dots in pullouts at right) and dust clouds (blue dots). At upper right, a shaded region shows the previously believed shape of the Perseus arm, demarcated by a combination of masers and dust clouds. New measurements (middle right) show that some of these dust clouds are much closer or farther from the Sun than originally thought. As a result, the Perseus arm may be much clumpier and less well-defined (lower right). Credits: Science: Joshua Peek (STScI) - Illustration: Robert L. Hurt (Caltech, IPAC), Leah Hustak (STScI).
Release images

Our Milky Way has long been known to be a spiral galaxy, shaped much like a fried egg with a bulbous central bulge and a thin, flat disk of stars. For decades, astronomers have struggled to map the Milky Way’s disk and its associated spiral arms. As the old saying goes, you can’t see the forest for the trees, and if you’re in the middle of the forest, how can you map its groves without a bird’s-eye view?

Previous work has suggested that the Milky Way is what’s known as a “grand design” spiral, with long, narrow, well-defined spiral arms. However, new research finds that at least one portion of the outer Milky Way (beyond the Sun’s location) is much more clumpy and chaotic.

“We have long had a picture of the galaxy in our minds, based on a combination of measurements and inference,” said Josh Peek of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “This work calls that picture into question. We don’t see evidence that pieces we’ve been connecting up are actually connected.”

Distances are Key

When mapping our galaxy, the biggest challenge is finding the distance to any given star, star cluster, or gas clump. The gold standard is to use parallax measurements of naturally occurring radio sources called masers, some of which are found in high-mass star-forming regions. However, this technique inevitably leaves gaps.

To fill those gaps, astronomers switch from examining star-forming regions to gas clouds, and more specifically, the motions of those gas clouds. In an ideal situation, the line-of-sight motion we measure for a gas cloud is directly related to its distance due to the overall rotation of the Milky Way. As a result, by measuring gas velocities, we can determine distances and hence the underlying structure of the galaxy.

The question then becomes, what about a non-ideal situation? While the motion of any given gas cloud might be dominated by its rotation around the galactic center, it undoubtedly has some additional, more random motions as well. Can those extra motions throw off our maps?

Chunky and Lumpy

To investigate this question, Peek and his colleagues examined not the gas, but the dust. In general within our galaxy, gas and dust are closely associated, so if you can map one, you also map the other.)

3D dust maps can be created by examining the colors of large collections of stars spread across the sky. The more dust that is between the star and our telescope, the redder the star will appear compared to its natural color.)

Peek and his team examined a region of space known as the Perseus spiral arm, which is beyond our Sun in the Milky Way’s disk. They compared the distances measured via dust reddening to those determined by the velocity relationship. They found that many of the clouds do not, in fact, lie at the distance of the Perseus arm, but instead stretch along a distance of some 10,000 light-years.)

“We don’t have long, skinny spiral arms after all, at least in this section of the galaxy. There are chunks and lumps that don’t look like anything,” explained Peek. “It’s a good possibility that the outer disk of the Milky Way resembles the nearby galaxy Messier 83, with shorter, chopped-up pieces of arms.”

Revising Our Map

While this latest research focused on the outer Milky Way, Hubble Fellow Catherine Zucker, a member of Peek’s team at STScI, is planning to extend that work to the inner Milky Way. The region interior to the Sun’s orbit is where the spiral arms that are most actively forming stars reside.

Zucker plans to create 3D dust maps using existing large-scale infrared surveys to measure the reddening of some 1 to 2 billion stars. By linking those new dust maps with existing gas velocity surveys, astronomers can refine our map of the inner Milky Way much as they have already done with the outer galaxy.

“Previous 3D dust mapping efforts have largely relied on data at wavelengths visible to the human eye. No one has used deep infrared data to create a 3D dust map,” said Zucker. “We may find that this region, like the Perseus arm, is more chaotic and less well defined.”

Even more insights may come from the upcoming Nancy Grace Roman Space Telescope and Vera Rubin Observatory. The Roman Space Telescope will have the capability to map the entire galactic plane in a few hundred hours. Also, its infrared measurements will cut through the dust.

“We could see clear to the other side of the galaxy for the first time. If a survey like this is selected for Roman, it would be stunning,” said Peek.)

Rubin, on the other hand, will be able to make deep observations of faint objects at a variety of optical wavelengths. By combining Roman’s infrared view of the sky with Rubin’s deep, multi-wavelength optical data, we may finally map our own cosmic “forest.”

This work is accepted for publication in The Astrophysical Journal.

The Space Telescope Science Institute is expanding the frontiers of space astronomy by hosting the science operations center of the Hubble Space Telescope, the science and mission operations centers for the James Webb Space Telescope, and the science operations center for the Nancy Grace Roman Space Telescope. STScI also houses the Barbara A. Mikulski Archive for Space Telescopes (MAST) which is a NASA-funded project to support and provide to the astronomical community a variety of astronomical data archives, and is the data repository for the Hubble, Webb, Roman, Kepler, K2, TESS missions and more. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.


Media Contact:

Christine Pulliam[
Space Telescope Science Institute, Baltimore, Maryland

Contact us: Direct inquiries to the
 News Team.

Related links and documents:

Science Paper: The science paper by J. Peek et al., PDF (9.64 MB)



Monday, October 16, 2017

The Far Side of the Milky Way

Artist’s view of the Milky Way with the location of the Sun and the star forming region (maser source G007.47+00.05) at the opposite side in the Scutum-Centaurus spiral arm. © Bill Saxton. NRAO/AUI/NSF; Robert Hurt, NASA.


Mapping Spiral Structure for an Improved Picture of our Home Galaxy


Astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, and the Harvard-Smithsonian Center for Astrophysics have directly measured the distance to a star-forming region on the opposite side of our Milky Way Galaxy from the Sun, using the Very Long Baseline Array. Their achievement reaches deep into the Milky Way’s terra incognita and nearly doubles the previous record for distance measurement within our Galaxy.

Their results are published in the 13 October issue of the journal Science.

Distance measurements are crucial for an understanding of the structure of the Milky Way. Most of our Galaxy's material, consisting principally of stars, gas, and dust, lies within a flattened disk, in which our Solar System is embedded. Because we cannot see our Galaxy face-on, its structure, including the shape of its spiral arms, can only be mapped by measuring distances to objects elsewhere in the Galaxy.

The astronomers used a technique called trigonometric parallax, first applied by Friedrich Wilhelm Bessel in 1838 to measure the distance to the star 61 Cygni in the constellation of the Swan. This technique measures the apparent shift in the sky position of a celestial object as seen from opposite sides of the Earth's orbit around the Sun. This effect can be demonstrated by holding a finger in front of one's nose and alternately closing each eye -- the finger appears to jump from side to side.

Measuring the angle of an object's apparent shift in position this way allows astronomers to use simple trigonometry to directly calculate the distance to that object. The smaller the measured angle, the greater the distance is. In the framework of the Bar and Spiral Structure Legacy (BeSSeL) Survey, it is now possible to measure parallaxes a thousand times more accurate than Friedrich Bessel. The Very Long Baseline Array (VLBA), a continent-wide radio telescope system, with ten dish antennas distributed across North America, Hawaii, and the Caribbean, can measure the minuscule angles associated with great distances. In this case, the measurement was roughly equal to the angular size of a baseball on the Moon.

"Using the VLBA, we now can accurately map the whole extent of our Galaxy," says Alberto Sanna, of the Max Planck Institute for Radio Astronomy in Germany (MPIfR).

The new VLBA observations, made in 2014 and 2015, measured a distance of more than 66,000 light-years to the star-forming region G007.47+00.05 on the opposite side of the Milky Way from the Sun, well past the Galaxy's center in a distance of 27,000 light-years. The previous record for a parallax measurement was about 36,000 light-years.

"Most of the stars and gas in our Galaxy are within this newly-measured distance from the Sun. With the VLBA, we now have the capability to measure enough distances to accurately trace the Galaxy's spiral arms and learn their true shapes," Sanna explains.

The VLBA observations measured the distance to a region where new stars are being formed. Such regions include areas where molecules of water and methanol act as natural amplifiers of radio signals -- masers, the radio-wave equivalent of lasers for light waves. This effect makes the radio signals bright and readily observable with radio telescopes.

The Milky Way has hundreds of such star-forming regions that include masers. "So we have plenty of 'mileposts' to use for our mapping project. But this one is special: Looking all the way through the Milky Way, past its center, way out into the other side", says the MPIfR's Karl Menten.

The astronomers' goal is to finally reveal what our own Galaxy looks like if we could leave it, travel outward perhaps a million light-years, and view it face-on, rather than along the plane of its disk. This task will require many more observations and much painstaking work, but, the scientists say, the tools for the job now are in hand. How long will it take?

"Within the next 10 years, we should have a fairly complete picture," predicts Mark Reid of the Harvard-Smithsonian Center for Astrophysics.



Distance determination by measuring the angle of apparent shift in an object's position, as seen from opposite sides of Earth's orbit around the Sun (trigonometric parallax technique).© Bill Saxton, NRAO/AUI/NSF; Robert Hurt, NASA.

The research team consists of Alberto Sanna of the Max Planck Institute for Radio Astronomy (MPIfR), the first author, along with colleagues Mark Reid and Thomas Dame of the Harvard-Smithsonian Center for Astrophysics and Karl Menten and Andreas Brunthaler, also of the MPIfR. They report their findings in the 13 October issue of the journal Science.

The Long Baseline Observatory (LBO) runs the “Very Long Baseline Array” (VLBA) as a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The BeSSeL Survey (Bar and Spiral Structure Legacy Survey) is a VLBA Key Science project. The survey is named in honor of Friedrich Wilhelm Bessel (1784-1846) who measured the first stellar parallax in 1838. The goal of the survey is to study the spiral structure and kinematics of the Milky Way.



Contact

Dr. Alberto Sanna
Phone:+49 228 525-304
Email: asanna@mpifr-bonn.mpg.de
Max-Planck-Institut für Radioastronomie, Bonn

Prof. Dr. Karl M. Menten
Direktor und Leiter der Forschungsabteilung "Millimeter- und Submillimeter-Astronomie"
Phone:+49 228 525-297
Email: kmenten@mpifr-bonn.mpg.de
Max-Planck-Institut für Radioastronomie, Bonn

Dr. Norbert Junkes
Press and Public Outreach
Phone:+49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de
Max-Planck-Institut für Radioastronomie, Bonn



Original Paper

Mapping Spiral Structure on the far side of the Milky Way

Alberto Sanna, Mark J. Reid, Thomas M. Dame, Karl M. Menten, Andreas Brunthaler, 2017, Science (October 13 issue)



Links

Millimeter- und Submillimeter-Astronomie
Research Department "Millimeter and Submillimeter Astronomy" at MPIfR, Bonn, Germany

CfA
Harvard-Smithsonian Center for Astrophysics (CfA)

NRAO
National Radio Astronomy Observatory (NRAO)

VLBA
Very Long Baseline Array (VLBA)

BeSSeL
Bar and Spiral Structure Legacy Survey (BeSSeL)




Wednesday, August 31, 2016

NASA Team Probes Peculiar Age-Defying Star

An age-defying star designated as IRAS 19312+1950 (arrow) exhibits features characteristic of a very young star and a very old star. The object stands out as extremely bright inside a large, chemically rich cloud of material, as shown in this image from NASA’s Spitzer Space Telescope. A NASA-led team of scientists thinks the star – which is about 10 times as massive as our sun and emits about 20,000 times as much energy – is a newly forming protostar. That was a big surprise because the region had not been known as a stellar nursery before. But the presence of a nearby interstellar bubble, which indicates the presence of a recently formed massive star, also supports this idea. Credits: NASA/JPL-Caltech. For an unannotated version of this image, click here.

Friday, March 21, 2014

Secrets at the heart of NGC 5793

Credit: NASA, ESA, and E. Perlman (Florida Institute of Technology)
Acknowledgement: Judy Schmidt

This new Hubble image is centred on NGC 5793, a spiral galaxy over 150 million light-years away in the constellation of Libra. This galaxy has two particularly striking features: a beautiful dust lane and an intensely bright centre — much brighter than that of our own galaxy, or indeed those of most spiral galaxies we observe.

NGC 5793 is a Seyfert galaxy. These galaxies have incredibly luminous centres that are thought to be caused by hungry supermassive black holes — black holes that can be billions of times the size of the Sun — that pull in and devour gas and dust from their surroundings.

This galaxy is of great interest to astronomers for many reasons. For one, it appears to house objects known as masers. Whereas lasers emit visible light, masers emit microwave radiation [1]. Naturally occurring masers, like those observed in NGC 5793, can tell us a lot about their environment; we see these kinds of masers in areas where stars are forming. In NGC 5793 there are also intense mega-masers, which are thousands of times more luminous than the Sun.

A version of this image was submitted to the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.

Notes:

[1] This name originates from the acronym Microwave Amplification by Stimulated Emission of Radiation. Maser emission is caused by particles that absorb energy from their surroundings and then re-emit this in the microwave part of the spectrum.


Monday, February 10, 2014

Watching Gas Clouds Move

The young star AFGL 2591 star is expelling gas and dust as seen in the infrared. Amidst the nebulosity and rings of activity are clumps emitting as water vapor masers. New measurements have tracked the motions of these masers over a ten year period, and find them moving at velocities of about 45,000 mph. Credit: C. Aspin et al., NIRI, Gemini Obs., NSF. Large image

A maser, like a laser, is a source of bright electromagnetic radiation, with the difference being that maser radiation is not optical light but rather longer wavelength, microwave radiation. Small, dense molecular clouds in interstellar space sometimes produce natural masers; water vapor in clouds undergoing active star formation generates some of the most spectacular such masers. In the most dramatic cases, a water vapor maser can radiate more energy at a single wavelength than does the Sun over its entire visible spectrum. 

Masers are interesting in their own right, but also because their bright emission provides a powerful diagnostic probe of regions where massive star formation is still underway. CfA astronomer Nimesh Patel and his colleagues have used a coordinated set of widely separated radio telescopes (an interferometer) to study a dramatic region of star formation about ten thousand light-years away, achieving a spatial resolution of only a few hundred astronomical units (one AU is the average distance of the Earth from the Sun). This spectacular precision is possible because the masers are so bright.

The star formation region was known to have several clumps of young, high mass stars accompanied by phenomena typically associated with such star birth like powerful outflows and shocks. The astronomers combined relatively recent and archival observations of masers in the region spanning a period of about ten years, starting in 1999; the precision of the data enabled them to detect the masers motion over this period. The maser clusters, which are distributed over about a thousand AU, had some clumps seen to move as much as fifty AU, corresponding to velocities of about twenty kilometers per second (forty-five thousand mph). 

In the case of one bright region, the measurements over ten years found that the material is tracing the shell of an outward-moving shock, presumably propelled by radiation from the young star forming at the center. The results confirm and extend detailed models of how newly born massive stars affect their environment.

Reference: 
"Multi-epoch VLBA H2O Maser Observations Towards the Massive YSOs AFGL 2591 VLA 2 and VLA 3," J. M. Torrelles, M. A. Trinidad, S. Curiel, R. Estalella, N. A. Patel, J. F. Gomez, G. Anglada, C. Carrasco-Gonz´alez, J. Canto, A. Raga and L. F. Rodrıguez, MNRAS 437, 3803, 2014.




Saturday, December 22, 2012

Masers in Stellar Nurseries

A false-color infrared image of a young star showing outflowing jets as green beams of shocked gas (actually two of the stars in this image have jets). A new study using the SMA has found that bright methanol masers, often seen in such star-forming regions and long thought to indicate only the youngest such stars, are also found around more mature stars. Credit: NASA-Spitzer Space Telescope.  > Low Resolution Image (jpg)

Astronomers have come to realize that the process of star formation, once thought to consist essentially of just the simple coalescence of material by gravity, occurs in a complex series of stages. As the gas and dust in giant molecular clouds comes together into stars, dramatic outflowing jets of material develop around each, as do circumstellar disks (possibly pre-planetary in nature). Other features are present as well: Astronomers in the 1960s were amazed to discover that these star-forming regions sometimes produce natural masers (masers are the bright, radio wavelength analogs of lasers). Clouds of water vapor or methanol vapor in regions of active star formation generate some of the most spectacular masers.

 Although associated with the complex activity of star formation, the role of masers in the building of a new star is thought to be minor (although it is not understood). However masers, because they are so bright, provide valuable diagnostic probes of the regions where star formation is underway. Exactly what they reveal is less clear, but many astronomers have thought that methanol masers can signal the very earliest stages of star formation, perhaps less than about ten thousand years old. One of the key questions masers can possibly help resolve is how stars more massive than the Sun form. Understanding the birth of such massive stars is essential not only in its own right, but also because these stars end up as supernovae which enrich the cosmos with elements essential to life. The birth of massive stars is, however, notoriously tricky to understand because their larger masses prompt the young star to mature very quickly, in less than about one hundred thousand years and much faster than lower-mass stars. As a result, many growth stages are blurred together. Masers are thought to offer a way to probe these earliest times of star formation.

 SAO astronomers Claudia Cyganowski and Qizhou Zhang, with five colleagues, used the Submillmeter Array (SMA) to study regions of massive star formation identified in infrared images as having outflows typical of massive young stars. The SMA was able to identify all of the protostellar cores from their millimeter dust emission. They found one such protocluster of young stars that also contained a variety of types of methanol masers, enabling a comparative study of masers and star- formation activity. Writing in the latest issue of the Astrophysical Journal Letters, the scientists report finding that, contrary to the conventional wisdom, methanol masers thought to be associated with very young stages of star formation are found occurring with more evolved embryos. The new results show for the first time that the mechanisms at work to make these methanol masers, shocks for example, are found in a much wider range of situations than previously suspected. The new results are not atypical of progress in astronomy.