Saturday, March 31, 2012

Astronomers detect vast amounts of gas and dust around black hole in early universe

This image shows the bright emission from carbon and dust in a galaxy surrounding the most distant supermassive black hole known. At a distance corresponding to 740 Million years after the Big Bang, the Carbon line, which is emitted by the galaxy at infrared wavelengths (that are unobservable from the ground), is redshifted, because of the expansion of the Universe, to millimeter wavelengths where it can be observed using facilities such as the IRAM Plateau de Bure Interferometer.

This image of J1120+0641 (red dot in the center) was created by combining survey data in visual and infrared light of the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey. (Credit: ESO/UKIDSS/SDSS). Tif Image

Using the IRAM array of millimetre-wave telescopes in the French Alps, a team of European astronomers from Germany, the UK and France have discovered a large reservoir of gas and dust in a galaxy that surrounds the most distant supermassive black hole known. Light from the galaxy, called J1120+0641, has taken so long to reach us that the galaxy is seen as it was only 740 million years after the Big Bang, when the universe was only 1/18th of its current age.

Team leader Dr. Bram Venemans of the Max-Planck Institute for Astronomy in Heidelberg, Germany will present the new discovery on Wednesday 28th March at the RAS / AG National Astronomy Meeting in Manchester, United Kingdom.

The Institut de Radioastronomie Millimetrique (IRAM) array is made up of six 15-m size telescopes that detect emission at millimetre wavelengths (about a thousand times as long as visible light) sited on the 2550-m high Plateau de Bure in the French Alps. The IRAM telescopes work together to simulate a single much larger telescope in a so-called interferometer that can study objects in fine detail.

A recent upgrade to IRAM allowed the scientists to detect the newly discovered gas and dust that includes significant quantities of carbon. This is quite unexpected, as the chemical element carbon is created via nuclear fusion of helium in the centres of massive stars and ejected into the galaxy when these stars end their lives in dramatic supernova explosions.

Dr. Venemans comments: "It’s really puzzling that such an enormous amount of carbon-enriched gas could have formed at these early times in the universe. The presence of so much carbon confirms that massive star formation must have occurred in the short period between the Big Bang and the time we are now observing the galaxy.”

From the emission from the dust, Venemans and his team were able to show that the galaxy is still forming stars at a rate that is 100 time higher than in our Milky Way.

The team give credit to the IRAM upgrade that made the new discovery possible. "Indeed, we would not have been able to detect this emission only a couple years ago." says team member Dr. Pierre Cox, director of IRAM.

The astronomers are excited about the fact that this source is also visible from the southern hemisphere where the Atacama Large Millimeter/submillimeter Array (ALMA), which will be the world's most advanced sub/millimeter telescope array, is currently under construction in Chile. Observations with ALMA will enable a detailed study of the structure of this galaxy, including the way the gas and dust moves within it.

Dr. Richard McMahon, a member of the team from the University of Cambridge in the UK is looking forward to when ALMA is fully operational later this year. “The current observations only provide a glimpse of what ALMA will be capable of when we use it to study the formation of the first generation of galaxies."

The related research paper can be found at http://arxiv.org/abs/1203.5844


MEDIA CONTACTS

NAM 2012 Press Office (0900 – 1730 GMT, 27-29 April; 0900 – 1630 GMT 30 April)
Room 3.214
University Place building
University of Manchester
Manchester
UK
Tel: +44 (0)161 306 7313

Dr. Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
Email: rm@ras.org.uk

Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
Email: anitaheward@btinternet.com

Dr. Klaus Jäger
Pressereferent / Press Officer im Vorstand der Astronomischen Gesellschaft
Tel: +49 6221 528 379
Email: pressereferent@astronomische-gesellschaft.de

Dan Cochlin
Media Officer (Faculty of Engineering and Physical Sciences)
University of Manchester
Tel: +44 (0)161 275 8387
Email: daniel.cochlin@manchester.ac.uk


SCIENCE CONTACTS

Dr. Bram Venemans
Max-Planck Institute for Astronomy
Heidelberg
Germany
Tel: +49 6221 528417
Email: venemans@mpia.de

Dr. Richard McMahon
Institute of Astronomy, University of Cambridge,
Cambridge
UK
Tel: +44 1223 337519
Email: rgm@ast.cam.ac.uk

Prof. Dr. Pierre Cox
Institut de Radioastronomie Millimetrique
Grenoble, France
Email: cox@iram.fr


NOTES FOR EDITORS

The team is composed of Bram Venemans (Max-Planck Institute for Astronomy [MPIA], Heidelberg, Germany), Richard McMahon (Institute of Astronomy [IoA], Cambridge, UK), Fabian Walter (MPIA), Roberto Decarli (MPIA), Pierre Cox (Institut de Radioastronomie Millimetrique [IRAM], France), Roberto Neri (IRAM), Paul Hewett (IoA), Daniel Mortlock (Imperial College London [Imperial], UK), Chris Simpson (Liverpool John Moores University, UK), Stephen Warren (Imperial).

IRAM Plateau de Bure Interferometer: http://www.iram-institute.org
Atacama Large Millimeter/submillimeter Array (ALMA): http://www.almascience.org
Max-Planck Institute for Astronomy, Heidelberg: http://www.mpia.de/
Institute of Astronomy, Cambridge: http://www.ast.cam.ac.uk
Imperial College London: http://www3.imperial.ac.uk/
Liverpool John Moores University: http://www.ljmu.ac.uk/


NAM 2012

Bringing together more than 900 astronomers and space scientists, the National Astronomy Meeting (NAM 2012) will take place from 27-30 March 2012 in the University Place conference centre at the University of Manchester in the UK. The conference is a joint meeting of the Royal Astronomical Society (RAS) and the German Astronomische Gesellschaft (AG) and is held in conjunction with the UK Solar Physics (UKSP: www.uksolphys.org) and Magnetosphere Ionosphere Solar Terrestrial (MIST: www.mist.ac.uk) meetings. NAM 2012 is principally sponsored by the RAS, AG, STFC and the University of Manchester.


The Royal Astronomical Society

The Royal Astronomical Society (RAS: www.ras.org.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3500 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.


The Astronomische Gesellschaft (AG)

The Astronomische Gesellschaft (AG: www.astronomische-gesellschaft.de), founded in 1863, is a modern astronomical society with more than 800 members dedicated to the advancement of astronomy and astrophysics and the networking between astronomers. It represents German astronomers, organises scientific meetings, publishes journals, offers grants, recognises outstanding work through awards and places a high priority on the support of talented young scientists, public outreach and astronomy education in schools.


The Science and Technology Facilities Council

The Science and Technology Facilities Council (STFC:www.stfc.ac.uk) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory.


Jodrell Bank Centre for Astrophysics

The Jodrell Bank Centre for Astrophysics (JBCA: www.jb.man.ac.uk/) is part of the School of Physics & Astronomy at the University of Manchester. JBCA is split over two main sites: the Alan Turing Building in Manchester and the Jodrell Bank Observatory in Cheshire. At Jodrell Bank Observatory, the new Jodrell Bank Discovery Centre is a key focus for our work in public engagement and education. Jodrell Bank is a world leader in radio astronomy-related research and technology development with a research programme extending across much of modern astrophysics. The group operates the e-MERLIN national radio astronomy facility and the iconic Lovell Telescope, hosts the UK ALMA Regional Centre Node and is home to the international office of the SKA Organisation. Funded by the University, the Science & Technology Facilities Council and the European Commission, it is one of the UK’s largest astrophysics research groups.

Friday, March 30, 2012

When Dark Energy Turned On

The record of baryon acoustic oscillations (white circles) in galaxy maps helps astronomers retrace the history of the expanding universe. These schematic images show the universe at three different times. The representative-color image on the right shows the "cosmic microwave background," a record of what the very young universe looked like 13.7 billion years ago. The small density variations present then have grown into the clusters, walls, and filaments of galaxies that we see today. These variations included the signal of the original baryon acoustic oscillations (white circle, right). As the universe has expanded (middle and left), evidence of the baryon oscillations has remained, visible in a "peak separation" between galaxies (the larger white circles). The SDSS-III results announced today (middle) are for galaxies 5.5 billion light-years distant, at the time when dark energy turned on. Comparing them with previous results from galaxies 3.8 billion light-years away (left) measures how the universe has expanded with time. Credit: E.M. Huff, the SDSS-III team, and the South Pole Telescope team. Graphic by Zosia Rostomian. High Resolution Image (jpg) - Low Resolution Image (jpg)

Cambridge, MA - Astronomers announced today that they have made the most accurate measurement yet of galaxy distances in the faraway universe, giving an unprecedented look at the time when dark energy turned on. Some five to seven billion years ago, the expansion of the universe stopped slowing due to gravity and started to accelerate due to dark energy. Yet the nature of dark energy remains a puzzle that astronomers are seeking to solve.

The new measurement came from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the third Sloan Digital Sky Survey (SDSS-III).

"We see the influence of dark energy on cosmic structure, but we have no idea what it is. The data gathered by this survey will help answer that question," said Daniel Eisenstein (Harvard-Smithsonian Center for Astrophysics), the director of SDSS-III.

"There's been a lot of talk about using galaxy maps to find out what's causing accelerating expansion," said David Schlegel of the U.S. Department of Energy's Lawrence Berkeley National Laboratory, BOSS's principal investigator. "We've been making a map and now we're using it - starting to push our knowledge out to the distances when dark energy turned on."

Investigating dark energy

One of the most amazing discoveries of the last two decades in astronomy, recognized with the 2011 Nobel Prize in Physics, was that not only is our universe expanding, but it is accelerating. Galaxies are becoming farther apart from each other faster and faster with time.

The leading contender for the cause of the accelerating expansion is a postulated new property of space dubbed "dark energy." Alternatively, the universe may be accelerating because gravity deviates from Einstein's General Theory of Relativity and becomes repulsive at very large distances.

Whether the answer to the puzzle of the accelerating universe is dark energy or modified gravity, the first step to finding that answer is to measure accurate distances to as many galaxies as possible. From those measurements, astronomers can trace out the history of the universe's expansion.

BOSS is producing the most detailed map of the universe ever made by using a new custom-designed spectrograph of the SDSS 2.5-meter telescope at Apache Point Observatory in New Mexico to observe more than a million galaxies over six years.

Today's announcement is based on a map of more than 250,000 galaxies created from the first year and a half of BOSS observations. Some of these galaxies are so distant that their light has traveled more than six billion years to reach Earth - nearly half the age of the universe.

Surveying the cosmos

Maps of the universe like BOSS's show that galaxies and clusters of galaxies are clumped together into walls and filaments, with giant voids between. These structures grew out of subtle variations in density in the early universe, which bore the imprint of "baryon acoustic oscillations" - pressure-driven acoustic (sound) waves that passed through the early universe.

Billions of years later, the record of these sound waves can still be read in our universe. "Because of the regularity of the ancient sound waves, there's a slightly increased probability that any two galaxies today will be separated by about 500 million light-years, rather than 400 million or 600 million," said Eisenstein.

In a graph of the number of galaxy pairs by separation distance, that magic number of 500 million light-years shows up as a peak, so astronomers often speak of the "peak separation." The position of this peak depends on the amount of dark energy in the Universe. But measuring the distance between galaxies depends critically on having the right distances to the galaxies in the first place.

That's where BOSS comes in. "We've detected the peak separation more clearly than ever before," said Nikhil Padmanabhan of Yale University. "These measurements allow us to determine the contents of the Universe with unprecedented accuracy."

This release is being issued jointly with the Sloan Digital Sky Survey.

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu

Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Organics Probably Formed Easily in Early Solar System

Water's Early Journey in a Solar System
Image credit: NASA/JPL-Caltech
Click here for full resolution

MOFFETT FIELD, Calif. – Complex organic compounds, including many important to life on Earth, were readily produced under conditions that likely prevailed in the primordial solar system. Scientists at the University of Chicago and NASA Ames Research Center came to this conclusion after linking computer simulations to laboratory experiments.

Fred Ciesla, assistant professor in geophysical sciences at UChicago, simulated the dynamics of the solar nebula, the cloud of gas and dust from which the sun and the planets formed. Although every dust particle within the nebula behaved differently, they all experienced the conditions needed for organics to form over a simulated million-year period.

“Whenever you make a new planetary system, these kinds of things should go on,” said Scott Sandford, a space science researcher at NASA Ames. “This potential to make organics and then dump them on the surfaces of any planet you make is probably a universal process.”

Although organic compounds are commonly found in meteorites and cometary samples, their origins presented a mystery. Now Ciesla and Sandford describe how the compounds possibly evolved in the March 29 edition of Science Express. How important a role these compounds may have played in giving rise to the origin of life remains poorly understood, however.

Sandford has devoted many years of laboratory research to the chemical processes that occur when high-energy ultraviolet radiation bombards simple ices like those seen in space. “We’ve found that a surprisingly rich mixture of organics is made,” Sandford said.

These include molecules of biological interest, including amino acids, nucleobases, and amphiphiles, the building blocks of proteins, RNA and DNA, and cellular membranes, respectively. Irradiated ices should have produced these same sorts of molecules during the formation of the solar system, he said.

But a question remained. Could icy grains traveling through the outer edges of the solar nebula, in temperatures as low as minus 405 degrees Fahrenheit (less than 30 Kelvin), become exposed to UV radiation from surrounding stars?

Ciesla’s computer simulations reproduced the turbulent environment expected in the solar nebula. This washing machine action mixed the particles throughout the nebula, and sometimes lofted them to high altitudes within the cloud, where they could become irradiated.

“Taking what we think we know about the dynamics of the outer solar nebula, it’s really hard for these ice particles not to spend at least part of their time where they’re going to be exposed to UV radiation,” Ciesla said.

The grains also moved in and out of warmer regions in the nebula. This completes the recipe for making organic compounds: ice, irradiation and warming.

“It was surprising how all these things just naturally fell out of the model,” Ciesla said. “It really did seem like this was a natural consequence of particle dynamics in the initial stage of planet formation.”

For more information about the NASA Ames Astrochemistry Laboratory, visit: http://www.astrochemistry.org

For more information about the NASA Ames, visit: http://www.nasa.gov/ames

Ruth Dasso Marlaire
Ames Research Center, Moffett Field, Calif.
650.604.4789
ruth.marlaire@nasa.gov

Steve Koppes
University of Chicago
773-702-8366
skoppes@uchicago.edu


NASA's SOFIA Captures Images of the Planetary Nebula M2-9

NASA's SOFIA telescope and the FORCAST instrument captured this color-composite image of the planetary nebula Minkowski 2-9 (M2-9) showing a dying sun-like star. (NASA/DLR/USRA/DSI/FORCAST team). Full size image

MOFFETT FIELD, Calif. -- Researchers using NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) have captured infrared images of the last exhalations of a dying sun-like star.

The object observed by SOFIA, planetary nebula Minkowski 2-9, or M2-9 for short, is seen in this three-color composite image. The SOFIA observations were made at the mid-infrared wavelengths of 20, 24, and 37 microns. The 37-micron wavelength band detects the strongest emissions from the nebula and is impossible to observe from ground-based telescopes.

Objects such as M2-9 are called planetary nebulae due to a mistake made by early astronomers who discovered these objects while sweeping the sky with small telescopes. Many of these nebulae have the color, shape and size of Uranus and Neptune, so they were dubbed planetary nebulae. The name persists despite the fact that these nebulae are now known to be distant clouds of material, far beyond our solar system, that are shed by stars about the size of our sun undergoing upheavals during their final life stages.

Although the M2-9 nebular material is flowing out from a spherical star, it is extended in one dimension, appearing as a cylinder or hourglass. Astronomers hypothesize that planetary nebulae with such shapes are produced by opposing flows of high-speed material caused by a disk of material around the dying star at the center of the nebula. SOFIA's observations of M2-9 were designed to study the outflow in detail with the goal of better understanding this stellar life cycle stage that is important in our galaxy's evolution.

"The SOFIA images provide our most complete picture of the outflowing material on its way to being recycled into the next generation of stars and planets," said Michael Werner of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., principal investigator of these observations. "We were gratified to see the lobes so clearly using SOFIA. These early results demonstrate the scientific potential of this important new observatory."

The observations were made using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) instrument in June 2011 by a team consisting of astronomers from JPL, the California Institute of Technology, the University of California at Los Angeles, Cornell University and Ithaca College, Ithaca, N.Y. Preliminary analyses of these data were first presented in January 2012 at the American Astronomical Society meeting in Austin, Texas.

The SOFIA observatory combines an extensively modified Boeing 747SP aircraft and a 17-metric-ton reflecting telescope with an effective diameter of 2.5 meters (100 inches) that is capable of reaching altitudes as high as 45,000 feet (14 km), above more than 99 percent of the water vapor in Earth's atmosphere that blocks most infrared radiation from celestial sources.

SOFIA is a joint project of NASA and the German Aerospace Center (DLR), and is based and managed at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif. NASA's Ames Research Center in Moffett Field, Calif., manages the SOFIA science and mission operations in cooperation with the Universities Space Research Association (USRA), headquartered in Columbia, Md., and the German SOFIA Institute (DSI) at the University of Stuttgart.

For more information about SOFIA, visit: http://www.nasa.gov/sofia or http://www.dlr.de/en/sofia

For information about SOFIA's science mission, visit: http://www.sofia.usra.edu or http://www.dsi.uni-stuttgart.de/index.en.html


Nicholas A. Veronico
SOFIA Science Center
NASA Ames Research Center, Moffett Field, Calif.
650-604-4589
nveronico@sofia.usra.edu

Beth Hagenauer
Dryden Flight Research Center, Edwards, Calif.
661-276-7960
beth.hagenauer-1@nasa.gov

Thursday, March 29, 2012

Recycling galaxies caught in the act

One of the six galaxies that has been found by the Keck I telescope to have significant inflows of gas, which together with outflows create a galactic juggling act. Credit: NASA/STScI

Images of the six galaxies with detected inflows, detected by the Keck I telescope. Most of these galaxies have a disk-like, spiral structure, similar to that of the Milky Way. Star formation activity occurring in small knots is evident in several of the galaxies' spiral arms. Because the spirals appear tilted in the images, Rubin et al. concluded that we are viewing them from the side, rather than face-on. This orientation meshes well with a scenario of 'galactic recycling' in which gas is blown out of a galaxy perpendicular to its disk, and then falls back at different locations along the edge of the disk. These images were taken with the Advanced Camera for Surveys on the Hubble Space Telescope. Credit: NASA/STScI

Kamuela, HI—When astronomers add up all the gas and dust contained in ordinary galaxies like our own Milky Way, they stumble on a puzzle: There is not nearly enough matter for stars to be born at the rates that are observed. Part of the solution might be a recycling of matter on gigantic scales – veritable galactic fountains of matter flowing out and then back into galaxies over multi-billion-year timescales.

Now, a team of astronomers led by Kate Rubin of the Max Planck Institute for Astronomy in Germany has used the W. M. Keck Observatory to find evidence of just such fountains in distant spiral galaxies.

In the Milky Way, it’s estimated that every year about one solar mass (an amount of matter equal to that of our Sun) worth of dust and gas is turned into stars. Yet a survey of the available raw materials shows that our galaxy could not keep up this rate of star formation for longer than a couple of billion years. Star ages and comparisons with other spiral galaxies show that one solar mass per year is a typical star formation rate. So the puzzle appears to be universal.

This means additional matter must find its way into galaxies. One possible source is an inflow from huge low-density gas reservoirs filling the intergalactic voids. There is, however, little evidence that this is happening.

Another possibility, closer to home, involves a gigantic cosmic matter cycle. Gas is observed to flow away from many galaxies, and may be pushed by several different mechanisms, including violent supernova explosions (which are how massive stars end their lives), and the sheer pressure exerted by light emitted by bright stars on gas in their cosmic neighborhood.

As this gas drifts away, it is pulled back by the galaxy’s gravity, and could re-enter the same galaxy on timescales of one to several billion years. This process might solve the mystery. If so, then the gas we find inside galaxies may only be about half of the raw material that ends up as fuel for star formation. Large amounts of gas are caught in transit, but will re-enter the galaxy in due time. It’s a gigantic juggling act, in other words, with some of the balls in the galactic hands and others in the air. Added all together, there is a sufficient amount of raw matter to account for the observed rates of star formation.

Until now, however, there was a great deal of uncertainty about the idea of cosmic recycling. Would such gas indeed fall back, or would it more likely reach the galaxy’s escape velocity, flying ever further out into space, never to return? For local galaxies out to a few hundred million light-years in distance, there had been studies showing evidence for inflows of previously-expelled gas. But what about more distant galaxies, where outflows are known to be much more powerful? Would gravity still be sufficient to pull the gas back? If no, astronomers might be forced to radically rethink their models for how star formation is fueled on galactic scales.

To sort this out, Rubin and her team examined gas associated with a hundred galaxies at distances between 5 and 8 billion light-years with the Keck I telescope’s Low Resolution Imaging Spectrogtaph (LRIS). They found in six of those galaxies the first direct evidence that gas adrift in intergalactic space does indeed flow back into star-forming galaxies.

Even more encouraging, the inflow which can be detected by with the Keck I telescope might well depend on the angle at which we observe the galaxy. As Rubin and her team can only measure average gas motion, the real proportion of galaxies with this kind of inflow is likely to be higher than the six percent suggested by their data. It could, in fact, be as high as 40 percent. This is a key piece of the puzzle and important evidence that cosmic recycling could indeed solve the mystery of the missing star-making matter.

The results described in this release have been published as Kate H. R. Rubin et al., “The Direct Detection of Cool, Metal-Enriched Gas Accretion onto Galaxies at z ~ 0.5” in the journal Astrophysical Journal Letters, Vol. 747 (2012), p. 26ff. The co-authors are Kate H. R. Rubin (Max Planck Institute for Astronomy), J. Xavier Prochaska (MPIA and UCO/Lick Observatory, University of California), David C. Koo (UCO/Lick Observatory), and Andrew C. Phillip (UCO/Lick Observatory).

***

The W. M. Keck Observatory operates two 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Big Island of Hawaii. The twin telescopes feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectroscopy and a world-leading laser guide star adaptive optics system which cancels out much of the interference caused by Earth’s turbulent atmosphere. The Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

Huge tornadoes discovered on the Sun

The tornado was observed with the AIA telescope on board NASA’s Solar Dynamic Observatory. Credit: NASA/SDO/AIA/Aberystwyth University/Li/Morgan/Leonard

Stills and animations of the solar tornado can be downloaded from:


Solar tornadoes several times as wide as the Earth can be generated in the solar atmosphere, say researchers in the UK. A solar tornado was discovered using the Atmospheric Imaging Assembly telescope on board the Solar Dynamic Observatory (SDO) satellite. A movie of the tornado will be presented at the National Astronomy Meeting 2012 in Manchester on Thursday 29th March.

"This is perhaps the first time that such a huge solar tornado is filmed by an imager. Previously much smaller solar tornadoes were found my SOHO satellite. But they were not filmed," says Dr. Xing Li, of Aberystwyth University.

Dr. Huw Morgan, co-discover of the solar tornado, adds, "This unique and spectacular tornado must play a role in triggering global solar storms."

The Atmospheric Imaging Assembly saw superheated gases as hot as 50 000 – 2 000 000 Kelvin sucked from the root of a dense structure called prominence, and spiral up into the high atmosphere and travel about 200 000 kilometres along helical paths for a period of at least three hours. The tornadoes were observed on 25 September 2011.

The hot gases in the tornadoes have speeds as high as 300,000 km per hour. Gas speeds of terrestrial tornadoes can reach 150km per hour.

The tornadoes often occur at the root of huge coronal mass ejections. When heading toward the Earth, these coronal mass ejections can cause significant damage to the earth’s space environment, satellites, even knock out the electricity grid.

The solar tornadoes drag winding magnetic field and electric currents into the high atmosphere. It is possible that the magnetic field and currents play a key role in driving the coronal mass ejections.

SDO was launched in February 2010. The satellite is orbiting the Earth in a circular, geosynchronous orbit at an altitude of 36,000 kilometres. It monitors constantly solar variations so scientists can understand the cause of the change and eventuallyhave a capability to predict the space weather.


SCIENCE CONTACTS

Dr Xing Li
University of Aberystwyth
Tel: 01970 621 542
Email: xxl@aber.ac.uk

Dr Huw Morgan
University of Aberystwyth
Tel: 01970 622810
Email: hmorgan@aber.ac.uk


MEDIA CONTACTS

NAM 2012 Press Office (0900 – 1730 GMT, 27-29 April; 0900 – 1630 GMT 30 April)
Room 3.214
University Place building
University of Manchester
Manchester, UK
Tel: +44 (0)161 306 7313

Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
Email: rm@ras.org.uk

Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
Email: anitaheward@btinternet.com

Dr Klaus Jaeger
Pressereferent / Press Officer im Vorstand der Astronomischen Gesellschaft
Tel: +49 6221 528 379
Email: pressereferent@astronomische-gesellschaft.de

Dan Cochlin
Media Officer (Faculty of Engineering and Physical Sciences)
University of Manchester
Tel: +44 (0)161 275 8387
Email: daniel.cochlin@manchester.ac.uk


NOTES FOR EDITORS

NAM 2012

Bringing together more than 900 astronomers and space scientists, the National Astronomy Meeting (NAM 2012) will take place from 27-30 March 2012 in the University Place conference centre at the University of Manchester in the UK. The conference is a joint meeting of the Royal Astronomical Society (RAS) and the German Astronomische Gesellschaft (AG) and is held in conjunction with the UK Solar Physics (UKSP: www.uksolphys.org) and Magnetosphere Ionosphere Solar Terrestrial (MIST: www.mist.ac.uk) meetings. NAM 2012 is principally sponsored by the RAS, AG, STFC and the University of Manchester.


The Royal Astronomical Society

The Royal Astronomical Society (RAS: www.ras.org.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3500 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.


The Astronomische Gesellschaft (AG)

The Astronomische Gesellschaft (AG: www.astronomische-gesellschaft.de), founded in 1863, is a modern astronomical society with more than 800 members dedicated to the advancement of astronomy and astrophysics and the networking between astronomers. It represents German astronomers, organises scientific meetings, publishes journals, offers grants, recognises outstanding work through awards and places a high priority on the support of talented young scientists, public outreach and astronomy education in schools.


The Science and Technology Facilities Council

The Science and Technology Facilities Council (STFC: www.stfc.ac.uk) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory.


Jodrell Bank Centre for Astrophysics

The Jodrell Bank Centre for Astrophysics (JBCA: www.jb.man.ac.uk/) is part of the School of Physics & Astronomy at the University of Manchester. JBCA is split over two main sites: the Alan Turing Building in Manchester and the Jodrell Bank Observatory in Cheshire. At Jodrell Bank Observatory, the new Jodrell Bank Discovery Centre is a key focus for our work in public engagement and education. Jodrell Bank is a world leader in radio astronomy-related research and technology development with a research programme extending across much of modern astrophysics. The group operates the e-MERLIN national radio astronomy facility and the iconic Lovell Telescope, hosts the UK ALMA Regional Centre Node and is home to the international office of the SKA Organisation. Funded by the University, the Science & Technology Facilities Council and the European Commission, it is one of the UK’s largest astrophysics research groups.

Cassiopeia A: A Star Explodes and Turns Inside Out

Credit Illustration: NASA/CXC/M.Weiss;
X-ray: NASA/CXC/GSFC/U.Hwang & J.Laming

JPEG (425 kb) - Tiff (35.7 MB) - More Images



A new X-ray study of the remains of an exploded star indicates that the supernova that disrupted the massive star may have turned it inside out in the process. Using very long observations of Cassiopeia A (or Cas A), a team of scientists has mapped the distribution of elements in the supernova remnant in unprecedented detail. This information shows where the different layers of the pre-supernova star are located three hundred years after the explosion, and provides insight into the nature of the supernova.

An artist's illustration on the left shows a simplified picture of the inner layers of the star that formed Cas A just before it exploded, with the predominant concentrations of different elements represented by different colors: iron in the core (blue), overlaid by sulfur and silicon (green), then magnesium, neon and oxygen (red). The image from NASA's Chandra X-ray Observatory on the right uses the same color scheme to show the distribution of iron, sulfur and magnesium in the supernova remnant. The data show that the distributions of sulfur and silicon are similar, as are the distributions of magnesium and neon. Oxygen, which according to theoretical models is the most abundant element in the remnant, is difficult to detect because the X-ray emission characteristic of oxygen ions is strongly absorbed by gas in along the line of sight to Cas A, and because almost all the oxygen ions have had all their electrons stripped away.

A comparison of the illustration and the Chandra element map shows clearly that most of the iron, which according to theoretical models of the pre-supernova was originally on the inside of the star, is now located near the outer edges of the remnant. Surprisingly, there is no evidence from X-ray (Chandra) or infrared (Spitzer Space Telescope) observations for iron near the center of the remnant, where it was formed. Also, much of the silicon and sulfur, as well as the magnesium, is now found toward the outer edges of the still-expanding debris. The distribution of the elements indicates that a strong instability in the explosion process somehow turned the star inside out.

This latest work, which builds on earlier Chandra observations, represents the most detailed study ever made of X-ray emitting debris in Cas A, or any other supernova remnant resulting from the explosion of a massive star. It is based on a million seconds of Chandra observing time. Tallying up what they see in the Chandra data, astronomers estimate that the total amount of X-ray emitting debris has a mass just over three times that of the Sun. This debris was found to contain about 0.13 times the mass of the Sun in iron, 0.03 in sulfur and only 0.01 in magnesium.

The researchers found clumps of almost pure iron, indicating that this material must have been produced by nuclear reactions near the center of the pre-supernova star, where the neutron star was formed. That such pure iron should exist was anticipated because another signature of this type of nuclear reaction is the formation of the radioactive nucleus titanium-44, or Ti-44. Emission from Ti-44, which is unstable with a half-life of 63 years, has been detected in Cas A with several high-energy observatories including the Compton Gamma Ray Observatory, BeppoSAX, and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL).

These results appeared in the February 20th issue of The Astrophysical Journal in a paper by Una Hwang of Goddard Space Flight Center and Johns Hopkins University, and (John) Martin Laming of the Naval Research Laboratory.

Fast Facts for Cassiopeia A:

Credit Illustration: NASA/CXC/M.Weiss; X-ray: NASA/CXC/GSFC/U.Hwang & J.Laming
Scale Image is 8.4 arcmin across (about 27 light years)
Category: Supernovas & Supernova Remnants
Coordinates: (J2000) RA 23h 23m 26.7s | Dec +58° 49' 03.00"
Constellation: Cassiopeia
Observation Dates: 9 pointings between Feb 8 and May 5, 2004
Observation Time: 272 hours 13 min (11 days 8 hours 13 min)
Obs. IDs: 4634-4639, 5196, 5319-5320
Instrument: ACIS
Also Known As: Cas A
References: Hwang, U. et al, 2012, ApJ, 746, 130; arXiv:1111.7316
Distance Estimate: About 11,000 light years

Wednesday, March 28, 2012

SCUBA-2 reveals wild youth of the Universe

The first image presented here is made using the SCUBA-2 camera at a wavelength of 450 microns. Credit: Jim Dunlop

A picture of SCUBA-2
Credit: Joint Astronomy Centre

A team of astronomers from the UK, Canada and the Netherlands has begun a revolutionary new study of cosmic star-formation history, looking back in time to when the Universe was still in its lively and somewhat unruly youth.

The consortium, co-led by University of Edinburgh astrophysicist Professor James Dunlop, is using SCUBA-2, the most powerful camera ever developed for observing light at ‘sub-mm’ wavelengths (light that has a wavelength 1000 times longer than we can see with our eyes). Prof. Dunlop presented the first results from the survey at the UK National Astronomy Meeting on 27 March 2012.

The development of SCUBA-2 was led by STFC’s UK Astronomy Technology Centre in Edinburgh and the revolutionary camera was unveiled in December 2011 . It is mounted on the world's largest sub-mm telescope, the 15-metre
James Clerk Maxwell Telescope in Hawaii. The new project, named the SCUBA-2 Cosmology Legacy Survey, will run for three years and will use the camera to provide the clearest view to date of dust-enshrouded star-forming galaxies. These objects are so remote that the light we detect left them billions of years ago, so we see them as they looked in the distant past. With SCUBA-2 astronomers are able to study objects that existed as far back as 13 billion years ago, within the first billion years after the Big Bang.

Because stars form inside clouds of gas and dust, much of the ultraviolet light from young galaxies is absorbed by this cosmic dust which is then heated to a few tens of degrees above absolute zero (-273 degrees Celsius). The ‘warmed’ (but still rather ‘cool’) dust then emits the absorbed energy at far-infrared wavelengths, which is then further redshifted to longer sub-mm wavelengths en-route to the Earth by the expansion of the Universe.

Detecting such emission is a challenge, both because Earth-based telescopes are warm and hence glow at sub-mm wavelengths and because water vapour in the atmosphere both absorbs and emits light in this waveband. To get around the problems of the atmosphere, the latest sub-mm surveys have recently been conducted from space, using the Herschel Space Observatory. However, the relatively small size (3.5-metre diameter) of Herschel’s telescope means that the images it produces cover large areas but are rather fuzzy. The James Clerk Maxwell Telescope primary mirror is 20 times larger in area and can provide a much sharper view of the sub-mm sky.

Prof. Dunlop is delighted by these first deep SCUBA-2 images and looking forward to more results over the next few years: “Edinburgh scientists and engineers worked hard to construct this revolutionary new instrument and, together with our colleagues in Canada and the Netherlands, we’re now seeing the fruits of our efforts. With SCUBA-2 we can study the most violently star-forming galaxies in the young Universe, and slowly but surely start to understand how the primitive cosmos evolved into the Universe we live in today.”

STFC is the UK sponsor of astronomy and operates the Joint Astronomy Centre in Hawaii.
(link opens in a new window) (link opens in a new window)
in Hawaii.

The full press release is available on the Royal Astronomical Society web site.

Page last updated: 28 March 2012 by Stephanie Hills

A planetary system from the early Universe

Artist’s impression of HIP 11952 and its two Jupiter-like planets.
Image credit: Timotheos Samartzidis
Picture in original resolution (204 KB, 1527 x 1080 pixels)

A group of European astronomers has discovered an ancient planetary system that is likely to be a survivor from one of the earliest cosmic eras, 13 billion years ago. The system consists of the star HIP 11952 and two planets, which have orbital periods of 290 and 7 days, respectively. Whereas planets usually form within clouds that include heavier chemical elements, the star HIP 11952 contains very little other than hydrogen and helium. The system promises to shed light on planet formation in the early universe – under conditions quite different from those of later planetary systems, such as our own.

It is widely accepted that planets are formed in disks of gas and dust that swirl around young stars. But look into the details, and many open questions remain – including the question of what it actually takes to make a planet. With a sample of, by now, more than 750 confirmed planets orbiting stars other than the Sun, astronomers have some idea of the diversity among planetary systems. But also, certain trends have emerged: Statistically, a star that contains more “metals” - in astronomical parlance, the term includes all chemical elements other than hydrogen and helium – is more likely to have planets.

This suggests a key question: Originally, the universe contained almost no chemical elements other than hydrogen and helium. Almost all heavier elements have been produced, over time inside stars, and then flung into space as massive stars end their lives in giant explosions (supernovae). So what about planet formation under conditions like those of the very early universe, say: 13 billion years ago? If metal-rich stars are more likely to form planets, are there, conversely, stars with a metal content so low that they cannot form planets at all? And if the answer is yes, then when, throughout cosmic history, should we expect the very first planets to form?

Now a group of astronomers, including researchers from the Max-Planck-Institute for Astronomy in Heidelberg, Germany, has discovered a planetary system that could help provide answers to those questions. As part of a survey targeting especially metal-poor stars, they identified two giant planets around a star known by its catalogue number as HIP 11952, a star in the constellation Cetus (“the whale” or “the sea monster”) at a distance of about 375 light-years from Earth. By themselves, these planets, HIP 11952b and HIP 11952c, are not unusual. What is unusual is the fact that they orbit such an extremely metal-poor and, in particular, such a very old star!

For classical models of planet formation, which favor metal-rich stars when it comes to forming planets, planets around such a star should be extremely rare. Veronica Roccatagliata (University Observatory Munich), the principal investigator of the planet survey around metal-poor stars that led to the discovery, explains: “In 2010 we found the first example of such a metal-poor system, HIP 13044. Back then, we thought it might be a unique case; now, it seems as if there might be more planets around metal-poor stars than expected.”

HIP 13044 became famous as the “exoplanet from another galaxy” – the star is very likely part of a so-called stellar stream, the remnant of another galaxy swallowed by our own billions of years ago.

Compared to other exoplanetary systems, HIP 11952 is not only one that is extremely metal-poor, but, at an estimated age of 12.8 billion years, also one of the oldest systems known so far. “This is an archaeological find in our own backyard,” adds Johny Setiawan of the Max Planck Institute for Astronomy, who led the study of HIP 11952: “These planets probably formed when our Galaxy itself was still a baby.”

“We would like to discover and study more planetary systems of this kind. That would allow us to refine our theories of planet formation. The discovery of the planets of HIP 11952 shows that planets have been forming throughout the life of our Universe”, adds Anna Pasquali from the Center for Astronomy at Heidelberg University (ZAH), a co-author of the paper.

Dr. Markus Pössel Öffentlichkeitsarbeit
Max-Planck-Institut für Astronomie

Contact information

Johny Setiawan (lead author)
Max Planck Institute for Astronomy
Current address: Embassy of the Republic of Indonesia
Phone: +49 30 47807 242
Email: setiawan@indonesian-embassy.de

Veronica Roccatagliata (PI of planet survey)
University Observatory Munich
Phone: 089-2180-6973
Email: vrocca@usm.lmu.de

Markus Pössel (public relations)
Max Planck Institute for Astronomy
Phone: +49 6221 528 261
Email: pr@mpia.de


Attachment
PDF version with additional background information

Many Billions of Rocky Planets in the Habitable Zones around Red Dwarfs in the Milky Way

Artist’s impression of sunset on the super-Earth world Gliese 667 Cc

A new result from ESO’s HARPS planet finder shows that rocky planets not much bigger than Earth are very common in the habitable zones around faint red stars. The international team estimates that there are tens of billions of such planets in the Milky Way galaxy alone, and probably about one hundred in the Sun’s immediate neighbourhood. This is the first direct measurement of the frequency of super-Earths around red dwarfs, which account for 80% of the stars in the Milky Way.

This first direct estimate of the number of light planets around red dwarf stars has just been announced by an international team using observations with the HARPS spectrograph on the 3.6-metre telescope at ESO’s La Silla Observatory in Chile [1]. A recent announcement (eso1204), showing that planets are ubiquitous in our galaxy used a different method that was not sensitive to this important class of exoplanets.

The HARPS team has been searching for exoplanets orbiting the most common kind of star in the Milky Way — red dwarf stars (also known as M dwarfs [2]). These stars are faint and cool compared to the Sun, but very common and long-lived, and therefore account for 80% of all the stars in the Milky Way.

“Our new observations with HARPS mean that about 40% of all red dwarf stars have a super-Earth orbiting in the habitable zone where liquid water can exist on the surface of the planet,” says Xavier Bonfils (IPAG, Observatoire des Sciences de l'Univers de Grenoble, France), the leader of the team. “Because red dwarfs are so common — there are about 160 billion of them in the Milky Way — this leads us to the astonishing result that there are tens of billions of these planets in our galaxy alone.”

The HARPS team surveyed a carefully chosen sample of 102 red dwarf stars in the southern skies over a six-year period. A total of nine super-Earths (planets with masses between one and ten times that of Earth) were found, including two inside the habitable zones of Gliese 581 (eso0915) and Gliese 667 C respectively. The astronomers could estimate how heavy the planets were and how far from their stars they orbited.

By combining all the data, including observations of stars that did not have planets, and looking at the fraction of existing planets that could be discovered, the team has been able to work out how common different sorts of planets are around red dwarfs. They find that the frequency of occurrence of super-Earths [3] in the habitable zone is 41% with a range from 28% to 95%.

On the other hand, more massive planets, similar to Jupiter and Saturn in our Solar System, are found to be rare around red dwarfs. Less than 12% of red dwarfs are expected to have giant planets (with masses between 100 and 1000 times that of the Earth).

As there are many red dwarf stars close to the Sun the new estimate means that there are probably about one hundred super-Earth planets in the habitable zones around stars in the neighbourhood of the Sun at distances less than about 30 light-years [4].

"The habitable zone around a red dwarf, where the temperature is suitable for liquid water to exist on the surface, is much closer to the star than the Earth is to the Sun," says Stéphane Udry (Geneva Observatory and member of the team). "But red dwarfs are known to be subject to stellar eruptions or flares, which may bathe the planet in X-rays or ultraviolet radiation, and which may make life there less likely."

One of the planets discovered in the HARPS survey of red dwarfs is Gliese 667 Cc [5]. This is the second planet in this triple star system (see eso0939 for the first) and seems to be situated close to the centre of the habitable zone. Although this planet is more than four times heavier than the Earth it is the closest twin to Earth found so far and almost certainly has the right conditions for the existence of liquid water on its surface. This is the second super-Earth planet inside the habitable zone of a red dwarf discovered during this HARPS survey, after Gliese 581d was announced in 2007 and confirmed in 2009.

“Now that we know that there are many super-Earths around nearby red dwarfs we need to identify more of them using both HARPS and future instruments. Some of these planets are expected to pass in front of their parent star as they orbit — this will open up the exciting possibility of studying the planet’s atmosphere and searching for signs of life,” concludes Xavier Delfosse, another member of the team (eso1210).

Notes

[1] HARPS measures the radial velocity of a star with extraordinary precision. A planet in orbit around a star causes the star to regularly move towards and away from a distant observer on Earth. Due to the Doppler effect, this radial velocity change induces a shift of the star’s spectrum towards longer wavelengths as it moves away (called a redshift) and a blueshift (towards shorter wavelengths) as it approaches. This tiny shift of the star’s spectrum can be measured with a high-precision spectrograph such as HARPS and used to infer the presence of a planet.

[2] These stars are called M dwarfs because they have the spectral class M. This is the coolest of the seven classes in the simplest scheme for classifying stars accordingly to decreasing temperature and the appearance of their spectra.

[3] Planets with a mass between one and ten times that of the Earth are called super-Earths. There are no such planets in our Solar System, but they appear to be very common around other stars. Discoveries of such planets in the habitable zones around their stars are very exciting because — if the planet were rocky and had water, like Earth — they could potentially be an abode of life.

[4] The astronomers used ten parsecs as their definition of “close”. This corresponds to about 32.6 light-years.

[5] The name means that the planet is the second discovered (c) orbiting the third component (C) of the triple star system called Gliese 667. The bright stellar companions Gliese 667 A and B would be prominent in the skies of Gliese 667 Cc. The discovery of Gliese 667 Cc was independently announced by Guillem Anglada-Escude and colleagues in February 2012, roughly two months after the electronic preprint of the Bonfils et al. paper went online. This confirmation of the planets Gliese 667 Cb and Cc by Anglada-Escude and collaborators was largely based on HARPS observations and data processing of the European team that were made publicly available through the ESO archive.

More information

This research was presented in a paper “The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample”, by Bonfils et al. to appear in the journal Astronomy & Astrophysics.

The team is composed of X. Bonfils (UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble, France [IPAG]; Geneva Observatory, Switzerland), X. Delfosse (IPAG), S. Udry (Geneva Observatory), T. Forveille (IPAG), M. Mayor (Geneva Observatory), C. Perrier (IPAG), F. Bouchy (Institut d’Astrophysique de Paris, CNRS, France; Observatoire de Haute-Provence, France), M. Gillon (Université de Liège, Belgium; Geneva Observatory), C. Lovis (Geneva Observatory), F. Pepe (Geneva Observatory), D. Queloz (Geneva Observatory), N. C. Santos (Centro de Astrofísica da Universidade do Porto, Portugal), D. Ségransan (Geneva Observatory), J.-L. Bertaux (Service d’Aéronomie du CNRS, Verrières-le-Buisson, France), and Vasco Neves (Centro de Astrofísica da Universidade do Porto, Portugal and UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble, France [IPAG]).

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Research papers: Bonfils et al. and Delfosse et al.
Photos of the ESO 3.6-metre Telescope at La Silla

Contacts

Xavier Bonfils
Université Joseph Fourier - Grenoble 1/Institut de Planétologie et d’Astrophysique de Grenoble
Grenoble, France
Tel: +33 47 65 14 215
Email: xavier.bonfils@obs.ujf-grenoble.fr

Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Tuesday, March 27, 2012

‘Ordinary’ black hole discovered 12 million light years away

The yellow arrow in the picture identifies the position of the black hole transient inside Centaurus A. The location of the object is coincident with gigantic dust lanes that obscure visible and X-ray light from large regions of Centaurus A. Other interesting X-ray features include the central active nucleus, a powerful jet and a large lobe that covers most of the lower-right of the image. There is also a lot of hot gas. In the image, red indicates low energy, green represents medium energy, and blue represents high energy light. Credit: NASA / Chandra

An international team of scientists have discovered an ‘ordinary’ black hole in the 12 million light year-distant galaxy Centaurus A. This is the first time that a normal-size black hole has been detected away from the immediate vicinity of our own Galaxy. PhD student Mark Burke will present the discovery at the National Astronomy Meeting in Manchester.

Although exotic by everyday standards, black holes are everywhere. The lowest-mass black holes are formed when very massive stars reach the end of their lives, ejecting most of their material into space in a supernova explosion and leaving behind a compact core that collapses into a black hole. There are thought to be millions of these low-mass black holes distributed throughout every galaxy. Despite their ubiquity, they can be hard to detect as they do not emit light so are normally seen through their action on the objects around them, for example by dragging in material that then heats up in the process and emits X-rays. But despite this, the overwhelming majority of black holes have remained undetected.

In recent years, researchers have made some progress in finding ordinary black holes in binary systems, by looking for the X-ray emission produced when they suck in material from their companion stars. So far these objects have been relatively close by, either in our own Milky Way Galaxy or in nearby galaxies in the so-called Local Group (a cluster of galaxies relatively near the Milky Way that includes Andromeda).

Mr Burke works under the supervision of Birmingham University astronomer Dr Somak Raychaudhury and is part of an international team led by Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics. The team used the orbiting Chandra X-ray observatory to make six 100,000-second long exposures of Centaurus A, detecting an object with 50,000 times the X-ray brightness of our Sun. A month later, it had dimmed by more than a factor of 10 and then later by a factor of more than 100, so became undetectable.

This behaviour is characteristic of a low mass black hole in a binary system during the final stages of an outburst and is typical of similar black holes in the Milky Way. It implies that the team made the first detection of a normal black hole so far away, for the first time opening up the opportunity to characterise the black hole population of other galaxies.

Mr Burke comments: “So far we’ve struggled to find many ordinary black holes in other galaxies, even though we know they are there. To confirm (or refute) our understanding of the evolution of stars we need to search for these objects, despite the difficulty of detecting them at large distances. If it turns out that black holes are either much rarer or much more common in other galaxies than in our own it would be a big challenge to some of the basic ideas that underpin astronomy.”

The group now plan to look at the more than 50 other bright X-ray sources that reside within Centaurus A, identifying them as black holes or other exotic objects, and gain at least an inkling of the nature of a further 50 less luminous sources.

IMAGE AND CAPTION

The Chandra image of the low-mass black hole in Centaurus A can be downloaded from http://www.sr.bham.ac.uk/~somak/CenA/

Caption: The yellow arrow in the picture identifies the position of the black hole transient inside Centaurus A. The location of the object is coincident with gigantic dust lanes that obscure visible and X-ray light from large regions of Centaurus A. Other interesting X-ray features include the central active nucleus, a powerful jet and a large lobe that covers most of the lower-right of the image. There is also a lot of hot gas. In the image, red indicates low energy, green represents medium energy, and blue represents high energy light. Credit: NASA / Chandra

FURTHER INFORMATION

The new work will appear in, “A Transient Sub-Eddington Black Hole X-ray Binary Candidate in the Dust Lanes of Centaurus A”, M. Burke et al, Astrophysical Journal. A preprint of the paper can be downloaded from http://arxiv.org/abs/1202.3149

MEDIA CONTACTS

NAM 2012 Press Office (0900 – 1730 GMT, 27-29 April; 0900 – 1630 GMT 30 April)
Room 3.214
University Place building
University of Manchester
Manchester
UK
Tel: +44 (0)161 306 7313

Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
Email: rm@ras.org.uk

Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
Email: anitaheward@btinternet.com

Dr Klaus Jaeger
Pressereferent / Press Officer im Vorstand der Astronomischen Gesellschaft
Tel: +49 6221 528 379
Email: pressereferent@astronomische-gesellschaft.de

Dan Cochlin
Media Officer (Faculty of Engineering and Physical Sciences)
University of Manchester
Tel: +44 (0)161 275 8387
Email: daniel.cochlin@manchester.ac.uk

SCIENCE CONTACTS

Mark Burke
Astrophysics and Space Research Group
University of Birmingham
Tel: +44 (0)121 415 8410
Mob: +44 (0)788 997 8730
Email: mburke@star.sr.bham.ac.uk

Dr Somak Raychaudhury
Astrophysics and Space Research Group
University of Birmingham
Tel: +44 (0)121 414 6474
Email: somak@star.sr.bham.ac.uk

NOTES FOR EDITORS

NAM 2012

Bringing together more than 900 astronomers and space scientists, the National Astronomy Meeting (NAM 2012) will take place from 27-30 March 2012 in the University Place conference centre at the University of Manchester in the UK. The conference is a joint meeting of the Royal Astronomical Society (RAS) and the German Astronomische Gesellschaft (AG) and is held in conjunction with the UK Solar Physics (UKSP: www.uksolphys.org) and Magnetosphere Ionosphere Solar Terrestrial (MIST: www.mist.ac.uk) meetings. NAM 2012 is principally sponsored by the RAS, AG, STFC and the University of Manchester.

The Royal Astronomical Society

The Royal Astronomical Society (RAS: www.ras.org.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3500 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The Astronomische Gesellschaft (AG)

The Astronomische Gesellschaft (AG: www.astronomische-gesellschaft.de), founded in 1863, is a modern astronomical society with more than 800 members dedicated to the advancement of astronomy and astrophysics and the networking between astronomers. It represents German astronomers, organises scientific meetings, publishes journals, offers grants, recognises outstanding work through awards and places a high priority on the support of talented young scientists, public outreach and astronomy education in schools.

The Science and Technology Facilities Council

The Science and Technology Facilities Council (STFC: www.stfc.ac.uk) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory.

Jodrell Bank Centre for Astrophysics

The Jodrell Bank Centre for Astrophysics (JBCA: www.jb.man.ac.uk/) is part of the School of Physics & Astronomy at the University of Manchester. JBCA is split over two main sites: the Alan Turing Building in Manchester and the Jodrell Bank Observatory in Cheshire. At Jodrell Bank Observatory, the new Jodrell Bank Discovery Centre is a key focus for our work in public engagement and education. Jodrell Bank is a world leader in radio astronomy-related research and technology development with a research programme extending across much of modern astrophysics. The group operates the e-MERLIN national radio astronomy facility and the iconic Lovell Telescope, hosts the UK ALMA Regional Centre Node and is home to the international office of the SKA Organisation. Funded by the University, the Science & Technology Facilities Council and the European Commission, it is one of the UK’s largest astrophysics research groups