Showing posts with label Abell 3827. Show all posts
Showing posts with label Abell 3827. Show all posts

Tuesday, May 04, 2021

Our Giant Universe

Abell 3827
Credit: ESA/Hubble & NASA, R. Massey

This detailed image features Abell 3827, a galaxy cluster that offers a wealth of exciting possibilities for study. It was observed by Hubble in order to study dark matter, which is one of the greatest puzzles cosmologists face today. The science team used Hubble’s Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) to complete their observations. The two cameras have different specifications and can observe different parts of the electromagnetic spectrum, so using them both allowed the astronomers to collect more complete information. Abell 3827 has also been observed previously by Hubble, because of the interesting gravitational lens at its core. 

Looking at this cluster of hundreds of galaxies, it is amazing to recall that until less than 100 years ago, many astronomers believed that the Milky Way was the only galaxy in the Universe. The possibility of other galaxies had been debated previously, but the matter was not truly settled until Edwin Hubble confirmed that the Great Andromeda Nebula was in fact far too distant to be part of the Milky Way. The Great Andromeda Nebula became the Andromeda Galaxy, and astronomers recognised that our Universe was much, much bigger than humanity had imagined. We can only imagine how Edwin Hubble — after whom the Hubble Space Telescope was named — would have felt if he’d seen this spectacular image of Abell 3827.


Wednesday, April 15, 2015

First Signs of Self-interacting Dark Matter?

Hubble image of the galaxy cluster Abell 3827

Hubble image of galaxy cluster Abell 3827 showing dark matter distribution


#   #   #   #   #   #    #   #   #   #  #   #   #   #   #   #    #   #   #   #   #   #   #   #   #   #   #   #    #   #   #   #  #   #   #   #   #   #    #   #   #   #   #   #


Videos

Hubble view of the galaxy cluster Abell 3827
Hubble view of the galaxy cluster Abell 3827



Dark matter may not be completely dark after all

For the first time dark matter may have been observed interacting with other dark matter in a way other than through the force of gravity. Observations of colliding galaxies made with ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have picked up the first intriguing hints about the nature of this mysterious component of the Universe.

Using the MUSE instrument on ESO’s VLT in Chile, along with images from Hubble in orbit, a team of astronomers studied the simultaneous collision of four galaxies in the galaxy cluster Abell 3827. The team could trace out where the mass lies within the system and compare the distribution of the dark matter with the positions of the luminous galaxies.

Although dark matter cannot be seen, the team could deduce its location using a technique called gravitational lensing. The collision happened to take place directly in front of a much more distant, unrelated source. The mass of dark matter around the colliding galaxies severely distorted spacetime, deviating the path of light rays coming from the distant background galaxy — and distorting its image into characteristic arc shapes.

Our current understanding is that all galaxies exist inside clumps of dark matter. Without the constraining effect of dark matter’s gravity, galaxies like the Milky Way would fling themselves apart as they rotate. In order to prevent this, 85 percent of the Universe’s mass [1] must exist as dark matter, and yet its true nature remains a mystery.

In this study, the researchers observed the four colliding galaxies and found that one dark matter clump appeared to be lagging behind the galaxy it surrounds. The dark matter is currently 5000 light-years (50 000 million million kilometres) behind the galaxy — it would take NASA’s Voyager spacecraft 90 million years to travel that far.

A lag between dark matter and its associated galaxy is predicted during collisions if dark matter interacts with itself, even very slightly, through forces other than gravity [2]. Dark matter has never before been observed interacting in any way other than through the force of gravity.

Lead author Richard Massey at Durham University, explains: “We used to think that dark matter just sits around, minding its own business, except for its gravitational pull. But if dark matter were being slowed down during this collision, it could be the first evidence for rich physics in the dark sector — the hidden Universe all around us.

The researchers note that more investigation will be needed into other effects that could also produce a lag. Similar observations of more galaxies, and computer simulations of galaxy collisions will need to be made.

Team member Liliya Williams of the University of Minnesota adds: “We know that dark matter exists because of the way that it interacts gravitationally, helping to shape the Universe, but we still know embarrassingly little about what dark matter actually is. Our observation suggests that dark matter might interact with  forces other than gravity, meaning we could rule out some key theories about what dark matter might be.”

This result follows on from a recent result from the team which observed 72 collisions between galaxy clusters [3] and found that dark matter interacts very little with itself. The new work however concerns the motion of individual galaxies, rather than clusters of galaxies. Researchers say that the collision between these galaxies could have lasted longer than the collisions observed in the previous study — allowing the effects of even a tiny frictional force to build up over time and create a measurable lag [4].

Taken together, the two results bracket the behaviour of dark matter for the first time. Dark matter interacts more than this, but less than that. Massey added: “We are finally homing in on dark matter from above and below — squeezing our knowledge from two directions.

Notes

[1]  Astronomers have found that the total mass/energy content of the Universe is split in the proportions 68% dark energy, 27% dark matter and 5% “normal” matter. So the 85% figure relates to the fraction of “matter” that is dark.

[2] Computer simulations show that the extra friction from the collision would make the dark matter slow down. The nature of that interaction is unknown; it could be caused by well-known effects or some exotic unknown force. All that can be said at this point is that it is not gravity.

All four galaxies might have been separated from their dark matter. But we happen to have a very good measurement from only one galaxy, because it is by chance aligned so well with the background, gravitationally lensed object. With the other three galaxies, the lensed images are further away, so the constraints on the location of their dark matter too loose to draw statistically significant conclusions.

[3] Galaxy clusters contain up to a thousand individual galaxies.

[4] The main uncertainty in the result is the timespan for the collision: the friction that slowed the dark matter could have been a very weak force acting over about a billion years, or a relatively stronger force acting for “only” 100 million years.


More Information

This research was presented in a paper entitled “The behaviour of dark matter associated with 4 bright cluster galaxies located in the 10 kpc core of Abell 3827” to appear in the journal Monthly Notices of the Royal Astronomical Society on 15 April 2015.

The team is composed of R. Massey (Institute for Computational Cosmology, Durham University, Durham, UK), L. Williams (School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA), R. Smit (Institute for Computational Cosmology, UK), M. Swinbank (Institute for Computational Cosmology, UK), T. D. Kitching (Mullard Space Science Laboratory, University College London, Dorking, Surrey, UK), D. Harvey (Ecole Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, Versoix, Switzerland), H. Israel (Institute for Computational Cosmology, UK), M. Jauzac (Institute for Computational Cosmology, UK; Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa), D. Clowe (Department of Physics and Astronomy, Ohio University, Athens, Ohio, USA), A. Edge (Department of Physics, Durham University, Durham, UK), M. Hilton (Astrophysics and Cosmology Research Unit, South Africa), E. Jullo (Laboratoire d’Astrophysique de Marseille, Université d’Aix-Marseille, Marseille, France), A. Leonard (University College London, London, UK), J. Liesenborgs (Hasselt University, Diepenbeek, Belgium), J. Merten (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA; California Institute of Technology, Pasadena, California, USA), I. Mohammed (Physik-Institüt, University of Zürich, Zürich, Switzerland), D. Nagai (Department of Physics, Yale University, New Haven, Connecticut, USA), J. Richard (Observatoire de Lyon, Université Lyon, Saint Genis Laval, France), A. Robertson (Institute for Computational Cosmology, UK), P. Saha (Physik-Institüt, Switzerland), R. Santana (Department of Physics and Astronomy, Ohio University, Athens, Ohio, USA), J. Stott (Department of Physics, Durham, UK) and E. Tittley (Royal Observatory, Edinburgh, UK).


ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


Links


Contacts:

Richard Massey
Institute for Computational Cosmology
Durham University, United Kingdom
Tel: +44 (0) 7740 648080
Email:
r.j.massey@durham.ac.uk

Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email:
rhook@eso.org


Source: ESO

Friday, May 21, 2010

Cannibalistic Galaxy Bends Light and Reveals its Monstrous Appetite

Gemini Legacy Image: R. Carrasco et al., Gemini Observatory/AURA

Central region of Abell 3827 as imaged using the Gemini Multi-Object Spectrograph on the Gemini South telescope in Chile. The central supermassive galaxy (ESO 146-IG 005) is clearly visible among its cluster companions as well as the remains of at least four nuclei that are being “digested” by the large galaxy. The central galaxy is thought to be the most massive galaxy in our local universe (out to about 1.5 billion light years). The field of view of this image is approximately 5 x 5 arcminutes and is a color composite made from g-, r- and i-band images combined and processed by Travis Rector (University of Alaska Anchorage). The inset (black on white image) is the single g-band image processed to reveal the gravitational lensed background galaxy arcs more clearly. Labeled on the inset are the most visible arcs from the closer background galaxy (z = 0.2 and labeled "A") and an arc from the more distant background galaxy (z = 0.4 and labeled "B"). This composite, labeled image, as well as all individual images, without text/labels, are available at full-resolution with the following links:

composite JPG 569 KB | TIFF 24.9 MB

text-free background image JPG 705 KB | TIFF 22.7 MB

inset image JPG 311 KB | TIFF 8.3 MB

A newly discovered gravitational lens in a relatively nearby galaxy cluster is leading astronomers to conclude that the cluster hosts the most massive galaxy known in our local universe. The study also reaffirms that galactic cannibalism is one reason that this galaxy is so obese, tipping the scales at up to 30 trillion times the mass of our Sun.

The supermassive galaxy is located at the core of the galaxy cluster Abell 3827, which lies some 1.4 billion light-years away. This galaxy and hundreds of its smaller cluster companions are visible in a dramatic new image released by the Gemini Observatory. The image is part of an upcoming paper in The Astrophysical Journal Letters that reports on the study of the massive galaxy using the gravitational lens formed by its core (also visible in the image) to provide new measurements of the galaxy’s extreme mass.

Although this bright galaxy (known as ESO 146-IG 005) dominates the core of Abell 3827, “the magnitude of its appetite has not been fully appreciated,” said Gemini astronomer Rodrigo Carrasco, who is a member of the team that used the 8-meter Gemini South telescope in Chile to study this galaxy and its cluster. The Gemini observations revealed, for the first time, the effects of gravitational lensing near the core of ESO 146-IG 005.

A gravitational lens is created when a massive object (in this case the core of the super-massive galaxy) distorts its local space. Light from a background galaxy (in this case two galaxies) that is passing by appears deflected from its original path. From our perspective, we see the background galaxies’ light reshaped as a ring-like structure and arcs around the lensing object. These arcs from both galaxies are clearly visible in the new Gemini images.

“The gravitational lens we discovered allowed us to estimate for the first time the mass of this monster galaxy very accurately. The inferred mass is a factor of 10 bigger than previous estimates derived from X-ray,” said Carrasco. “Assuming our model is correct, this is by far the most massive galaxy known in our local universe.”

The exceptional galaxy was not simply born massive; it has grown by consuming its companions in perhaps the most extreme example of ongoing “galaxy cannibalism” known. “This unabashed cannibal is something of a messy eater, with the partially digested remains of at least four smaller galaxies still visible near its center,” said team member Michael West, astronomer at the European Southern Observatory who first observed this system more than a decade ago and says that he was immediately struck by the complex morphology of this giant cannibal galaxy (see West’s Astronomy Picture of the Day August 31, 1998). “Eventually this galaxy will grow even bigger judging by the number of nearby galaxies already within its gravitational grasp.”

These observations yield important insight into the process of galaxy growth, especially of elliptical galaxies; these galaxies do not appear to acquire their full mass quickly in the early universe, but instead show significant growth through mergers and cannibalism at later times, after many of their stars have formed. The resulting galaxies, such as this one can be extremely massive.

The Gemini observations were made using the Gemini Multi-Object Spectrograph (GMOS) on the Gemini South telescope in Chile. Follow-up spectroscopic observations used the same instrument to confirm the distances (redshifts) of the two background galaxies whose light is diverted by the massive galaxy. These two galaxies were found to lie at about 2.7 and 5.1 billion light-years away (z= 0.2 and 0.4 respectively).

In addition to R. Carrasco and M. West, the team includes Gemini astronomers P. Gomez, H. Lee, R. Diaz, J. Turner, B. Miller, M. Bergmann, and T. Verdugo (University of Valparaiso, Chile). Complete results appear in Carrasco et al. “Strong Gravitational Lensing by the Super-Massive cD Galaxy in Abell 3827”,The Astrophysical Journal Letters 715, L1, 2010.

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located at Mauna Kea, Hawai'i (Gemini North) and the other telescope at Cerro Pachón in central Chile (Gemini South), and hence provide full coverage of both hemispheres of the sky. Both telescopes incorporate new technologies that allow large, relatively thin mirrors under active control to collect and focus both optical and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in each partner country with state-of-the-art astronomical facilities that allocate observing time in proportion to each country's contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the UK Science and Technology Facilities Council (STFC), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq). The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Media Contacts:

  • Peter Michaud
    Gemini Observatory, Hilo, HI
    Email: pmichaud"at"gemini.edu
    Cell: (808) 936-6643
    Desk: (808) 974-2510
  • Antonieta Garcia
    Gemini Observatory, La Serena, Chile
    Email: agarcia"at"gemini.edu
    Phone (Desk): 56-51-205628

Science Contact: