Showing posts with label Abell S1063. Show all posts
Showing posts with label Abell S1063. Show all posts

Tuesday, May 27, 2025

A glimpse of the distant past

A field of galaxies in space, dominated by an enormous, bright-white elliptical galaxy that is the core of a massive galaxy cluster. Many other elliptical galaxies can be seen around it. Also around it are short, curved, glowing red lines, which are images of distant background galaxies magnified and warped by gravitational lensing. A couple of foreground stars appear large and bright with long spikes around them. Credit: ESA/Webb, NASA & CSA, H. Atek, M. Zamani (ESA/Webb). Acknowledgement: R. Endsley

The eye is first drawn, in this new NASA/ESA/CSA James Webb Space Telescope Picture of the Month, to the central mega-monster that is galaxy cluster Abell S1063. This behemoth collection of galaxies, lying 4.5 billion light-years from Earth in the constellation Grus (the Crane), dominates the scene. Looking more closely, this dense collection of heavy galaxies is surrounded by glowing streaks of light, and these warped arcs are the true object of scientists’ interest: faint galaxies from the Universe’s distant past.

Abell S1063 was previously observed by the NASA/ESA Hubble Space Telescope’s Frontier Fields programme. It is a strong gravitational lens: the galaxy cluster is so massive that the light of distant galaxies aligned behind it is bent around it, creating the warped arcs that we see here. Like a glass lens, it focuses the light from these faraway galaxies. The resulting images, albeit distorted, are both bright and magnified — enough to be observed and studied. This was the aim of Hubble’s observations, using the galaxy cluster as a magnifying glass to investigate the early Universe.

The new imagery from Webb’s Near-Infrared Camera (NIRCam) takes this quest even further back in time. This image showcases an incredible forest of lensing arcs around Abell S1063, which reveal distorted background galaxies at a range of cosmic distances, along with a multitude of faint galaxies and previously unseen features.

This image is what’s known as a deep field — a long exposure of a single area of the sky, collecting as much light as possible to draw out the most faint and distant galaxies that don’t appear in ordinary images. With 9 separate snapshots of different near-infrared wavelengths of light, totalling around 120 hours of observing time and aided by the magnifying effect of gravitational lensing, this is Webb’s deepest gaze on a single target to date. Focusing such observing power on a massive gravitational lens, like Abell S1063, therefore has the potential to reveal some of the very first galaxies formed in the early Universe.

The observing programme that produced this data, GLIMPSE (#3293, PIs: H. Atek & J. Chisholm), aims to probe the period known as Cosmic Dawn, when the Universe was only a few million years old. Studying the galaxies revealed by gravitational lensing has the potential to develop our understanding of the emergence of the first galaxies. Analysis of this NIRCam data by the GLIMPSE team has already produced candidates for galaxies that existed as early as 200 million years after the Big Bang, and hints of the elusive first population of stars in the Universe.

Links


Friday, December 21, 2018

Faint Glow Within Galaxy Clusters Illuminates Dark Matter

Galaxy Clusters Abell S1063 and MACS J0416.1-2403
Credits: NASA, ESA, and M. Montes (University of New South Wales)
Acknowledgment: J. Lotz (STScI) and the HFF team

Two massive galaxy clusters — Abell S1063 (left) and MACS J0416.1-2403 (right) — display a soft blue haze, called intracluster light, embedded among innumerable galaxies. The intracluster light is produced by orphan stars that no longer belong to any single galaxy, having been thrown loose during a violent galaxy interaction, and now drift freely throughout the cluster of galaxies. Astronomers have found that intracluster light closely matches with a map of mass distribution in the cluster's overall gravitational field. This makes the blue "ghost light" a good indicator of how invisible dark matter is distributed in the cluster. Dark matter is a key missing link in our understanding of the structure and evolution of the universe. Abell S1063 and MACS J0416.1-2403 were the strongest examples of intracluster light providing a much better match to the cluster's mass map than X-ray light, which has been used in the past to trace dark matter. Release Images

A new look at Hubble images of galaxies could be a step toward illuminating the elusive nature of dark matter, the unobservable material that makes up the majority of the universe, according to a study published online today in the Monthly Notices of the Royal Astronomical Society.

Utilizing Hubble's past observations of six massive galaxy clusters in the Frontier Fields program, astronomers demonstrated that intracluster light — the diffuse glow between galaxies in a cluster — traces the path of dark matter, illuminating its distribution more accurately than existing methods that observe X-ray light.

Intracluster light is the byproduct of interactions between galaxies that disrupt their structures; in the chaos, individual stars are thrown free of their gravitational moorings in their home galaxy to realign themselves with the gravity map of the overall cluster. This is also where the vast majority of dark matter resides. X-ray light indicates where groups of galaxies are colliding, but not the underlying structure of the cluster. This makes it a less precise tracer of dark matter.

"The reason that intracluster light is such an excellent tracer of dark matter in a galaxy cluster is that both the dark matter and these stars forming the intracluster light are free-floating on the gravitational potential of the cluster itself—so they are following exactly the same gravity," said Mireia Montes of the University of New South Wales in Sydney, Australia, who is co-author of the study. "We have found a new way to see the location where the dark matter should be, because you are tracing exactly the same gravitational potential. We can illuminate, with a very faint glow, the position of dark matter."

Montes also highlights that not only is the method accurate, but it is more efficient in that it utilizes only deep imaging, rather than the more complex, time-intensive techniques of spectroscopy. This means more clusters and objects in space can be studied in less time — meaning more potential evidence of what dark matter consists of and how it behaves.

"This method puts us in the position to characterize, in a statistical way, the ultimate nature of dark matter," Montes said.

"The idea for the study was sparked while looking at the pristine Hubble Frontier Field images," said study co-author Ignacio Trujillo of the Canary Islands Institute of Astronomy in Tenerife, Spain, who along with Montes had studied intracluster light for years. "The Hubble Frontier Fields showed intracluster light in unprecedented clarity. The images were inspiring," Trujillo said. "Still, I did not expect the results to be so precise. The implications for future space-based research are very exciting."

"The astronomers used the Modified Hausdorff Distance (MHD), a metric used in shape matching, to measure the similarities between the contours of the intracluster light and the contours of the different mass maps of the clusters, which are provided as part of the data from the Hubble Frontier Fields project, housed in the Mikulski Archive for Space Telescopes (MAST). The MHD is a measure of how far two subsets are from each other. The smaller the value of MHD, the more similar the two point sets are. This analysis showed that the intracluster light distribution seen in the Hubble Frontier Fields images matched the mass distribution of the six galaxy clusters better than did X-ray emission, as derived from archived observations from Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer (ACIS).

Beyond this initial study, Montes and Trujillo see multiple opportunities to expand their research. To start, they would like to increase the radius of observation in the original six clusters, to see if the degree of tracing accuracy holds up. Another important test of their method will be observation and analysis of additional galaxy clusters by more research teams, to add to the data set and confirm their findings.

The astronomers also look forward to the application of the same techniques with future powerful space-based telescopes like the James Webb Space Telescope and WFIRST, which will have even more sensitive instruments for resolving faint intracluster light in the distant universe.

Trujillo would like to test scaling down the method from massive galaxy clusters to single galaxies. "It would be fantastic to do this at galactic scales, for example exploring the stellar halos. In principal the same idea should work; the stars that surround the galaxy as a result of the merging activity should also be following the gravitational potential of the galaxy, illuminating the location and distribution of dark matter."

The Hubble Frontier Fields program was a deep imaging initiative designed to utilize the natural magnifying glass of galaxy clusters' gravity to see the extremely distant galaxies beyond them, and thereby gain insight into the early (distant) universe and the evolution of galaxies since that time. In that study the diffuse intracluster light was an annoyance, partially obscuring the distant galaxies beyond. However, that faint glow could end up shedding significant light on one of astronomy's great mysteries: the nature of dark matter.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.



Related Links

This site is not responsible for content found on external links



Contacts

Leah Ramsay / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
667-218-6439 / 410-338-4514

lramsay@stsci.edu / villard@stsci.edu

Mireia Montes
University of New South Wales, Sydney, Australia

mireia.montes.quiles@gmail.com




Saturday, October 28, 2017

Hubble discovers “wobbling galaxies”

Abell S1063, the final frontier

Hubble image of galaxy cluster MACS J1206 

Lensing cluster Abell 383

Brightest galaxy in Abell 2261

Galaxy cluster MACS J1720+35

 
Wide-field image of Abell S1063 (ground-based image)

Wide field view of MACS 1206 (ground-based image)



Videos

Pan across the galaxy cluster Abell S1063
Pan across the galaxy cluster Abell S1063

Pan across Abell 383
Pan across Abell 383

Pan across MACS 1206
Pan across MACS 1206



Observations may hint at nature of dark matter


Using the NASA/ESA Hubble Space Telescope, astronomers have discovered that the brightest galaxies within galaxy clusters “wobble” relative to the cluster’s centre of mass. This unexpected result is inconsistent with predictions made by the current standard model of dark matter. With further analysis it may provide insights into the nature of dark matter, perhaps even indicating that new physics is at work.

Dark matter constitutes just over 25 percent of all matter in the Universe but cannot be directly observed, making it one of the biggest mysteries in modern astronomy. Invisible halos of elusive dark matter enclose galaxies and galaxy clusters alike. The latter are massive groupings of up to a thousand galaxies immersed in hot intergalactic gas. Such clusters have very dense cores, each containing a massive galaxy called the “brightest cluster galaxy” (BCG).

The standard model of dark matter (cold dark matter model) predicts that once a galaxy cluster has returned to a “relaxed” state after experiencing the turbulence of a merging event, the BCG does not move from the cluster’s centre. It is held in place by the enormous gravitational influence of dark matter.
But now, a team of Swiss, French, and British astronomers have analysed ten galaxy clusters observed with the NASA/ESA Hubble Space Telescope, and found that their BCGs are not fixed at the centre as expected [1].

The Hubble data indicate that they are “wobbling” around the centre of mass of each cluster long after the galaxy cluster has returned to a relaxed state following a merger. In other words, the centre of the visible parts of each galaxy cluster and the centre of the total mass of the cluster — including its dark matter halo — are offset, by as much as 40 000 light-years.

“We found that the BCGs wobble around centre of the halos,” explains David Harvey, astronomer at EPFL, Switzerland, and lead author of the paper. “This indicates that, rather than a dense region in the centre of the galaxy cluster, as predicted by the cold dark matter model, there is a much shallower central density. This is a striking signal of exotic forms of dark matter right at the heart of galaxy clusters.”

The wobbling of the BCGs could only be analysed as the galaxy clusters studied also act as gravitational lenses. They are so massive that they warp spacetime enough to distort light from more distant objects behind them. This effect, called strong gravitational lensing, can be used to make a map of the dark matter associated with the cluster, enabling astronomers to work out the exact position of the centre of mass and then measure the offset of the BCG from this centre.

If this “wobbling” is not an unknown astrophysical phenomenon and in fact the result of the behaviour of dark matter, then it is inconsistent with the standard model of dark matter and can only be explained if dark matter particles can interact with each other — a strong contradiction to the current understanding of dark matter. This may indicate that new fundamental physics is required to solve the mystery of dark matter.

Co-author Frederic Courbin, also at EPFL, concludes: “We’re looking forward to larger surveys — such as the Euclid survey — that will extend our dataset. Then we can determine whether the wobbling of BGCs is the result of a novel astrophysical phenomenon or new fundamental physics. Both of which would be exciting!”



Notes

[1] The study was performed using archive data from Hubble. The observations were originally made for the CLASH and LoCuSS surveys.



More Information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

This research was presented in a paper entitled “A detection of wobbling Brightest Cluster Galaxies within massive galaxy clusters” by Harvey et al., which appeared in the Monthly Notices of the Royal Astronomical Society.

The international team of astronomers in this study consists of David Harvey (Laboratoire d’Astrophysique EPFL, Switzerland), F. Courbin (Laboratoire d’Astrophysique EPFL, Switzerland), J.P. Kneib (Laboratoire d’Astrophysique EPFL, Switzerland; CNRS, France), and Ian G. McCarthy (Liverpool John Moores University, UK).

Image credit: NASA, ESA, J. Lotz (STScI), M. Postman (STScI), J. Richard (CRAL) and J.-P. Kneib (LAM), T. Lauer (NOAO), S. Perlmutter (UC Berkeley, LBNL), A. Koekemoer (STScI), A. Riess (STScI/JHU), J. Nordin (LBNL, UC Berkeley), D. Rubin (Florida State), C. McCully (Rutgers University) and the CLASH Team



Links



Contacts

David Harvey
Laboratoire d’Astrophysique EPFL
Versoix, Switzerland
Tel: +41 22 37 92277

Frederic Courbin
Laboratoire d’Astrophysique EPFL
Versoix, Switzerland
Tel: +41 22 37 92418

Jean-Paul Kneib
Laboratoire d’Astrophysique - EPFL
Versoix, Switzerland
Tel: +41 79 733 21 11

Mathias Jäger
ESA/Hubble Public Information Officer
Garching bei München, Germany
Cell: +49 176 62397500


Friday, July 22, 2016

Space... the final frontier

Abell S1063, the final frontier

PR Image heic1615b
Parallel field of Abell S1063 

PR Image heic1615c
Wide-field image of Abell S1063 (ground-based image)



Videos

Zoom into Abell S1063
Zoom into Abell S1063

Pan across the galaxy cluster Abell S1063

Pan across the galaxy cluster Abell S1063

Abell S1063 in fulldome
Abell S1063 in fulldome



Fifty years ago Captain Kirk and the crew of the starship Enterprise began their journey into space — the final frontier. Now, as the newest Star Trek film hits cinemas, the NASA/ESA Hubble space telescope is also exploring new frontiers, observing distant galaxies in the galaxy cluster Abell S1063 as part of the Frontier Fields programme.

Space... the final frontier. These are the stories of the Hubble Space Telescope. Its continuing mission, to explore strange new worlds and to boldly look where no telescope has looked before.

The newest target of Hubble’s mission is the distant galaxy cluster Abell S1063, potentially home to billions of strange new worlds.

This view of the cluster, which can be seen in the centre of the image, shows it as it was four billion years ago. But Abell S1063 allows us to explore a time even earlier than this, where no telescope has really looked before. The huge mass of the cluster distorts and magnifies the light from galaxies that lie behind it due to an effect called gravitational lensing. This allows Hubble to see galaxies that would otherwise be too faint to observe and makes it possible to search for, and study, the very first generation of galaxies in the Universe. “Fascinating”, as a famous Vulcan might say.

The first results from the data on Abell S1063 promise some remarkable new discoveries. Already, a galaxy has been found that is observed as it was just a billion years after the Big Bang.

Astronomers have also identified sixteen background galaxies whose light has been distorted by the cluster, causing multiple images of them to appear on the sky. This will help astronomers to improve their models of the distribution of both ordinary and dark matter in the galaxy cluster, as it is the gravity from these that causes the distorting effects. These models are key to understanding the mysterious nature of dark matter.

Abell S1063 is not alone in its ability to bend light from background galaxies, nor is it the only one of these huge cosmic lenses to be studied using Hubble. Three other clusters have already been observed as part of the Frontier Fields programme, and two more will be observed over the next few years, giving astronomers a remarkable picture of how they work and what lies both within and beyond them [1].

Data gathered from the previous galaxy clusters were studied by teams all over the world, enabling them to make important discoveries, among them galaxies that existed only hundreds of million years after the Big Bang (heic1523) and the first predicted appearance of a gravitationally lensed supernova (heic1525).

Such an extensive international collaboration would have made Gene Roddenberry, the father of Star Trek, proud. In the fictional world Roddenberry created, a diverse crew work together to peacefully explore the Universe. This dream is partially achieved by the Hubble programme in which the European Space Agency (ESA), supported by 22 member states, and NASA collaborate to operate one of the most sophisticated scientific instruments in the world. Not to mention the scores of other international science teams that cross state, country and continental borders to achieve their scientific aims.



Notes

[1] The Hubble Frontier Fields is a three-year, 840-orbit programme which will yield the deepest views of the Universe to date, combining the power of Hubble with the gravitational amplification of light around six different galaxy clusters to explore more distant regions of space than could otherwise be seen.



More Information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.
Image credit: NASA, ESA, and J. Lotz (STScI)


 
Links



Contacts

Mathias Jäger
ESA/Hubble Public Information Officer
Garching bei München, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org