SNR 1181 / Pa 30
Credit: X-ray: (Chandra) NASA/CXC/U. Manitoba/C.
Treyturik, (XMM-Newton) ESA/C. Treyturik; Optical: (Pan-STARRS)
NOIRLab/MDM/Dartmouth/R. Fesen; Infrared: (WISE) NASA/JPL/Caltech/;
Image Processing: Univ. of Manitoba/Gilles Ferrand and Jayanne English
In the year 1181 a rare supernova
explosion appeared in the night sky, staying visible for 185 consecutive days. Historical records show that the supernova looked like
a temporary ‘star’ in the constellation Cassiopeia shining as bright as Saturn.
Ever since, scientists have tried to find the supernova’s remnant. At first it was thought that this could be the nebula around the pulsar — the dense core of a collapse star — named 3C 58. However closer investigations revealed that the pulsar is older than supernova 1181.
In the last decade, another contender was discovered; Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a spectacular new view of the supernova remnant. This allows us to marvel at the same object that appeared in our ancestors’ night sky more than 800 years ago.
X-ray observations by ESA’s XMM-Newton (blue) show the full extent of the nebula and NASA’s Chandra X-ray Observatory (cyan) pinpoints its central source. The nebula is barely visible in optical light but shines bright in infrared light, collected by NASA’s Wide-field Infrared Space Explorer (red and pink). Interestingly, the radial structure in the image consists of heated sulfur that glows in visible light, observed with the ground-based Hiltner 2.4 m telescope at the MDM Observatory (green) in Arizona, USA, as do the stars in the background by Pan-STARRS (white) in Hawaii, USA.
Studies of the composition of the different parts of the remnant have led scientists to believe that it was formed in a thermonuclear explosion, and more precisely a special kind of supernova called a sub-luminous Type Iax event. During this event two white dwarf stars merged, and typically no remnant is expected for this kind of explosion. But incomplete explosions can leave a kind of ‘zombie’ star, such as the massive white dwarf star in this system. This very hot star, one of the hottest stars in the Milky Way (about 200 000 degrees Celsius), has a fast stellar wind with speeds up to 16,000 km/s. The combination of the star and the nebula makes it a unique opportunity for studying such rare explosions.
The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Ever since, scientists have tried to find the supernova’s remnant. At first it was thought that this could be the nebula around the pulsar — the dense core of a collapse star — named 3C 58. However closer investigations revealed that the pulsar is older than supernova 1181.
In the last decade, another contender was discovered; Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a spectacular new view of the supernova remnant. This allows us to marvel at the same object that appeared in our ancestors’ night sky more than 800 years ago.
X-ray observations by ESA’s XMM-Newton (blue) show the full extent of the nebula and NASA’s Chandra X-ray Observatory (cyan) pinpoints its central source. The nebula is barely visible in optical light but shines bright in infrared light, collected by NASA’s Wide-field Infrared Space Explorer (red and pink). Interestingly, the radial structure in the image consists of heated sulfur that glows in visible light, observed with the ground-based Hiltner 2.4 m telescope at the MDM Observatory (green) in Arizona, USA, as do the stars in the background by Pan-STARRS (white) in Hawaii, USA.
Studies of the composition of the different parts of the remnant have led scientists to believe that it was formed in a thermonuclear explosion, and more precisely a special kind of supernova called a sub-luminous Type Iax event. During this event two white dwarf stars merged, and typically no remnant is expected for this kind of explosion. But incomplete explosions can leave a kind of ‘zombie’ star, such as the massive white dwarf star in this system. This very hot star, one of the hottest stars in the Milky Way (about 200 000 degrees Celsius), has a fast stellar wind with speeds up to 16,000 km/s. The combination of the star and the nebula makes it a unique opportunity for studying such rare explosions.
The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Source: NASA's Chandra X-Ray Observatory
Visual Description:
This is a composite image of SNR 1181, the remains of an explosion hundreds of years ago caused by the merger of two stars.
A bright, multi-colored, spherical nebula sits in the middle of the canvas surrounded by a field of stars that appear as white dots. In the center of the nebula is a small point of aqua-colored light. This is the hot white dwarf star that was left behind after the likely merger of two smaller white dwarfs caused an explosion. From this single point of aqua light, several spectacular rays expand outward, resembling a single firework bursting in celebration in the night sky.
A bright, multi-colored, spherical nebula sits in the middle of the canvas surrounded by a field of stars that appear as white dots. In the center of the nebula is a small point of aqua-colored light. This is the hot white dwarf star that was left behind after the likely merger of two smaller white dwarfs caused an explosion. From this single point of aqua light, several spectacular rays expand outward, resembling a single firework bursting in celebration in the night sky.
Fast Facts for SNR 1181 / Pa 30:
Scale: Image is about 5.6 arcmin (16 light-years) across.
Category: Supernovas & Supernova Remnants
Coordinates (J2000): RA 00h 53m 11.2s | Dec +67° 30´ 02.4"
Constellation: Cassiopeia
Observation Dates: 6 observations from May 12, 2021 to Dec 15, 2021
Observation Time: 39 hours 55 minutes (1 day 15 hours 55 minutes)
Obs. ID: 23419, 24342-24345, 25045
Instrument: ACIS
Color Code: X-ray: blue (XMM) and cyan (Chandra); Optical: green (MDM), white (Pan-STARRS); Infrared: red and pink
Distance Estimate: About 10,100 light-years