Releases from NASA, HubbleSite, Spitzer, ESO, ESA, NASA’s Chandra X-ray Observatory, Royal Astronomical Society, Harvard-Smithsonian Center For Astrophysics, Max Planck Institute, Gemini Observatory, Subaru Telescope, W. M. Keck Observatory, JPL-Caltech, ICRAR, Webb Space Telescope, etc
Thursday, September 30, 2021
The spectrum of gravitational waves
Wednesday, September 29, 2021
Classifying Seyfert galaxies with deep learning
This work shows a practical method in identifying sources and can be applied in the future. These new Seyfert 1.9 sources have obscure characteristic on its spectra and are usually missed in classification process by visual inspection. Scientist finds this machine-selected Seyfert 1.9 sample is fainter than the humanselected one. This work provides astronomers more Seyfert 1.9 sources to low luminous end and will help astronomers understand the origin of the two components on its emission lines with multiple wavelength follow-up observation.
Yen Chen Chen
1 ICRA and Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
2 ICRANet, Pescara, Italy
Email: yen-chen.chen@icranet.org
Tuesday, September 28, 2021
Hubble Shows Winds in Jupiter’s Great Red Spot Are Speeding Up
By analyzing images taken by NASA's Hubble Space Telescope from 2009 to 2020, researchers found that the average wind speed just within the boundaries of the Great Red Spot, set off by the outer green circle, have increased by up to 8 percent from 2009 to 2020 and exceed 400 miles per hour. In contrast, the winds near the storm's innermost region, set off by a smaller green ring, are moving significantly more slowly. Both move counterclockwise. Credits: Science: NASA, ESA, Michael H. Wong (UC Berkeley)
Like the speed of an advancing race car driver, the winds in the outermost "lane" of Jupiter's Great Red Spot are accelerating – a discovery only made possible by NASA's Hubble Space Telescope, which has monitored the planet for more than a decade.
Researchers analyzing Hubble's regular "storm reports" found that the average wind speed just within the boundaries of the storm, known as a high-speed ring, has increased by up to 8 percent from 2009 to 2020. In contrast, the winds near the red spot’s innermost region are moving significantly more slowly, like someone cruising lazily on a sunny Sunday afternoon.
The massive storm's crimson-colored clouds spin counterclockwise at speeds that exceed 400 miles per hour – and the vortex is bigger than Earth itself. The red spot is legendary in part because humans have observed it for more than 150 years.
We use Earth-orbiting satellites and airplanes to track major storms on Earth closely in real time. "Since we don't have a storm chaser plane at Jupiter, we can't continuously measure the winds on site," explained Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, who contributed to the research. "Hubble is the only telescope that has the kind of temporal coverage and spatial resolution that can capture Jupiter’s winds in this detail."
The change in wind speeds they have measured with Hubble amount to less than 1.6 miles per hour per Earth year. "We're talking about such a small change that if you didn’t have eleven years of Hubble data, we wouldn't know it happened," said Simon. "With Hubble we have the precision we need to spot a trend." Hubble's ongoing monitoring allows researchers to revisit and analyze its data very precisely as they keep adding to it. The smallest features Hubble can reveal in the storm are a mere 105 miles across, about twice the length of the state of Rhode Island.
"We find that the average wind speed in the Great Red Spot has been slightly increasing over the past decade," Wong added. "We have one example where our analysis of the two-dimensional wind map found abrupt changes in 2017 when there was a major convective storm nearby."
To better analyze Hubble's bounty of data, Wong took a new approach to his data analysis. He used software to track tens to hundreds of thousands of wind vectors (directions and speeds) each time Jupiter was observed by Hubble. "It gave me a much more consistent set of velocity measurements," Wong explained. "I also ran a battery of statistical tests to confirm if it was justified to call this an increase in wind speed. It is."
What does the increase in speed mean? "That's hard to diagnose, since Hubble can't see the bottom of the storm very well. Anything below the cloud tops is invisible in the data," explained Wong. "But it's an interesting piece of data that can help us understand what's fueling the Great Red Spot and how it's maintaining energy." There's still a lot of work to do to fully understand it.
Astronomers have pursued ongoing studies of the "king" of solar system storms since the 1870s. The Great Red Spot is an upwelling of material from Jupiter's interior. If seen from the side, the storm would have a tiered wedding cake structure with high clouds at the center cascading down to its outer layers. Astronomers have noted that it is shrinking in size and becoming more circular than oval in observations spanning more than a century. The current diameter is 10,000 miles across, meaning that Earth could still fit inside it.
In addition to observing this legendary, long-lived storm, researchers have observed storms on other planets, including Neptune, where they tend to travel across the planet’s surface and disappear over only a few years. Research like this helps scientists not only learn about the individual planets, but also draw conclusions about the underlying physics that drive and maintain planets' storms.
The majority of the data to support this research came from Hubble's Outer Planets Atmospheres Legacy (OPAL) program, which provides annual Hubble global views of the outer planets that allow astronomers to look for changes in the planets' storms, winds, and clouds.
Credits
Media Contact:
Claire
Blome
Space Telescope Science Institute, Baltimore,
Maryland
Ray
Villard
Space Telescope Science Institute, Baltimore,
Maryland
Science Contact:
Michael
H.
Wong
University of California, Berkeley, Berkeley,
California
Amy
Simon
NASA Goddard Space Flight Center, Greenbelt,
Maryland
Contact Us: Direct inquiries to the News Team.
Monday, September 27, 2021
Cloud-spotting on a distant exoplanet
Credits: David Ehrenreich/Université de Genève, Romain Allart/Université de Montréal
An international team of astronomers has not only detected clouds on the distant exoplanet WASP-127b, but also measured their altitude with unprecedented precision. A presentation by Dr Romain Allart at the Europlanet Science Congress (EPSC) 2021 shows how, by combining data from a space- and a ground-based telescope, the team has been able to reveal the upper structure of the planet’s atmosphere. This paves the way for similar studies of many other faraway worlds.
WASP-127b, located more than 525 light-years away, is a “hot Saturn” – a giant planet similar in mass to Saturn that orbits very close to its sun. The team observed the planet passing in front of its host star to detect patterns that become embedded in the starlight as it is filtered through the planet’s atmosphere and altered by the chemical constituents. By combining infrared observations from the ESA/NASA Hubble Space Telescope (HST) and visible light measurements from the ESPRESSO spectrograph at the European Southern Observatory’s Very Large Telescope in Chile, the researchers were able to probe different regions of the atmosphere. The results brought a few surprises.
‘First, as found before in this type of planet, we detected the presence of sodium, but at a much lower altitude than we were expecting. Second, there were strong water vapour signals in the infrared but none at all at visible wavelengths. This implies that water-vapour at lower levels is being screened by clouds that are opaque at visible wavelengths but transparent in the infrared,’ said Allart, of the iREx/Université de Montréal and Université de Genève, who led the study.
The combined data from the two instruments enabled the researchers to narrow down the altitude of the clouds to an atmospheric layer with a pressure ranging between 0.3 and 0.5 millibars.
‘We don’t yet know the composition of the clouds, except that they are not composed of water droplets like on Earth,’ said Allart. ‘We are also puzzled about why the sodium is found in an unexpected place on this planet. Future studies will help us understand not only more about the atmospheric structure, but about WASP-127b, which is proving to be a fascinating place.’
With a full orbit around its star occurring in about four days, WASP-127b receives 600 times more irradiation than the Earth and experiences temperatures up to 1100 degrees Celsius. This puffs the planet up to a radius 1.3 times larger than Jupiter, with just a fifth of the mass, making it one of the least dense or “fluffiest” exoplanets ever discovered.
The extended nature of fluffy exoplanets makes them easier to observe, and thus WASP-127b is an ideal candidate for researchers working on atmospheric characterisation.
The team’s observations with the ESPRESSO instrument also suggests that, unlike planets in our Solar System, WASP-127b orbits not only in the opposite direction than its star but also in a different plane than the equatorial one.
‘Such alignment is unexpected for a hot Saturn in an old stellar system and might be caused by an unknown companion,’ said Allart. ‘All these unique characteristics make WASP-127b a planet that will be very intensely studied in the future’
The Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) is the world’s most precise spectrograph for radial velocity measurements, a method enabling to detect exoplanets.
The authors would like to acknowledge Dr Jessica Spake and her team for releasing the refined HST data used in this work.
EPSC2021-438: WASP-127b: a misaligned planet with a partly cloudy atmosphere and tenuous sodium signature seen by ESPRESSO. Romain Allart and the ESPRESSO consortium. DOI: https://doi.org/10.5194/epsc2021-438
Paper
WASP-127b: a misaligned planet with a partly cloudy atmosphere and tenuous sodium signature seen by ESPRESSO. Astronomy & Astrophysics, Volume 644, id.A155, 18 pp. December 2020.
DOI: http://doi.org/10.1051/0004-6361/202039234
arXiv: https://arxiv.org/abs/2010.15143
Science Contact
Romain Allart
Trottier postdoctoral fellow
Université de Montréal
Institut de Recherche sur les Exoplanètes (iREx)
Canada
romain.allart@umontreal.ca
Media contacts
EPSC Press Office
epsc-press@europlanet-society.org
Notes for Editors
About the Europlanet Science Congress (EPSC)
The Europlanet Science Congress (https://www.epsc2021.eu/) formerly the European Planetary Science Congress, is the annual meeting place of the Europlanet Society. With a track record of 15 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.
Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2021.
EPSC2021 is sponsored by Space: Science & Technology, a Science Partner Journal.
About Europlanet
Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science.
The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community.
The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the European Planetary Science Congress (EPSC).
Source: Europlanet-Society
Saturday, September 25, 2021
ALMA Unveil Galaxies at Cosmic Dawn That Were Hiding Behind the Dust
While investigating the data of young, distant galaxies observed with the Atacama Large Millimeter/submillimeter Array (ALMA), Yoshinobu Fudamoto from Waseda University and the National Astronomical Observatory of Japan noticed unexpected emissions coming from seemingly empty regions in space that, a global research team confirmed, came actually from two hitherto undiscovered galaxies heavily obscured by cosmic dust. This discovery suggests that numerous such galaxies might still be hidden in the early Universe, many more than researchers were expecting.
When astronomers peer deep into the night sky, they observe what the Universe looked like a long time ago. Because the speed of light is finite, studying the most distant observable galaxies allows us to glimpse billions of years into the past when the Universe was very young and galaxies had just started to form stars. Studying this “early Universe” is one of the last frontiers in astronomy and is essential for constructing accurate and consistent astrophysics models. A key goal of scientists is to identify all the galaxies in the first billion years of cosmic history and to measure the rate at which galaxies were growing by forming new stars.
Various efforts have been made over the past decades to observe distant galaxies, which are characterized by electromagnetic emissions that become strongly redshifted (shifted towards longer wavelengths) before reaching the Earth. So far, our knowledge of early galaxies has mostly relied on observations with the Hubble Space Telescope (HST) and large ground-based telescopes, which probe their ultra-violet (UV) emission. However, recently, astronomers have started to use the unique capability of the Atacama Large Millimeter/submillimeter Array (ALMA) telescope to study distant galaxies at submillimeter wavelengths. This could be particularly useful for studying dusty galaxies missed in the HST surveys due to the dust absorbing UV emission. Since ALMA observes in submillimeter wavelengths, it can detect these galaxies by observing the dust emissions instead.
In an ongoing large program called REBELS (Reionization-Era Bright Emission Line Survey), astronomers are using ALMA to observe the emissions of 40 target galaxies at cosmic dawn. Using this dataset, they have recently discovered that the regions around some of these galaxies contain more than meets the eye.
While analyzing the observed data for two REBELS galaxies, Fudamoto noticed strong emission by dust and singly ionized carbon in positions substantially offset from the initial targets. To his surprise, even highly sensitive equipment like the HST couldn’t detect any UV emission from these locations. To understand these mysterious signals, Fudamoto and his colleagues investigated matters further.
In their latest paper published in Nature, astronomers presented a thorough analysis, revealing that these unexpected emissions came from two previously unknown galaxies located near the two original REBELS targets. These galaxies are not visible in the UV or visible wavelengths as they are almost completely obscured by cosmic dust. One of them represents the most distant dust-obscured galaxy discovered so far.
What is most surprising about this serendipitous finding is that the newly discovered galaxies, which formed more than 13 billion years ago, are not strange at all when compared with typical galaxies at the same epoch. “These new galaxies were missed not because they are extremely rare, but only because they are completely dust-obscured,” explains Fudamoto. However, it is uncommon to find such “dusty” galaxies in the early period of the Universe (less than 1 billion years after the Big Bang), suggesting that the current census of early galaxy formation is most likely incomplete, and would call for deeper, blind surveys. “It is possible that we have been missing up to one out of every five galaxies in the early Universe so far,” Fudamoto adds.
The researchers expect that the unprecedented capability of the James Webb Space Telescope (JWST) and its strong synergy with ALMA would lead to significant advances in this field in the coming years. “Completing our census of early galaxies with the currently missing dust-obscured galaxies, like the ones we found this time, will be one of the main objectives of JWST and ALMA surveys in the near future,” states Pascal Oesch from University of Geneva.
Overall, this study constitutes an important step in uncovering when the very first galaxies started to form in the early Universe, which in turn shall help us understand where we are standing today.
Additional Information
These research results are published as Yoshinobu Fudamoto et al. “Normal, Dust-Obscured Galaxies in the Epoch of Reionization” in the journal Nature on September 22, 2021.
The original image release was published by the National Astronomical Observatory of Japan (NAOJ) an ALMA partner on behalf of East Asia.
The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).
ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
Contacts:
-
Nicolás Lira
Education and Public Outreach Coordinator
Joint ALMA Observatory, Santiago - Chile
Phone: +56 2 2467 6519
Cell phone: +56 9 9445 7726
Email: nicolas.lira@alma.cl
-
Masaaki Hiramatsu
Education and Public Outreach Officer, NAOJ Chile
Observatory, Tokyo - Japan
Phone: +81 422 34 3630
Email: hiramatsu.masaaki@nao.ac.jp
-
Amy C. Oliver
Public Information & News Manager
National Radio Astronomical Observatory (NRAO), USA
Phone: +1 434 242 9584
Email: aoliver@nrao.edu
-
Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Phone: +49 89 3200 6670
Email: pio@eso.org
Source: Atacama Large Millimeter/submillimeter Array (ALMA)/News
Friday, September 24, 2021
ESA/Hubble Picture of the Week Prompts New Understanding of Einstein Ring
In December 2020 the ESA/Hubble team published a stunning view from the NASA/ESA Hubble Space Telescope of one of the most complete Einstein rings ever discovered. This observation has since been used to develop a lensing model to study the physical properties of the lensed galaxy. Scientists have successfully measured the distance to the object and determined the magnification factor to be 20, which effectively makes Hubble’s observing capability equivalent to that of a 48-metre telescope.
In December 2020 ESA/Hubble published an image in the Picture of the Week series depicting GAL-CLUS-022058s, located in the southern hemisphere constellation of Fornax (The Furnace). The image shows the largest and one of the most complete Einstein rings ever discovered, and was nicknamed the "Molten Ring'' by the Hubble observation’s Principal Investigator, which alludes to its appearance and host constellation.
First theorised to exist by Einstein in his general theory of relativity, this object’s unusual shape can be explained by a process called gravitational lensing, which causes light shining from far away to be bent and pulled by the gravity of an object between its source and the observer. In this case, the light from the background galaxy has been distorted into the curve we see by the gravity of the galaxy cluster sitting in front of it. The near exact alignment of the background galaxy with the centre of the galaxy cluster, seen in the middle of this image, has warped and magnified the image of the background galaxy into an almost perfect ring. The gravity from the galaxies in the cluster is soon to cause additional distortions.
A team of European astronomers have now used a multi-wavelength dataset, which includes inputs from the NASA/ESA Hubble Space Telescope and this featured image, to study this Einstein ring in detail. Archival data from the European Southern Observatory's Very Large Telescope (VLT) FORS instrument determined the redshift value of the lensed galaxy.
“In order to derive the physical properties of the lensed galaxy a lensing model is needed. Such a model could only be obtained with the Hubble imaging,” explained the lead investigator Anastasio Díaz-Sánchez of the Universidad Politécnica de Cartagena in Spain. “In particular, Hubble helped us to identify the four counter images and the stellar clumps of the lensed galaxy, for which the Picture of the Week image was used.”
From this lensing model the team calculated the amplification factor, which is a valuable effect of gravitational lensing. This allowed the team to study the intrinsic physical properties of the lensed galaxy. Of particular interest is the determination of the galaxy’s distance, which shows that the galaxy’s light has travelled approximately 9.4 billion light-years [1].
“The detection of molecular gas, of which new stars are born, allowed us to calculate the precise redshift and thus gives us confidence that we are truly looking at a very distant galaxy," said Nikolaus Sulzenauer, PhD student at the Max Plank Institute for Radio Astronomy in Germany and member of the investigation team.
Furthermore, the team determined the galaxy’s magnification factor to be 20, which effectively makes the Hubble Space Telescope’s observing capability equivalent to that of a 48-metre telescope. This is larger than the currently planned extremely large telescopes.
“The lensed galaxy is one of the brightest galaxies in the millimetre wavelength regime,” added Helmut Dannerbauer of the Institute of Astrophysics of the Canary Islands in Spain and a member of the investigation team. “Our research has also shown that it is a normal star-forming galaxy (a so-called main sequence galaxy) at the peak epoch of star formation in the Universe.”
“We can clearly see the spiral arms and the central
bulge of the galaxy in the Hubble images. This will help us to better
understand star formation in distant galaxies using planned
observations," added team member Susana Iglesias-Groth of the Institute
of Astrophysics of the Canary Islands in Spain.
Notes
[1] The team determined the lensed galaxy’s redshift value to be z = 1.47.
More information
Image credit: ESA/Hubble & NASA, S. Jha. Acknowledgement: L. Shatz
Links
Anastasio Díaz-Sánchez
Universidad Politécnica de Cartagena
Murcia, Spain
Email: Anastasio.Diaz@upct.es
Bethany Downer
ESA/Hubble Chief Communications Officer
Email: Bethany.Downer@esahubble.org
Source: ESA/Hubble/News
Thursday, September 23, 2021
How to weigh a quasar
Schematic representation of a quasar. The hot accretion disk in the centre surrounds the black hole, which is invisible here. A dense distribution of gas and dust surrounds it in which individual ionised gas clouds orbit the black hole at high speed. Stimulated by the intense and high-energy radiation of the accretion disk, these clouds emit radiation in the form of spectral lines, broadened due to the Doppler effect. The zone of these gas clouds is therefore called broad emission-line region (BLR). Image: Graphics department/Bosco/MPIA
Schematic representation of the origin of the spectroastrometry signal. If the ionised gas were at rest, we would measure the same wavelength of the spectral line throughout the BLR. However, the gas clouds orbit the black hole. Seen from the side, they come towards us on one side while they move away again on the other. As a result, the spectral signal appears blue-shifted towards shorter wavelengths on one side. On the other side, it is red-shifted towards longer wavelengths. This difference in the measured wavelength depending on the position along the BLR results in the spectroastrometry signal indicated above. From this, researchers can determine the maximum distance of the observed BLR clouds from the centre of the quasar and the prevailing velocity there. Image: Graphics department/Bosco/MPIA
Photo of the dome of the Gemini North telescope in Hawaii, USA. This telescope has a primary mirror diameter of 8.1 metres and a laser guide star that, together with adaptive optics, helps minimise the influence of the atmosphere on observations. Gemini North was used for the spectroastrometry feasibility study. Image: Gemini Observatory, CC BY 4.0
In cosmology, determining the mass of supermassive black holes in the young Universe is an important measurement for tracking the temporal evolution of the cosmos. Now Felix Bosco, in close collaboration with Jörg-Uwe Pott, both from the Max Planck Institute for Astronomy (MPIA) in Heidelberg, and former MPIA researchers Jonathan Stern (now Tel Aviv University, Israel) and Joseph Hennawi (now UC Santa Barbara; USA and Leiden University, The Netherlands), has succeeded for the first time in demonstrating the feasibility of directly determining the mass of a quasar using spectroastrometry.
This method allows the mass of distant black holes in luminous quasars to be determined directly from optical spectra, without the need for extensive assumptions about the spatial distribution of gas. The spectacular applications of spectroastrometric measurements of quasar masses were systematically investigated at MPIA several years ago.
If there is gas near a black hole, it cannot fall into it directly. Instead, an accretion disk forms, a vortex that helps the matter flow into the black hole. High frictional forces in this stream of gas, which ultimately feeds the black hole, heat the accretion disk typically to fifty thousand degrees. The intensity of the radiation emitted in the process makes the quasars appear so bright that they outshine all the stars in the galaxy.
Other components within quasars have been known for several decades, such as the so-called “broad emission-line region” (BLR), a zone in which ionised gas clouds orbit the central black hole at speeds of several thousand kilometres per second. The intense and energetic radiation from the accretion disk stimulates emission from the gas in the BLR, which is visible in the spectra in the form of spectral lines. However, due to the Doppler effect, they are strongly broadened by the high orbital velocities, thus giving the BLR its name.
A new method of measuring black hole masses
Even for today’s large telescopes, however, the extent of the BLR is far too small for this. “However, by separating spectral and spatial information in the collected light, as well as by statistically modelling the measured data, we can derive distances of much less than one image pixel from the centre of the accretion disk,” Felix Bosco explains. The duration of the observations determines the precision of the measurement.
For J2123-0050, the astronomers calculated a black hole mass of at most 1.8 billion solar masses. “The exact mass determination was not yet the main goal of these first observations at all,” says Jörg-Uwe Pott, co-author and head of the “Black Holes and Accretion Mechanisms” working group at MPIA. “Instead, we wanted to show that the spectroastrometry method can in principle detect the kinematic signature of the central quasar masses using the 8-metre telescopes already available today.” Spectroastrometry could thus be a valuable addition to the tools that researchers use to determine black hole masses. Joe Hennawi adds, “With the significantly increased sensitivity of the James Webb Space Telescope (JWST) and the Extremely Large Telescope (ELT with a primary mirror diameter of 39 metres) currently under construction, we will soon be able to determine quasar masses at the highest redshifts.” Jörg-Uwe Pott, who also leads the Heidelberg contributions to ELT’s first near-infrared camera, MICADO, adds, “The feasibility study now published helps us to define and prepare our planned ELT research programmes.”
Spectroastrometry valuable addition to classical methods
Moreover, the brightness fluctuations and measurability tend to decrease with increasing black hole mass and quasar luminosity. The RM method is, therefore, rarely applicable to luminous quasars. As a result, it is not suitable for measuring quasars at large cosmological distances.
However, the RM serves as a basis for calibrating other indirect methods first established for nearby quasars and then extended to more distant, luminous quasars with massive black holes. The quality of these indirect approaches stands and falls with the accuracy of the RM method. Here, too, spectroastrometry can help put the mass determination of massive black holes on a broader basis. For example, evaluating the data from J2123-0050 indicates that the correlation between the size of the BLR and the quasar luminosity, initially established with the RM method for rather close, faint quasars, actually seems to hold for luminous quasars as well. However, further measurements are needed here.
The BLR can also be measured interferometrically in nearby active galaxies, such as with the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI). The great advantage of spectroastrometry, however, is that only a single highly-sensitive observation is needed. In addition, it requires neither the technically very complex coupling of several telescopes as required by interferometry nor long series of measurements over months and years as is the case with the RM. For example, a single series of observations with an exposure time of four hours with the 8-metre-class Gemini North telescope in Hawaii, supported by a correction system consisting of a laser guide star and adaptive optics, was sufficient for the research group led by Felix Bosco.
Opening a new door to the exploration of the early Universe
Contact:
Dr. Markus Nielbock
Press and public relations officer +49 6221 528-134 pr@... Max Planck Institute for Astronomy, HeidelbergII. The First Tentative Detection in a Luminous Quasar at z = 2.3
- mpia-pr_spectroastrometry_bosco_2021-08_en_fig1 420.97 kB
- mpia-pr_spectroastrometry_bosco_2021-08_en_fig2 820.41 kB
- mpia-pr_spectroastrometry_bosco_2021-08_fig3 2.17 MB
Links
ELT of the European Southern Observatory (ESO)
NASA's James Webb Space Telescope (JWST)
Source:Max Planck Institute for Astronomy
Wednesday, September 22, 2021
Hubble Finds Early, Massive Galaxies Running on Empty
When the universe was about 3 billion years old, just 20% of its current age, it experienced the most prolific period of star birth in its history. But when NASA's Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile gazed toward cosmic objects in this period, they found something odd: six early, massive, "dead" galaxies that had run out of the cold hydrogen gas needed to make stars.
Without more fuel for star formation, these galaxies were literally running on empty. The findings are published in the journal Nature.
"At this point in our universe, all galaxies should be forming lots of stars. It's the peak epoch of star formation," explained lead author Kate Whitaker, assistant professor of astronomy at the University of Massachusetts, Amherst. Whitaker is also associate faculty at the Cosmic Dawn Center in Copenhagen, Denmark. "So what happened to all the cold gas in these galaxies so early on?"
This study is a classic example of the harmony between Hubble and ALMA observations. Hubble pinpointed where in the galaxies the stars exist, showing where they formed in the past. By detecting the cold dust that serves as a proxy for the cold hydrogen gas, ALMA showed astronomers where stars could form in the future if enough fuel were present.
Using Nature's Own Telescopes
The study of these early, distant, dead galaxies was part of the appropriately named REQUIEM program, which stands for Resolving QUIEscent Magnified Galaxies At High Redshift. (Redshift happens when light is stretched by the expansion of space and appears shifted toward the red part of the spectrum. The farther away a galaxy is with respect to the observer, the redder it appears.)
The REQUIEM team uses extremely massive foreground galaxy clusters as natural telescopes. The immense gravity of a galaxy cluster warps space, bending and magnifying light from background objects. When an early, massive, and very distant galaxy is positioned behind such a cluster, it appears greatly stretched and magnified, allowing astronomers to study details that would otherwise be impossible to see. This is called "strong gravitational lensing."
Only by combining the exquisite resolution of Hubble and ALMA with this strong lensing was the REQUIEM team able to able to understand the formation of these six galaxies, which appear as they did only a few billion years after the big bang.
"By using strong gravitational lensing as a natural telescope, we can find the distant, most massive, and first galaxies to shut down their star formation," said Whitaker. "I like to think about it like doing science of the 2030s or 40s – with powerful next-generation space telescopes – but today instead by combining the capabilities of Hubble and ALMA, which are boosted by strong lensing."
"REQUIEM pulled together the largest sample to date of these rare, strong-lensed, dead galaxies in the early universe, and strong lensing is the key here," said Mohammad Akhshik, principal investigator of the Hubble observing program. "It amplifies the light across all wavelengths so that it's easier to detect, and you also get higher spatial resolution when you have these galaxies stretched across the sky. You can essentially see inside of them at much finer physical scales to figure out what's happening."
Live Fast, Die Young
These sorts of dead galaxies don't appear to rejuvenate, even through later minor mergers and accretions of nearby, small galaxies and gas. Gobbling up things around them mostly just "puffs up" the galaxies. If star formation does turn back on, Whitaker described it as "a kind of a frosting." About 11 billion years later in the present-day universe, these formerly compact galaxies are thought to have evolved to be larger but are still dead in terms of any new star formation.
These six galaxies lived fast and furious lives, creating their stars in a remarkably short time. Why they shut down star formation so early is still a puzzle.
Whitaker proposes several possible explanations: "Did a supermassive black hole in the galaxy's center turn on and heat up all the gas? If so, the gas could still be there, but now it's hot. Or it could have been expelled and now it's being prevented from accreting back onto the galaxy. Or did the galaxy just use it all up, and the supply is cut off? These are some of the open questions that we'll continue to explore with new observations down the road."
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.
Media Contacts:Claire Andreoli
NASA's Goddard Space Flight Center
301-286-1940
Ann Jenkins
Space Telescope Science Institute, Baltimore, Maryland
Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
Science Contact:
Katherine E. WhitakerUniversity of Massachusetts, Amherst, Massachusetts
Editor: Lynn Jenner
Tuesday, September 21, 2021
A New Understanding of Galaxy Evolution with NASA's Roman Space Telescope
This portion of the Hubble GOODS-South field contains hundreds of visible galaxies. A representative sample of those galaxies on the right half of the image also have their spectra overlayed in a representation of slitless spectroscopy. By using slitless spectroscopy, a spectrum is obtained that contains both spatial and wavelength information. For example, the inset highlights a spiral galaxy that shines brightly in the emission line of hydrogen-alpha (Hα) as well as in broad starlight (the horizontal strip of light). Its spiral shape is traced by the Hα portion of the spectrum. By combining imaging and spectroscopy, astronomers can learn much more than from each technique alone. Credits: Image: NASA, ESA. Image Processing: Joseph DePasquale (STScI). Acknowledgment: University of Geneva, Pascal Oesch (University of Geneva), Mireia Montes (UNSW)
Galaxies are conglomerations of stars, gas, dust, and dark matter. The largest can span hundreds of thousands of light-years. Many gather together in clusters containing hundreds of galaxies, while others are relatively isolated.
How galaxies change over time depends on many factors: for example, their history of star formation, how rapidly they formed stars over time, and how each generation of stars influenced the next through supernova explosions and stellar winds. To tease out these details, astronomers need to study large numbers of galaxies.
“Roman will give us the ability to see faint objects and to view galaxies over long intervals of cosmic time. That will allow us to study how galaxies assembled and transformed,” said Swara Ravindranath, an astronomer at the Space Telescope Science Institute (STScI) in Baltimore, Maryland.
While wide-field imaging will be important for galaxy studies, just as important are Roman’s spectroscopic capabilities. A spectrograph takes light from an object and spreads it into a rainbow of colors known as a spectrum. From this range of colors, astronomers can glean many details otherwise unavailable, like an object’s distance or composition. Roman’s ability to provide a spectrum of every object within the field of view, combined with Roman imaging, will enable astronomers to learn more about the universe than from either imaging or spectroscopy alone.
Revealing When and Where Stars Were Born Galaxies don’t form stars at a constant rate. They speed up and slow down—forming more or fewer stars—under the influence of a variety of factors, from collisions and mergers to supernova shock waves and galaxy-scale winds powered by supermassive black holes.
By studying a galaxy’s spectrum in detail, astronomers can explore the history of star formation. “Using Roman we can estimate how fast galaxies are making stars and find the most prolific galaxies that are producing stars at an enormous rate. More importantly, we can find out not only what’s happening in a galaxy at the moment we observe it, but what its history has been,” stated Lee Armus, an astronomer at IPAC/Caltech in Pasadena, California.
Some precocious galaxies birthed stars very rapidly for a short time, only to cease forming stars surprisingly early in the universe’s history, undergoing a rapid transition from lively to “dead.”
“We know galaxies shut off star formation, but we don’t know why. With Roman’s wide field of view, we stand a better chance of catching these galaxies in the act,” said Kate Whitaker, an astronomer at the University of Massachusetts in Amherst.
The expansion of the universe stretches light from distant galaxies to longer, redder wavelengths—a phenomenon called redshift. The more distant a galaxy is, the greater its redshift. Roman’s infrared detectors are ideal for capturing light from those galaxies. More distant galaxies are also fainter and harder to spot. Combining this with the fact that that some galaxy types are rare, you have to search a larger area of the sky with a more sensitive observatory to find the objects that often have the most interesting stories to tell.
“Right now, with telescopes like Hubble we can sample tens of high-redshift galaxies. With Roman, we’ll be able to sample thousands,” explained Russell Ryan, an astronomer at STScI.
Seeking the Unknown
“Roman will excel in unknown unknowns. It will certainly find rare, exotic things that we don’t expect,” said Ryan.
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will provide Roman’s Mission Operations Center. The Space Telescope Science Institute in Baltimore, Maryland, will host Roman’s Science Operations Center and lead the data processing of Roman imaging. Caltech/IPAC in Pasadena, California, will house Roman’s Science Support Center and lead the data processing of Roman spectroscopy.
Release:
NASA
Media Contact:
Christine PulliamSpace Telescope Science Institute, Baltimore, Maryland
Friday, September 17, 2021
Dense Molecular Clouds in the Center of Milky Way are Unable to Form Stars
Composite image of Hubble Space Telescope (red) mapping hot ionized gas, and ALMA (blue and purple) detail of the much colder molecular gas of Sgr A* circumnuclear disk. Credit: Dong, H. et al 2011 – ESA/Hubble | Hsieh, P.-Y. et al. – N. Lira – ALMA (EOS/NAOJ/NRAO)
Composite animation of Hubble Space Telescope (red) mapping hot ionized gas, and ALMA (blue and purple) detail of the much colder molecular gas of Sgr A* circumnuclear disk. Credit:Dong, H. et al 2011 – ESA/Hubble | Hsieh, P.-Y. et al. – N. Lira – ALMA (EOS/NAOJ/NRAO)
Clumps of molecular gas overlaid on Sgr A* circumnuclear disk as seen by ALMA in the CS(7-6) line. Yellow circles are thin clumps that are going to be shredded by the gravitational force of supermassive black hole Sgr A*. Green circles are dense enough to survive the tidal shredding but are not able to form stars. Purple/pink circles have the needed density to form stars, but no star formation has been observed. Credit: Hsieh, P.-Y. et al. – ALMA (EOS/NAOJ/NRAO)
Contacts
Nicolás Lira
Education and Public Outreach Coordinator
Joint ALMA Observatory, Santiago - Chile
Phone: +56 2 2467 6519
Cell phone: +56 9 9445 7726
Email: nicolas.lira@alma.cl