ALMA Discovers Trio of Infant Planets 
Planets in the making  
The young star HD 163296 in the constellation of Sagittarius 
Surroundings of the young star HD 163296 
ALMA Discovers Trio of Infant Planets 
Videos
ESOcast 164 Light: ALMA Discovers Trio of Infant Planets (4K UHD) 
Zooming in on the young star HD 163296
Two independent teams of astronomers have
 used ALMA to uncover convincing evidence that three young planets are 
in orbit around the infant star HD 163296. Using a novel planet-finding 
technique, the astronomers identified three disturbances in the 
gas-filled disc around the young star: the strongest evidence yet that 
newly formed planets are in orbit there. These are considered the first 
planets to be discovered with ALMA.
The Atacama Large Millimeter/submillimeter Array (ALMA) has transformed our understanding of protoplanetary discs
 — the gas- and dust-filled planet factories that encircle young stars. 
The rings and gaps in these discs provide intriguing circumstantial 
evidence for the presence of protoplanets [1]. Other phenomena, however, could also account for these tantalising features.
But now, using a novel planet-hunting technique that identifies 
unusual patterns in the flow of gas within a planet-forming disc around a
 young star, two teams of astronomers have each confirmed distinct, 
telltale hallmarks of newly formed planets orbiting an infant star [2].
“Measuring the flow of gas within a protoplanetary disc gives us 
much more certainty that planets are present around a young star,” said Christophe Pinte of Monash University in Australia and Institut de Planétologie et d'Astrophysique de Grenoble (Université de Grenoble-Alpes/CNRS) in France, and lead author on one of the two papers. “This technique offers a promising new direction to understand how planetary systems form.”
To make their respective discoveries, each team analysed ALMA observations of HD 163296, a young star about 330 light-years from Earth in the constellation of Sagittarius (The Archer) [3]. This star is about twice the mass of the Sun but is just four million years old — just a thousandth of the age of the Sun.
“We looked at the localised, small-scale motion of gas in the 
star’s protoplanetary disc. This entirely new approach could uncover 
some of the youngest planets in our galaxy, all thanks to the 
high-resolution images from ALMA,” said Richard Teague, an astronomer at the University of Michigan and principal author on the other paper.
Rather than focusing on the dust within the disc, which was clearly imaged in earlier ALMA observations,
 the astronomers instead studied carbon monoxide (CO) gas spread 
throughout the disc. Molecules of CO emit a very distinctive 
millimetre-wavelength light that ALMA can observe in great detail. 
Subtle changes in the wavelength of this light due to the Doppler effect reveal the motions of the gas in the disc.
The team led by Teague identified two planets located approximately 
12 billion and 21 billion kilometres from the star. The other team, led 
by Pinte, identified a planet at about 39 billion kilometres from the 
star [4].
The two teams used variations on the same technique, which looks for 
anomalies in the flow of gas — as evidenced by the shifting wavelengths 
of the CO emission — that indicate the gas is interacting with a massive
 object [5].
The technique used by Teague, which derived averaged variations in 
the flow of the gas as small as a few percent, revealed the impact of 
multiple planets on the gas motions nearer to the star. The technique 
used by Pinte, which more directly measured the flow of the gas, is 
better suited to studying the outer portion of the disc. It allowed the 
authors to more accurately locate the third planet, but is restricted to
 larger deviations of the flow, greater than about 10%.
In both cases, the researchers identified areas where the flow of the
 gas did not match its surroundings — a bit like eddies around a rock in
 a river. By carefully analysing this motion, they could clearly see the
 influence of planetary bodies similar in mass to Jupiter.
This new technique allows astronomers to more precisely estimate 
protoplanetary masses and is less likely to produce false positives. “We are now bringing ALMA front and centre into the realm of planet detection,” said coauthor Ted Bergin of the University of Michigan.
Both teams will continue refining this method and will apply it to 
other discs, where they hope to better understand how atmospheres are 
formed and which elements and molecules are delivered to a planet at its
 birth.
Notes
Notes
[1] Although thousands of exoplanets have been discovered in the last
 two decades, detecting protoplanets remains at the cutting edge of 
science and there have been no unambiguous detections before now. The 
techniques currently used for finding exoplanets in fully formed 
planetary systems — such as measuring the wobble of a star or the 
dimming of starlight due to a transiting planet — do not lend themselves
 to detecting protoplanets.
[2] The motion of gas around a star in
 the absence of planets has a very simple, predictable pattern 
(Keplerian rotation) that is nearly impossible to alter both coherently 
and locally, so that only the presence of a relatively massive object 
can create such disturbances.
[3] ALMA’s stunning images of HD 163296 and other similar systems
 have revealed intriguing patterns of concentric rings and gaps within 
protoplanetary discs. These gaps may be evidence that protoplanets are 
ploughing the dust and gas away from their orbits, incorporating some of
 it into their own atmospheres. A previous study
 of this particular star’s disc shows that the gaps in the dust and gas 
overlap, suggesting that at least two planets have formed there.
These initial observations, however, merely provided circumstantial 
evidence and could not be used to accurately estimate the masses of the 
planets.
[5] This technique is similar to the 
one that led to the discovery of the planet Neptune in the nineteenth 
century. In that case anomalies in the motion of the planet Uranus were 
traced to the gravitational effect of an unknown body, which was 
subsequently discovered visually in 1846 and found to be the eighth 
planet in the Solar System.
More Information
This research was presented in two papers to appear in the same edition of the Astrophysical Journal Letters.
 The first is entitled “Kinematic evidence for an embedded protoplanet 
in a circumstellar disc”, by C. Pinte et al. and the second “A Kinematic
 Detection of Two Unseen Jupiter Mass Embedded Protoplanets”, by R. 
Teague et al.
The Pinte team is composed of: C. Pinte (Monash University, Clayton, 
Victoria, Australia; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, 
France), D. J. Price (Monash University, Clayton, Victoria, Australia), 
F. Ménard (Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France), G. 
Duchêne (University of California, Berkeley California, USA; Univ. 
Grenoble Alpes, CNRS, IPAG, Grenoble, France), W.R.F. Dent (Joint ALMA 
Observatory, Santiago, Chile), T. Hill (Joint ALMA Observatory, 
Santiago, Chile), I. de Gregorio-Monsalvo (Joint ALMA Observatory, 
Santiago, Chile), A. Hales (Joint ALMA Observatory, Santiago, Chile; 
National Radio Astronomy Observatory, Charlottesville, Virginia, USA) 
and D. Mentiplay (Monash University, Clayton, Victoria, Australia).
The Teague team is composed of: Richard D. Teague (University of 
Michigan, Ann Arbor, Michigan, USA), Jaehan Bae (Department of 
Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC,
 USA), Edwin A. Bergin (University of Michigan, Ann Arbor, Michigan, 
USA), Tilman Birnstiel (University Observatory, 
Ludwig-Maximilians-Universität München, Munich, Germany) and Daniel 
Foreman- Mackey (Center for Computational Astrophysics, Flatiron 
Institute, New York, USA).
The Atacama Large Millimeter/submillimeter Array (ALMA), an 
international astronomy facility, is a partnership of ESO, the U.S. 
National Science Foundation (NSF) and the National Institutes of Natural
 Sciences (NINS) of Japan in cooperation with the Republic of Chile. 
ALMA is funded by ESO on behalf of its Member States, by NSF in 
cooperation with the National Research Council of Canada (NRC) and the 
National Science Council of Taiwan (NSC) and by NINS in cooperation with
 the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space 
Science Institute (KASI). ALMA construction and operations are led by 
ESO on behalf of its Member States; by the National Radio Astronomy 
Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on 
behalf of North America; and by the National Astronomical Observatory of
 Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) 
provides the unified leadership and management of the construction, 
commissioning and operation of ALMA. ESO is the foremost 
intergovernmental astronomy organisation in Europe and the world’s most 
productive ground-based astronomical observatory by far. It has 15 
Member States: Austria, Belgium, the Czech Republic, Denmark, France, 
Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, 
Sweden, Switzerland and the United Kingdom, along with the host state of
 Chile and with Australia as a strategic partner. ESO carries out an 
ambitious programme focused on the design, construction and operation of
 powerful ground-based observing facilities enabling astronomers to make
 important scientific discoveries. ESO also plays a leading role in 
promoting and organising cooperation in astronomical research. ESO 
operates three unique world-class observing sites in Chile: La Silla, 
Paranal and Chajnantor. At Paranal, ESO operates the Very Large 
Telescope and its world-leading Very Large Telescope Interferometer as 
well as two survey telescopes, VISTA working in the infrared and the 
visible-light VLT Survey Telescope. ESO is also a major partner in two 
facilities on Chajnantor, APEX and ALMA, the largest astronomical 
project in existence. And on Cerro Armazones, close to Paranal, ESO is 
building the 39-metre Extremely Large Telescope, the ELT, which will 
become “the world’s biggest eye on the sky”.
Links
- Research paper Pinte et al. in Astrophysical Journal Letters
- Research paper Teague et al. in Astrophysical Journal Letters
- Photos of ALMA
Contacts
Christophe Pinte
Monash University
Clayton, Victoria, Australia
Tel: +61 4 90 30 24 18
Email: christophe.pinte@univ-grenoble-alpes.fr
Richard Teague
University of Michigan
Ann Arbor, Michigan, USA
Tel: +1 734 764 3440
Email: rteague@umich.edu
Calum Turner
ESO Assistant Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Email: calum.turner@eso.org
Source: ESO/News 







 
