GW170817
 Credit:   NASA/CXC/Trinity University/D. Pooley et al.
The spectacular merger of two neutron stars that generated gravitational waves announced last fall likely did something else: birthed a black hole. This newly spawned black hole would be the lowest mass black hole ever found, as described in our latest press release.
After two separate stars underwent supernova
 explosions, two ultra-dense cores (that is, neutron stars) were left 
behind. These two neutron stars were so close that gravitational wave 
radiation pulled them together until they merged and collapsed into a 
black hole. The artist's illustration
 shows a key part of the process that created this new black hole, as 
the two neutron stars spin around each other while merging. The purple 
material depicts debris from the merger. An additional illustration 
shows the black hole that resulted from the merger, along with a disk of
 infalling matter and a jet of high-energy particles. 
GW170817
Illustration Credit:  NASA/CXC/M.Weiss
A new study analyzed data from NASA's Chandra X-ray Observatory
 taken in the days, weeks, and months after the detection of 
gravitational waves by the Laser Interferometer Gravitational Wave 
Observatory (LIGO) and gamma rays by NASA's Fermi mission on August 17, 
2017.
X-rays
 from Chandra are critical for understanding what happened after the two
 neutron stars collided. The question is: did the merged neutron star 
form a larger, heavier neutron star or a black hole?
Chandra observed GW170817 multiple times. An observation two to three
 days after the event failed to detect a source, but subsequent 
observations 9, 15 and 16 days after the event, resulted in detections 
(bottom left). The source went behind the Sun soon after, but further 
brightening was seen in Chandra observations about 110 days after the 
event (bottom right), followed by comparable X-ray intensity after about
 160 days.
If the neutron stars merged and formed a heavier neutron star, then 
astronomers would expect it to spin rapidly and generate a very strong 
magnetic field. This, in turn, would have created an expanding bubble of
 high-energy particles that would result in bright X-ray emission. 
Instead, the Chandra data show levels of X-rays that are a factor of a 
few to several hundred times lower than expected for a rapidly spinning,
 merged neutron star and the associated bubble of high-energy particles,
 implying a black hole likely formed instead.
By comparing the Chandra observations with those by the NSF's Karl G.
 Jansky Very Large Array (VLA), researchers explain the observed X-ray 
emission as being due entirely to the shock wave
 — akin to a sonic boom from a supersonic plane — from the merger 
smashing into surrounding gas.  There is no sign of X-rays resulting 
from a neutron star. Thus, the researchers in this study claim this is a
 strong case for the merger of two neutron stars merging to then produce
 bursts of radiation and form a black hole.
A paper describing this result appears in the latest issue of The Astrophysical Journal Letters and is available online.
 The authors of this paper are David Pooley (Trinity University, San 
Antonio, Texas), Pawan Kumar (University of Texas at Austin), J. Craig 
Wheeler (University of Texas) and Bruce Grossan (University of 
California, Berkeley). NASA's Marshall Space Flight Center in 
Huntsville, Alabama, manages the Chandra program for NASA's Science 
Mission Directorate in Washington. The Smithsonian Astrophysical 
Observatory in Cambridge, Massachusetts, controls Chandra's science and 
flight operations.
Fast Facts for GW170817:
Scale: About 0.5 arcmin across (about 205,000 light years)
Category: Neutron Stars/X-ray Binaries
Coordinates (J2000): RA 13h 09m 48.1s | Dec -23° 22´ 53.4"
Constellation: Hydra
Observation Date: August 26, 2017, September 1, 2017, September 2, 2017, December 3, 2017, December 6, 2017
Observation Time: (first image) 3 days 3 hours 39 minutes; (second image) 1 day 3 hours 32 minutes
Obs. ID: 19294, 20728, 18988, 20860, 20861
Instrument: ACIS
References: Pooley et al, ApJ Letters, 2018. arXiv:1712.03240
Color Code: Intensity: X-ray (purple)
Distance Estimate: About 130 million light years
Source: NASA’s Chandra X-ray Observatory


 
