Showing posts with label exoplanetary system. Show all posts
Showing posts with label exoplanetary system. Show all posts

Saturday, August 05, 2023

Hubble Sees Evaporating Planet Getting the Hiccups

Artist's Concept of AU Mic b
Credits: Artwork: NASA, ESA, Joseph Olmsted (STScI)

Release Images



A young planet whirling around a petulant red dwarf star is changing in unpredictable ways orbit-by-orbit. It is so close to its parent star that it experiences a consistent, torrential blast of energy, which evaporates its hydrogen atmosphere — causing it to puff off the planet.

But during one orbit observed with the Hubble Space Telescope, the planet looked like it wasn't losing any material at all, while an orbit observed with Hubble a year and a half later showed clear signs of atmospheric loss.

This extreme variability between orbits shocked astronomers. "We've never seen atmospheric escape go from completely not detectable to very detectable over such a short period when a planet passes in front of its star," said Keighley Rockcliffe of Dartmouth College in Hanover, New Hampshire. "We were really expecting something very predictable, repeatable. But it turned out to be weird. When I first saw this, I thought 'That can't be right.'"

Rockcliffe was equally puzzled to see, when it was detectable, the planet's atmosphere puffing out in front of the planet, like a headlight on a fast-bound train. "This frankly strange observation is kind of a stress-test case for the modeling and the physics about planetary evolution. This observation is so cool because we're getting to probe this interplay between the star and the planet that is really at the most extreme," she said.

Located 32 light-years from Earth, the parent star AU Microscopii (AU Mic) hosts one of the youngest planetary systems ever observed. The star is less than 100 million years old (a tiny fraction of the age of our Sun, which is 4.6 billion years old). The innermost planet, AU Mic b, has an orbital period of 8.46 days and is just 6 million miles from the star (about 1/10th the planet Mercury's distance from our Sun). The bloated, gaseous world is about four times Earth's diameter.

AU Mic b was discovered by NASA’s Spitzer and TESS (Transiting Exoplanet Survey Satellite) space telescopes in 2020. It was spotted with the transit method, meaning telescopes can observe a slight dip in the star's brightness when the planet crosses in front of it.

Red dwarfs like AU Microscopii are the most abundant stars in our Milky Way galaxy. They therefore should host the majority of planets in our galaxy. But can planets orbiting red dwarf stars like AU Mic b be hospitable to life? A key challenge is that young red dwarfs have ferocious stellar flares blasting out withering radiation. This period of high activity lasts a lot longer than that of stars like our Sun.

The flares are powered by intense magnetic fields that get tangled by the roiling motions of the stellar atmosphere. When the tangling gets too intense, the fields break and reconnect, unleashing tremendous amounts of energy that are 100 to 1,000 times more energetic than our Sun unleashes in its outbursts. It's a blistering fireworks show of torrential winds, flares, and X-rays blasting any planets orbiting close to the star. "This creates a really unconstrained and frankly, scary, stellar wind environment that's impacting the planet's atmosphere," said Rockcliffe.

Under these torrid conditions, planets forming within the first 100 million years of the star's birth should experience the most amount of atmospheric escape. This might end up completely stripping a planet of its atmosphere.

"We want to find out what kinds of planets can survive these environments. What will they finally look like when the star settles down? And would there be any chance of habitability eventually, or will they wind up just being scorched planets?" said Rockcliffe. "Do they eventually lose most of their atmospheres and their surviving cores become super-Earths? We don't really know what those final compositions look like because we don't have anything like that in our solar system."

While the star's glare prevents Hubble from directly seeing the planet, the telescope can measure changes in the star's apparent brightness caused by hydrogen bleeding off the planet and dimming the starlight when the planet transits the star. That atmospheric hydrogen has been heated to the point where it escapes the planet's gravity.

The never-before-seen changes in atmospheric outflow from AU Mic b may indicate swift and extreme variability in the host red dwarf's outbursts. There is so much variability because the star has a lot of roiling magnetic field lines. One possible explanation for the missing hydrogen during one of the planet's transits is that a powerful stellar flare, seen seven hours prior, may have photoionized the escaping hydrogen to the point where it became transparent to light, and so was not detectable.

Another explanation is that the stellar wind itself is shaping the planetary outflow, making it observable at some times and not observable at other times, even causing some of the outflow to "hiccup" ahead of the planet itself. This is predicted in some models, like those of John McCann and Ruth Murray-Clay from the University of California at Santa Cruz, but this is the first kind of observational evidence of it happening and to such an extreme degree, say researchers.

Hubble follow-up observations of more AU Mic b transits should offer additional clues to the star and planet's odd variability, further testing scientific models of exoplanetary atmospheric escape and evolution.

Rockcliffe is lead author on the science paper published in The Astronomical Journal

. The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.




About This Release

Credits:

Release: NASA, ESA, STScI

Media Contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Science Contact:

Keighley Rockcliffe
Dartmouth College, Hanover, New Hampshire


Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents




Monday, February 27, 2023

A Fresh Look at Kepler-444’s Ancient Planetary System

Artist's impression of a star orbited by five planets
Credits: NASA/JPL-Caltech

Astronomers have just taken a closer look at an unusual system containing three stars and at least five planets. In doing so they may have solved a mystery around its formation. The system, known as Kepler-444, is also around 11 billion years old, showing that such systems can be stable over a significant fraction of the universe’s current age.

Typical observation of the central star Kepler-444 A and the binary pair Kepler-444 BC
Credit: Adapted fromZhang et al. 2023

One System, Three Stars, Five Planets

Located 117 light-years away toward the constellation Lyra, the system is centered around the K0 star Kepler-444 A. Then there’s a tight-knit binary pair of M-type stars orbiting it some 66 astronomical units away (known as Kepler-444 BC). A quintet of planets also orbits Kepler-444 A. All five worlds have radii between 0.4 and 0.7 Earth radius, and every one has an orbital period under 10 days.

A team of astronomers led by Zhoujian Zhang (University of California, Santa Cruz) recently set about measuring the properties of the crowded system more precisely in several different ways. They used the High Resolution Spectrograph of the Hobby-Eberly Telescope at the McDonald Observatory in Texas to measure Kepler-444 A’s radial velocity. The star’s speed changes as it is pulled around by the other objects in the system. Zhang’s team also measured the relative radial velocities between the binary pair and the central star using the High Resolution Echelle Spectrometer at the W. M. Keck Observatory in Hawaii.

The gravitational pull of its companions causes Kepler-444 A to follow a wiggling path across the night sky. Measuring this changing position is known as astrometry. Zhang’s team conducted astrometric measurements of Kepler-444 A using Keck’s near-infrared imager (NIRC2).

T


op panel: Observed (orange circles) and modeled (green lines) separations between Kepler-444 A and Kepler-444 BC. The black line shows the best-fitting model. Bottom panel: Observed values minus modeled values. Credit: Adapted from
Zhang et al. 2023

Expanding Planet-Forming Potential

Putting all these pieces of the puzzle together, the team arrived at a deeper understanding of the Kepler-444 system and its history. Previous measurements of the system suggested that the binary swings in to within 5 astronomical units of Kepler-444 A. That would have truncated Kepler-444 A’s protoplanetary disk, severely depleting the amount of planet-forming material available. It wasn’t clear how five rocky planets could have formed there.

Now, based on their new measurements, Zhang’s team conclude that the Kepler-444 BC binary only gets within 23 astronomical units of Kepler-444 A. This wider separation would have led to a larger and more massive protoplanetary disk truncated to 8 astronomical units. The team calculate that there would have been 500 solar masses’ worth of dust available from which to build planets. That compares to just 4 solar masses of dust using previous estimates. Suddenly the presence of five planets is less perplexing.

As astronomers gain a greater understanding of exoplanets, it’s becoming clear that there’s more than one way to make a solar system.

Citation :

“The McDonald Accelerating Stars Survey: Architecture of the Ancient Five-planet Host System Kepler-444,” Zhoujian Zhang et al 2023 AJ 165 73. doi:10.3847/1538-3881/aca88c

 By Colin Stuart

Source:  American Astronomical Society/ASS - Nova


Friday, October 14, 2022

Heaviest element yet detected in an exoplanet atmosphere

PR Image eso2213a
Artist’s impression of an ultra-hot Jupiter transiting its star

PR Image eso2213b
Artist’s impression of the night side of WASP-76 b



Videos

Heaviest Element yet Detected in an Exoplanet Atmosphere (ESOcast 257 Light)
Heaviest Element yet Detected in an Exoplanet Atmosphere (ESOcast 257 Light) 
 
Detecting barium in an exoplanet atmosphere
Detecting barium in an exoplanet atmosphere 
 
A ‘fly to’ WASP-76, the star around which WASP-76 b orbits
A ‘fly to’ WASP-76, the star around which WASP-76 b orbits




Using the European Southern Observatory’s Very Large Telescope (ESO’s VLT), astronomers have discovered the heaviest element ever found in an exoplanet atmosphere — barium. They were surprised to discover barium at high altitudes in the atmospheres of the ultra-hot gas giants WASP-76 b and WASP-121 b — two exoplanets, planets which orbit stars outside our Solar System. This unexpected discovery raises questions about what these exotic atmospheres may be like.

The puzzling and counterintuitive part is: why is there such a heavy element in the upper layers of the atmosphere of these planets?” says Tomás Azevedo Silva, a PhD student at the University of Porto and the Instituto de Astrofísica e Ciências do Espaço (IA) in Portugal who led the study published today in Astronomy & Astrophysics.

WASP-76 b and WASP-121 b are no ordinary exoplanets. Both are known as ultra-hot Jupiters as they are comparable in size to Jupiter whilst having extremely high surface temperatures soaring above 1000°C. This is due to their close proximity to their host stars, which also means an orbit around each star takes only one to two days. This gives these planets rather exotic features; in WASP-76 b, for example, astronomers suspect it rains iron.

But even so, the scientists were surprised to find barium, which is 2.5 times heavier than iron, in the upper atmospheres of WASP-76 b and WASP-121 b. “Given the high gravity of the planets, we would expect heavy elements like barium to quickly fall into the lower layers of the atmosphere,” explains co-author Olivier Demangeon, a researcher also from the University of Porto and IA.

This was in a way an ‘accidental’ discovery,” says Azevedo Silva. “We were not expecting or looking for barium in particular and had to cross-check that this was actually coming from the planet since it had never been seen in any exoplanet before.

The fact that barium was detected in the atmospheres of both of these ultra-hot Jupiters suggests that this category of planets might be even stranger than previously thought. Although we do occasionally see barium in our own skies, as the brilliant green colour in fireworks, the question for scientists is what natural process could cause this heavy element to be at such high altitudes in these exoplanets. ​​“At the moment, we are not sure what the mechanisms are,” explains Demangeon.

In the study of exoplanet atmospheres ultra-hot Jupiters are extremely useful. As Demangeon explains: “Being gaseous and hot, their atmospheres are very extended and are thus easier to observe and study than those of smaller or cooler planets”.

Determining the composition of an exoplanet’s atmosphere requires very specialised equipment. The team used the ESPRESSO instrument on ESO’s VLT in Chile to analyse starlight that had been filtered through the atmospheres of WASP-76 b and WASP-121 b. This made it possible to clearly detect several elements in them, including barium.

These new results show that we have only scratched the surface of the mysteries of exoplanets. With future instruments such as the high-resolution ArmazoNes high Dispersion Echelle Spectrograph (ANDES), which will operate on ESO’s upcoming Extremely Large Telescope (ELT), astronomers will be able to study the atmospheres of exoplanets large and small, including those of rocky planets similar to Earth, in much greater depth and to gather more clues as to the nature of these strange worlds.




More Information

This research was presented in the paper “Detection of Barium in the atmospheres of ultra-hot gas giants WASP-76b & WASP-121b” to appear in Astronomy & Astrophysics (doi: 10.1051/0004-6361/202244489).

The team is composed of T. Azevedo Silva (Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Portugal [IA/UPorto, CAUP] and Departamento de Física e Astronomia Faculdade de Ciências, Universidade do Porto, Portugal [FCUP]), O. D. S. Demangeon (IA/UPorto, CAUP and FCUP), N. C. Santos (IA/UPorto, CAUP and FCUP), R. Allart (Department of Physics, and Institute for Research on Exoplanets, Université de Montréal, Canada and Observatoire astronomique de l’Université de Genève, Switzerland [UNIGE]), F. Borsa (INAF – Osservatorio Astronomico di Brera, Italy), E. Cristo (IA/UPorto, CAUP and FCUP), E. Esparza-Borges (Instituto de Astrofísica de Canarias, Spain [IAC] and Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain [IAC-ULL]), J. V. Seidel (European Southern Observatory, Chile [ESO Chile]), E. Palle (IAC), S. G. Sousa (IA/UPorto), H. M. Tabernero (Centro de Astrobiología, CSIC-INTA, Spain [CSIC-INTA]), M. R. Zapatero Osorio (CSIC-INTA), S. Cristiani (INAF – Osservatorio Astronomico di Trieste, Italy [INAF Trieste]), F. Pepe (UNIGE), R. Rebolo (IAC and IAC-ULL), V. Adibekyan (IA/UPorto and FCUP), Y. Alibert (Physikalisches Institut, University of Bern, Switzerland), S. C. C. Barros (IA/UPorto and FCUP), V. Bourrier (UNIGE), P. Di Marcantonio (INAF Trieste), V. D’Odorico (INAF Trieste, Scuola Normale Superiore, Italy and Institute for Fundamental Physics of the Universe, Trieste, Italy [IFPU]), D. Ehrenreich (UNIGE and Centre Vie dans l’Univers, Faculté des sciences de l’Université de Genève, Switzerland), P. Figueira (UNIGE and IA/UPorto), J. I. González Hernández (IAC and Universidad de La Laguna, Departamento de Astrofísica, Spain), C. J. A. P. Martins (UA/UPorto and Centro de Astrofísica da Universidade do Porto, Portugal), A. Mehner (ESO Chile), G. Micela (INAF – Osservatorio Astronomico di Palermo, Italy), P. Molaro (INAF Trieste and IFPU), D. Mounzer (UNIGE), N. J. Nunes (Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa and Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, Portugal), A. Sozzetti (INAF - Osservatorio Astrofisico di Torino, Italy), A. Suárez Mascareño (IAC and IAC-ULL), and S. Udry (UNIGE).

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration in astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates APEX and ALMA on Chajnantor, two facilities that observe the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.




Links




Contacts:

Tomás Azevedo Silva
Instituto de Astrofisica e Ciências do Espaço, Faculdade de Ciências, Universidade do Porto
Porto, Portugal
Email:
Tomas.Silva@astro.up.pt

Olivier Demangeon
Instituto de Astrofisica e Ciências do Espaço, Faculdade de Ciências, Universidade do Porto
Porto, Portugal
Tel: +351 226 089 855
Email:
olivier.demangeon@astro.up.pt

Nuno Santos
Instituto de Astrofisica e Ciências do Espaço, Faculdade de Ciências, Universidade do Porto
Porto, Portugal
Email:
Nuno.Santos@astro.up.pt

María Rosa Zapatero Osorio
Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Email:
mosorio@cab.inta-csic.es

Hugo Tabernero
Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Email:
htabernero@cab.inta-csic.es

Jonay González Henández
Instituto de Astrofísica de Canarias
Tenerife, Spain
Email:
jonay@iac.es

Alejandro Suárez Mascareño
Instituto de Astrofísica de Canarias
Tenerife, Spain
Email:
alejandro.suarez.mascareno@iac.es

Paolo Molaro
INAF Osservatorio Astronomico di Trieste
Trieste, Italy
Email:
paolo.molaro@inaf.it

Baptiste Lavie
University of Geneva
Geneva, Switzerland
Email:
Baptiste.Lavie@unige.ch

Juan Carlos Muñoz Mateos
ESO Media Officer
Garching bei München, Germany
Tel: +49 89 3200 6176
Email:
press@eso.org

 Source: ESO/News



Monday, May 18, 2020

TRAPPIST-1 Planetary Orbits not Misaligned: First Scientific Result by the New Spectrograph on the Subaru Telescope

Figure 1: Artist's impression of the TRAPPIST-1 exoplanet system.
Credit: NAOJ

Astronomers using the Subaru Telescope have determined that the Earth-like planets of the TRAPPIST-1 system are not significantly misaligned with the rotation of the star. This is an important result for understanding the evolution of planetary systems around very low-mass stars in general, and in particular the history of the TRAPPIST-1 planets including the ones near the habitable zone.

Stars like the Sun are not static, but rotate about an axis. This rotation is most noticeable when there are features like sunspots on the surface of the star. In the Solar System, the orbits of all of the planets are aligned to within 6 degrees with the Sun's rotation. In the past it was assumed that planetary orbits would be aligned with the rotation of the star, but there are now many known examples of exoplanet systems where the planetary orbits are strongly misaligned with the central star's rotation. This raises the question: can planetary systems form out of alignment, or did the observed misaligned systems start out aligned and were later thrown out of alignment by some perturbation?

The TRAPPIST-1 system has attracted attention because it has three small rocky planets located in or near the habitable zone where liquid water can exist. The central star is a very low-mass and cool star, called an M dwarf, and those planets are situated very close to the central star. Therefore, this planetary system is very different from our Solar System. Determining the history of this system is important because it could help determine if any of the potentially habitable planets are actually inhabitable. But it is also an interesting system because it lacks any nearby objects which could have perturbed the orbits of the planets, meaning that the orbits should still be located close to where the planets first formed. This gives astronomers a chance to investigate the primordial conditions of the system.

Because stars rotate, the side rotating into view has a relative velocity towards the viewer, while the side rotating out of view has a relative velocity away from the viewer. If a planet transits, passes between the star and the Earth and blocks a small portion of the light from the star, it is possible to tell which edge of the star the planet blocks first. This phenomenon is called the Rossiter-McLaughlin effect. Using this method, it is possible to measure the misalignment between the planetary orbit and the star's rotation. However, until now those observations have been limited to large planets such as Jupiter-like or Neptune-like ones.

A team of researchers, including members from the Tokyo Institute of Technology and the Astrobiology Center in Japan, observed TRAPPIST-1 with the Subaru Telescope to look for misalignment between the planetary orbits and the star. The team took advantage of a chance on August 31, 2018, when three of the exoplanets orbiting TRAPPIST-1 transited in front of the star in a single night. Two of the three were rocky planets near the habitable zone. Since low-mass stars are generally faint, it had been impossible to probe the stellar obliquity (spin-orbit angle) for TRAPPIST-1. But thanks to the light gathering power of the Subaru Telescope and high spectral resolution of the new infrared spectrograph IRD, the team was able to measure the obliquity. They found that the obliquity was low, close to zero. This is the first measurement of the stellar obliquity for a very low-mass star like TRAPPIST-1 and also the first Rossiter-McLaughlin measurement for planets in the habitable zone.

However the leader of the team, Teruyuki Hirano at the Tokyo Institute of Technology, cautions, "The data suggest alignment of the stellar spin with the planetary orbital axes, but the precision of the measurements was not good enough to completely rule out a small spin-orbit misalignment. Nonetheless, this is the first detection of the effect with Earth-like planets and more work will better characterize this remarkable exoplanet system."

These results appeared as Hirano, T. et. al. "Evidence for Spin–Orbit Alignment in the TRAPPIST-1 System" in The Astrophysical Journal Letters on February 25, 2020.

Relevant Links



Thursday, April 30, 2020

Newly Discovered Exoplanet Dethrones Former King of Kepler-88 Planetary System

An artist’s illustration of the Kepler-88 planetary system.
Credit: W. M. Keck Observatory/Adam Makarenko


Kepler-88 d has three times the mass of Kepler-88 c, making the newly found planet the most massive one known in this system.  Animation Credit: W. M. Keck Observatory/Adam Makarenko



Hawaii Astronomer Discovers Massive Extrasolar Planet with Maunakea Telescope

Maunakea, Hawaii – Our solar system has a king. The planet Jupiter, named for the most powerful god in the Greek pantheon, has bossed around the other planets through its gravitational influence. With twice the mass of Saturn, and 300 times that of Earth, Jupiter’s slightest movement is felt by all the other planets. Jupiter is thought to be responsible for the small size of Mars, the presence of the asteroid belt, and a cascade of comets that delivered water to young Earth.

Do other planetary systems have gravitational gods like Jupiter?

A team of astronomers led by the University of Hawaiʻi Institute for Astronomy (UH IfA) has discovered a planet three times the mass of Jupiter in a distant planetary system.

The discovery is based on six years of data taken at W. M. Keck Observatory on Maunakea in Hawaiʻi. Using the High-Resolution Echelle Spectrometer (HIRES) instrument on the 10-meter Keck I telescope, the team confirmed that the planet, named Kepler-88 d, orbits its star every four years, and its orbit is not circular, but elliptical. At three times the mass of Jupiter, Kepler-88 d is the most massive planet in this system.

The system, Kepler-88, was already famous among astronomers for two planets that orbit much closer to the star, Kepler-88 b and c (planets are typically named alphabetically in the order of their discovery).

Those two planets have a bizarre and striking dynamic called mean motion resonance. The sub-Neptune sized planet b orbits the star in just 11 days, which is almost exactly half the 22-day orbital period of planet c, a Jupiter-mass planet. The clockwork-like nature of their orbits is energetically efficient, like a parent pushing a child on a swing. Every two laps planet b makes around the star, it gets pumped. The outer planet, Kepler-88 c, is twenty times more massive than planet b, and so its force results in dramatic changes in the orbital timing of the inner planet.

Astronomers observed these changes, called transit timing variations, with the NASA Kepler space telescope, which detected the precise times when Kepler-88 b crossed (or transited) between the star and the telescope. Although transit timing variations (TTVs for short) have been detected in a few dozen planetary systems, Kepler-88 b has some of the largest timing variations. With transits arriving up to half a day early or late, the system is known as “the King of TTVs.”

The newly discovered planet adds another dimension to astronomers’ understanding of the system.

“At three times the mass of Jupiter, Kepler-88 d has likely been even more influential in the history of the Kepler-88 system than the so-called King, Kepler-88 c, which is only one Jupiter mass,” says Dr. Lauren Weiss, Beatrice Watson Parrent Postdoctoral Fellow at UH IfA and lead author on the discovery team. “So maybe Kepler-88 d is the new supreme monarch of this planetary empire – the empress.”

Perhaps these extrasolar sovereign leaders have had as much influence as Jupiter did for our solar system. Such planets might have promoted the development of rocky planets and directed water-bearing comets toward them. Dr. Weiss and colleagues are searching for similar royal planets in other planetary systems with small planets.

Their paper announcing the discovery of Kepler-88 d is published in today’s issue of The Astronomical Journal and also available in preprint format on ArXiv.org.




About HIRES

The High-Resolution Echelle Spectrometer (HIRES) produces spectra of single objects at very high spectral resolution, yet covering a wide wavelength range. It does this by separating the light into many “stripes” of spectra stacked across a mosaic of three large CCD detectors. HIRES is famous for finding exoplanets. Astronomers also use HIRES to study important astrophysical phenomena like distant galaxies and quasars, and find cosmological clues about the structure of the early universe, just after the Big Bang.



About W. M. Keck Observatory

The W. M. Keck Observatory telescopes are among the most scientifically productive on Earth. The two, 10-meter optical/infrared telescopes on the summit of Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometers, and world-leading laser guide star adaptive optics systems.

Some of the data presented herein were obtained at Keck Observatory, which is a private 501(c) 3 non-profit organization operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.


Thursday, September 14, 2017

Inferno World with Titanium Skies

Artist’s impression of the exoplanet WASP-19b

Infographic showing the path of stellar light through the atmosphere of WASP-19b

The star WASP-19 in the constellation of Vela (The Sails)



Videos
 
ESOcast 126 Light: Titanium oxide in exoplanetary atmosphere (4K UHD)
ESOcast 126 Light: Titanium oxide in exoplanetary atmosphere (4K UHD)

Flying from the Earth to the star WASP-19 in the constellation Vela
Flying from the Earth to the star WASP-19 in the constellation Vela

Light passing through the atmosphere of WASP-19b
Light passing through the atmosphere of WASP-19b



ESO’s VLT makes first detection of titanium oxide in an exoplanet

Astronomers using ESO’s Very Large Telescope have detected titanium oxide in an exoplanet atmosphere for the first time. This discovery around the hot-Jupiter planet WASP-19b exploited the power of the FORS2 instrument. It provides unique information about the chemical composition and the temperature and pressure structure of the atmosphere of this unusual and very hot world. The results appear today in the journal Nature.

A team of astronomers led by Elyar Sedaghati, an ESO fellow and recent graduate of TU Berlin, has examined the atmosphere of the exoplanet WASP-19b in greater detail than ever before. This remarkable planet has about the same mass as Jupiter, but is so close to its parent star that it completes an orbit in just 19 hours and its atmosphere is estimated to have a temperature of about 2000 degrees Celsius.

As WASP-19b passes in front of its parent star, some of the starlight passes through the planet’s atmosphere and leaves subtle fingerprints in the light that eventually reaches Earth. By using the FORS2 instrument on the Very Large Telescope the team was able to carefully analyse this light and deduce that the atmosphere contained small amounts of titanium oxide, water and traces of sodium, alongside a strongly scattering global haze.

Detecting such molecules is, however, no simple feat,” explains Elyar Sedaghati, who spent 2 years as ESO student to work on this project. “Not only do we need data of exceptional quality, but we also need to perform a sophisticated analysis. We used an algorithm that explores many millions of spectra spanning a wide range of chemical compositions, temperatures, and cloud or haze properties in order to draw our conclusions.

Titanium oxide is rarely seen on Earth. It is known to exist in the atmospheres of cool stars. In the atmospheres of hot planets like WASP-19b, it acts as a heat absorber. If present in large enough quantities, these molecules prevent heat from entering or escaping through the atmosphere, leading to a thermal inversion — the temperature is higher in the upper atmosphere and lower further down, the opposite of the normal situation. Ozone plays a similar role in Earth’s atmosphere, where it causes inversion in the stratosphere.

The presence of titanium oxide in the atmosphere of WASP-19b can have substantial effects on the atmospheric temperature structure and circulation.” explains Ryan MacDonald, another team member and an astronomer at Cambridge University, United Kingdom. “To be able to examine exoplanets at this level of detail is promising and very exciting.” adds Nikku Madhusudhan from Cambridge University who oversaw the theoretical interpretation of the observations.

The astronomers collected observations of WASP-19b over a period of more than one year. By measuring the relative variations in the planet’s radius at different wavelengths of light that passed through the exoplanet’s atmosphere and comparing the observations to atmospheric models, they could extrapolate different properties, such as the chemical content, of the exoplanet’s atmosphere.

This new information about the presence of metal oxides like titanium oxide and other substances will allow much better modeling of exoplanet atmospheres. Looking to the future, once astronomers are able to observe atmospheres of possibly habitable planets, the improved models will give them a much better idea of how to interpret those observations.

This important discovery is the outcome of a refurbishment of the FORS2 instrument that was done exactly for this purpose,” adds team member Henri Boffin, from ESO, who led the refurbishment project. “Since then, FORS2 has become the best instrument to perform this kind of study from the ground.



More Information


This research was presented in the paper entitled “Detection of titanium oxide in the atmosphere of a hot Jupiter” by Elyar Sedaghati et. al. to appear in Nature.

The team is composed of Elyar Sedaghati (ESO; Deutsches Zentrum für Luft- und Raumfahrt, Germany; and TU Berlin, Germany), Henri M.J. Boffin (ESO), Ryan J. MacDonald (Cambridge University, UK), Siddharth Gandhi (Cambridge University, UK), Nikku Madhusudhan (Cambridge University, UK), Neale P. Gibson (Queen’s University Belfast, UK), Mahmoudreza Oshagh (Georg-August-Universität Göttingen, Germany), Antonio Claret (Instituto de Astrofísica de Andalucía - CSIC, Spain) and Heike Rauer (Deutsches Zentrum für Luft- und Raumfahrt, Germany and TU Berlin, Germany).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Links



Contacts

Elyar Sedaghati
ESO Fellow
Vitacura, Santiago, Chile
Tel: +56 2 2463 6537
Email: esedagha@eso.org

Henri Boffin
ESO
Garching bei München, Germany
Tel: +49 89 3200 6542
Email: hboffin@eso.org

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Source: ESO/News

Thursday, February 16, 2017

Over 100 New Exoplanet Candidates Discovered With W. M. Keck Observatory

 HIRES instrument helps detect potential exoplanets. 
Artist’s conceptions of the probable planet orbiting a star called GJ 411 
Courtesy of Ricardo Ramirez.


International team of astronomers releases the largest-ever compilation of exoplanet-detecting observations, made from observatory atop Maunakea

Maunakea, Hawai'i  - An international team of astronomers today released a compilation of almost 61,000 individual measurements made on more than 1,600 stars, used to detect exoplanets elsewhere in our Milky Way galaxy. The compilation includes data on over 100 new potential exoplanets. The entire dataset was observed using one of the twin telescopes of the W. M. Keck Observatory on Maunakea over the past two decades. The search for new worlds elsewhere in our Milky Way galaxy is one of the most exciting frontiers in astronomy today. The paper is published in the Astronomical Journal.

HIRES instrument helps detect potential exoplanets 

"The work of this team and their willingness to share data and techniques unveils a world of new possibilities, vastly increasing the ability of astronomers everywhere to perform in-depth studies of these exoplanet systems," said Hilton Lewis, Keck Observatory Director. "Our observatory is proud to be the source of these discoveries, thanks to our cutting-edge instrumentation and the unparalleled observing conditions atop Maunakea."

The astronomers used a highly specialized instrument called the High Resolution Echelle Spectrometer, or HIRES, mounted on the 10-meter Keck-I telescope. The instrument detects tiny wobbles of nearby stars caused by the gravitational pull of planets orbiting those stars -a sensitive and challenging phenomenon to measure. Powerful instrumentation and sophisticated algorithms are needed to extract the signature of the exoplanets.

"HIRES is an incredible tool, part of the suite of sensitive instruments used to perform all kinds of extraordinary observations with our twin telescopes," said Greg Doppmann, Keck Observatory Support Astronomer. "Our scientific and technical support team brings their A-game daily-a precise focus on even the tiniest details-to ensure that these instruments are ready to deploy for each night of observing."

Contributors to the international team include representatives from the Carnegie Institution for Science, University of California at Santa Cruz, Yale University, University of Hertfordshire, and Universidad de Chile.

For more background information, please visit:

About W. M. Keck Observatory 

 The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes near the summit of Mauna Kea on the Island of Hawai'i feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA. For additional information regarding W. M. Keck Observatory, please visit  http://www.keckobservatory.org/.

Contact:

Andrea Lum
Bennet Group Strategic Communications
808-286-9569
andrea@bennetgroup.com

Rich Matsuda
W. M. Keck Observatory
(808) 881-3822
communications@keck.hawaii.edu


Wednesday, September 14, 2016

Nearby Exo-Earth Family Withstands Extreme Scrutiny

Artist’s concept of what the view might be like from inside the TRAPPIST-1 exoplanetary system showing three Earth-sized planets in orbit around the low-mass star. This alien planetary system is located only 40 light years away. Gemini South telescope imaging, the highest resolution images ever taken of the star, revealed no additional stellar companions providing strong evidence that three small, probably rocky planets orbit this star. Credit: Robert Hurt/JPL/Caltech. 


Astronomers combined the power of the 8-meter Gemini South telescope in Chile with an extremely high-resolution camera to scrutinize the star TRAPPIST-1. Previous observations of the star, which is only about 8% the mass of our Sun, revealed dips in the star’s light output that would be expected if several Earth-sized planets orbited the star. However, the situation would be greatly complicated if, upon closer examination, the star was found to have a yet-unseen stellar companion. 

No such companion was found with Gemini, which essentially seals the case for multiple Earth-sized planets orbiting TRAPPIST-1. 

Steve Howell of NASA’s Ames Research Center led the extremely high-resolution observations using the Differential Speckle Survey Instrument (DSSI), an instrument he has used before at both Gemini telescopes to probe other exoplanetary systems. The new observations reinforced the hypothesis that several Earth-sized planets are responsible for the fluctuations in the star’s brightness. “By finding no additional stellar companions in the star’s vicinity we confirm that a family of smallish planets orbit this star,” says Howell. “Using Gemini we can see closer to this star than the orbit of Mercury to our Sun. Gemini with DSSI is unique in being able to do this, bar none.” 

The research, led by Howell, is published in the September 13th issue of The Astrophysical Journal Letters

TRAPPIST-1 is what astronomers call a late M-type star; stars which are small, ultra-cool (compared to most stars), and faint. Late M stars are so faint that the only specimens we can observe are relatively close-by in space and, as the Gemini observations demonstrate, allow astronomers to probe very close to these stars in the search for companions. 

“While no current telescope can actually image an Earth-size planet around another star, even if orbiting a nearby star such as TRAPPIST-1, our instrument on Gemini allows us to detect close companion stars and even brown dwarfs.” says Elliott Horch, [Southern Connecticut State University] co-author of the paper. “Such observations validate not only the existence of exoplanets, but their small size as well.” 

M stars are of great interest to astronomers today as their diminutive size allows easier detection of small, Earth-size planets. The intrinsic faintness of M stars means that potentially habitable planets will have short orbital periods, on the order of weeks. Such planets will be the targets of detailed study by both ground- and space-based telescopes, studies that will attempt to measure the composition of their atmospheres and see if they are indeed Earth-like beyond just their size.

The discovery of TRAPPIST-1’s likely exoplanet pedigree began late in 2015 with data from the TRAPPIST (the TRansiting Planets and PlanetesImals Small Telescope) project. This work, published in the 12 May 2016 issue of the journal Nature, and led by Michael Gillon, observed TRAPPIST-1 over 62 nights. During that period, the star was found to fluctuate in a manner that is consistent with at least three Earth-sized planets orbiting and periodically eclipsing and blocking part of the star’s light from our view on the Earth. While work is still ongoing to refine the total number of planets, two of them appear to orbit in 1.5 and 2.4 days and are so close that they receive four and two times the radiation that our Earth receives from the Sun, respectively. The third planet is more difficult to characterize, having possible orbital periods between 4 to 73 days. However, this third planet’s most likely period, 18 days, would place this world well within the system’s habitable-zone where liquid water could exist on its surface. 

The Gemini observations, made with the DSSI instrument, were made during a temporary visit of the instrument at the Gemini South telescope in Chile. “Gemini’s flourishing Visitor Instrument program is producing superb results in all areas of astronomy,” said Chris Davis, a program director at the U.S. National Science Foundation, one of the agencies that funds the International Gemini Observatory and which also provided initial funding for DSSI. “The DSSI observations of the TRAPPIST-1 system of exoplanets is just one example. The instrument team and their collaborators deserve credit for building such a versatile and productive instrument and also for making it available to all of Gemini’s users." 

The DSSI instrument on Gemini provides a unique capability to characterize the environment around exoplanetary systems. The instrument provides extreme-resolution images by taking multiple extremely short (60 millisecond) exposures of a star to capture fine detail and “freeze” the turbulence caused by the Earth’s atmosphere. By combining the images and removing the momentary distortions caused by the Earth’s atmosphere, the final images yield a resolution equal to what the telescope would produce if it was in space. With this technique, called speckle interferometry, astronomers can see details at, or very near, the theoretical limit of the 8-meter Gemini mirror yielding the highest-resolution single telescope images available to astronomers. The available resolution is like being able to separate an automobile’s two headlights at a distance of about 2000 miles.


Science Contacts:

Dr. Steve B. Howell
Project Scientist, NASA K2 Mission
NASA Ames Research Center
Email:
steve.b.howell@nasa.gov
Desk: 650.604.4238
Cel: 520.461.6925


Dr. Elliott P. Horch
Professor of Physics, Southern Connecticut State University
Email:
horche2@southernct.edu
Desk: 203-392-6393
Cell: 203-214-4310



Media Contacts:

Peter Michaud
Gemini Observatory
Hilo, Hawai‘i
Email:
pmichaud@gemini.edu
Desk: (56) 51-2205-628
Available (in Chile) until 9/12/16


Manuel Paredes
Gemini Observatory
Gemini South Base Facility, La Serena, Chile
Email:
mparedes@gemini.edu
Cell: (56) 51-2205-671



Wednesday, April 22, 2015

First Exoplanet Visible Light Spectrum

Artist’s impression of the exoplanet 51 Pegasi b

The star 51 Pegasi in the constellation of Pegasus

Wide-field view of the sky around the star 51 Pegasi


# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #


Videos

Zooming in on 51 Pegasi
Zooming in on 51 Pegasi

Artist’s impression of the exoplanet 51 Pegasi b
Artist’s impression of the exoplanet 51 Pegasi b



New technique paints promising picture for future

Astronomers using the HARPS planet-hunting machine at ESO’s La Silla Observatory in Chile have made the first-ever direct detection of the spectrum of visible light reflected off an exoplanet. These observations also revealed new properties of this famous object, the first exoplanet ever discovered around a normal star: 51 Pegasi b. The result promises an exciting future for this technique, particularly with the advent of next generation instruments, such as ESPRESSO, on the VLT, and future telescopes, such as the E-ELT.

The exoplanet 51 Pegasi b [1] lies some 50 light-years from Earth in the constellation of Pegasus. It was discovered in 1995 and will forever be remembered as the first confirmed exoplanet to be found orbiting an ordinary star like the Sun [2]. It is also regarded as the archetypal hot Jupiter — a class of planets now known to be relatively commonplace, which are similar in size and mass to Jupiter, but orbit much closer to their parent stars.

Since that landmark discovery, more than 1900 exoplanets in 1200 planetary systems have been confirmed, but, in the year of the twentieth anniversary of its discovery, 51 Pegasi b returns to the ring once more to provide another advance in exoplanet studies.

The team that made this new detection was led by Jorge Martins from the Instituto de Astrofísica e Ciências do Espaço (IA) and the Universidade do Porto, Portugal, who is currently a PhD student at ESO in Chile. They used the HARPS instrument on the ESO 3.6-metre telescope at the La Silla Observatory in Chile.

Currently, the most widely used method to examine an exoplanet’s atmosphere is to observe the host star’s spectrum as it is filtered through the planet’s atmosphere during transit — a technique known as transmission spectroscopy. An alternative approach is to observe the system when the star passes in front of the planet, which primarily provides information about the exoplanet’s temperature.

The new technique does not depend on finding a planetary transit, and so can potentially be used to study many more exoplanets. It allows the planetary spectrum to be directly detected in visible light, which means that different characteristics of the planet that are inaccessible to other techniques can be inferred.

The host star’s spectrum is used as a template to guide a search for a similar signature of light that is expected to be reflected off the planet as it describes its orbit. This is an exceedingly difficult task as planets are incredibly dim in comparison to their dazzling parent stars.

The signal from the planet is also easily swamped by other tiny effects and sources of noise [3]. In the face of such adversity, the success of the technique when applied to the HARPS data collected on 51 Pegasi b provides an extremely valuable proof of concept.

Jorge Martins explains: “This type of detection technique is of great scientific importance, as it allows us to measure the planet’s real mass and orbital inclination, which is essential to more fully understand the system. It also allows us to estimate the planet’s reflectivity, or albedo, which can be used to infer the composition of both the planet’s surface and atmosphere.”

51 Pegasi b was found to have a mass about half that of Jupiter’s and an orbit with an inclination of about nine degrees to the direction to the Earth [4]. The planet also seems to be larger than Jupiter in diameter and to be highly reflective. These are typical properties for a hot Jupiter that is very close to its parent star and exposed to intense starlight.

HARPS was essential to the team’s work, but the fact that the result was obtained using the ESO 3.6-metre telescope, which has a limited range of application with this technique, is exciting news for astronomers. Existing equipment like this will be surpassed by much more advanced instruments on larger telescopes, such as ESO’s Very Large Telescope and the future European Extremely Large Telescope [5].

"We are now eagerly awaiting first light of the ESPRESSO spectrograph on the VLT so that we can do more detailed studies of this and other planetary systems,” concludes Nuno Santos, of the IA and Universidade do Porto, who is a co-author of the new paper.

 
Notes

[1] Both 51 Pegasi b and its host star 51 Pegasi are among the objects available for public naming in the IAU’s NameExoWorlds contest.

[2] Two earlier planetary objects were detected orbiting in the extreme environment of a pulsar.

[3] The challenge is similar to trying to study the faint glimmer reflected off a tiny insect flying around a distant and brilliant light.

[4] This means that the planet’s orbit is close to being edge on as seen from Earth, although this is not close enough for transits to take place.

[5] ESPRESSO on the VLT, and later even more powerful instruments on much larger telescopes such as the E-ELT, will allow for a significant increase in precision and collecting power, aiding the detection of smaller exoplanets, while providing an increase in detail in the data for planets similar to 51 Pegasi b.


More Information

This research was presented in a paper “Evidence for a spectroscopic direct detection of reflected light from 51 Peg b”, by J. Martins et al., to appear in the journal Astronomy & Astrophysics on 22 April 2015.

The team is composed of J. H. C. Martins (IA and Universidade do Porto, Porto, Portugal; ESO, Santiago, Chile), N. C. Santos (IA and Universidade do Porto), P. Figueira (IA and Universidade do Porto), J. P. Faria (IA and Universidade do Porto), M. Montalto (IA and Universidade do Porto), I. Boisse (Aix Marseille Université, Marseille, France), D. Ehrenreich (Observatoire de Genève, Geneva, Switzerland), C. Lovis (Observatoire de Genève), M. Mayor (Observatoire de Genève), C. Melo (ESO, Santiago, Chile), F. Pepe (Observatoire de Genève), S. G. Sousa (IA and Universidade do Porto), S. Udry (Observatoire de Genève) and D. Cunha (IA and Universidade do Porto).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


Links
 
Contacts

Jorge Martins
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +56 2 2463 3087
Email:
Jorge.Martins@iastro.pt

Nuno Santos
Instituto de Astrofísica e Ciências do Espaço/Universidade do Porto
Porto, Portugal
Tel: +351 226 089 893
Email:
Nuno.Santos@iastro.pt

Stéphane Udry
Observatoire de l’Université de Genève
Geneva, Switzerland
Tel: +41 22 379 24 67
Email:
stephane.udry@unige.ch

Isabelle Boisse
Aix Marseille Université
Marseille, France
Email:
Isabelle.Boisse@lam.fr

Richard Hook
ESO Public Information Officer
Garching, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email:
rhook@eso.org

Source:ESO

Tuesday, March 17, 2015

Direct Evidence for an Evolving Dust Cloud from an Exoplanet

Exoplanetology has progressed in several leaps. Initially, astronomers concentrated on simply discovering new planets outside our own Solar System. Having found over a thousand such bodies, and measured basic properties indicating their likely masses and for some of them, their sizes, the next step was to characterise them. This characterisation initially focused on the planets' atmospheres, as generally only the atmospheres emit and reflect light. Now, we are on the brink of the new era, where characterisation of exoplanetary surfaces and interiors could become feasible.

Characterisation of an exoplanetary atmosphere is possible in cases when the star-planet arrangement is such that the light originating from the host star occasionally travels through the planet's atmosphere - an event described as a planetary transit. If the atmosphere is sufficiently dense, and is extensive enough, its most abundant constituents can produce a unique spectroscopic imprint on the background starlight. From this the chemical composition of the atmosphere can be determined. A very similar technique could be successfully deployed to study surfaces of exoplanets, if planets can be found whose surfaces are at least partially "see through".

Prime objects for such observations are evaporating planets, whose outer layers get lifted into the surrounding space forming large, light absorbing/scattering clouds. The amount of light scattered by these clouds differs between shorter and longer wavelengths, depending on the size distributions of their constituent dust grains and their chemical compositions. This varying amount of scattering again leaves a unique imprint on the background light, which can be studied using multicolour photometry.

KIC 1255 b in transit. Artist's impression courtesy of Maciej Szyszko. [ PNG ]

Several potential candidates for such studies have been identified, including KIC 12557548, hypothesised to contain a transiting evaporating exoplanet which is so close to its host star that it completes an entire orbit (analogous to a year on Earth) in just 16 hours. KIC 12557548 b is thought to be a rocky planet more massive than Mercury, with a surface temperature of about 2100K. These properties cause a continuous loss of material through a wind, forming an extended tail of dust following the planet in its orbital path. Due to the self-limiting character of the mechanism driving the evaporation, the rate of dust ejection changes significantly between orbits, varying the amount of absorption observed during transits. This absorption produces a loss in the total observed light from the star, which can be measured as a depth (in per-cent) once every orbit when the planet and the entrained dust cloud passes across our line of sight to the star.

Astronomers observed KIC 12557548 on five nights in July 2013, using ULTRACAM on the William Herschel Telescope, to search for the colour dependence of the transit depth. To achieve the widest possible wavelength range with high enough signal-to-noise ratio, they used broad-band Sloan z', g' and u' filters. A clear transit signal was detected only on the first night (Figure 1). During the remaining four nights, the planet was in a quiescent period, with little or no dust cloud obscuring the star. As expected, the astronomers managed to observe differences in transit depths between the u', g' and z' filters on Night 1, with an increase in depth toward shorter wavelengths (Figures 1 & 2). This effect is consistent with extinction from the putative dust cloud surrounding the planet. Remaining nights allowed to constrain the size of the planet to less than 5.4 radii of Mercury.

Figure 1. Upper panel: z', g' and u' light curves of KIC 12557548 from 14 July 2013; best model fits are shown in red, binned data points are shown in black and raw data points are shown in orange and green for z' and g' bands respectively. Lower panel: g'/z' curve. Credit: Bochinski et al. (2015). [ PNG ]

After modelling Night 1 transit depths with the Cardelli, Clayton & Mathis (1989) interstellar extinction law, the extinction depths observed are broadly consistent with the wavelength-dependence of the reddening seen in the interstellar medium (Figure 2). This is strong independent and direct evidence in favour of the dust-cloud model for the transits. The color dependence of the transit depth is consistent with extinction due to dust with grain sizes between 0.25µm and 1µm. Analysis of a larger number of transit light curves potentially offers the opportunity to measure the composition of the grains. This is an unprecedented opportunity to learn the make-up of a rocky extrasolar planet. By doing that astronomers can find out how typical our Solar System is, and learn more about how Earth and other planets were formed. The team will be attempting to carry out such observations on the William Herschel Telescope in the summer of 2015.

Figure 2. The Cardelli, Clayton & Mathis (1989) interstellar extinction law fitted to our Night 1 transit depths. The best fit value was RV = 5.3 (solid line). Extinction laws for values of RV ranging between 2.50 and 9.00 are also shown. Credit: Bochinski et al. (2015). [ PNG ]

More information: 

Bochinski, Jakub J.; Haswell, Carole A.; Marsh, Tom R.; Dhillon, Vikram S. and Littlefair, Stuart P., 2015, "Direct evidence for an evolving dust cloud from the exoplanet KIC 12557548 b", ApJ Letters, 800, L21.


Contact: Javier Méndez  (Public Relations Officer)