Showing posts with label HD 209458b. Show all posts
Showing posts with label HD 209458b. Show all posts

Monday, December 14, 2015

NASA Space Telescopes Solve Missing Water Mystery in Comprehensive Survey of Exoplanets

Illustration Credit: NASA and ESA
Science Credit: NASA, ESA, and D. Sing (University of Exeter)
This image shows an artist's impression of the 10 hot Jupiter exoplanets studied by astronomer David Sing and his colleagues using the Hubble and Spitzer space telescopes. From top left to lower left, these planets are WASP-12b, WASP-6b, WASP-31b, WASP-39b, HD 189733b, HAT-P-12b, WASP-17b, WASP-19b, HAT-P-1b and HD 209458b.   Highest-quality image


A survey of 10 hot, Jupiter-sized exoplanets conducted with NASA's Hubble and Spitzer space telescopes has led a team to solve a long-standing mystery — why some of these worlds seem to have less water than expected. The findings offer new insights into the wide range of planetary atmospheres in our galaxy and how planets are assembled.

Of the nearly 2,000 planets confirmed to be orbiting other stars, a subset are gaseous planets with characteristics similar to those of Jupiter but that orbit very close to their stars, making them blistering hot.

Their close proximity to the star makes them difficult to observe in the glare of starlight. Due to this difficulty, Hubble has only explored a handful of hot Jupiters in the past. These initial studies have found several planets to hold less water than predicted by atmospheric models.

The international team of astronomers has tackled the problem by making the largest-ever spectroscopic catalog of exoplanet atmospheres. All of the planets in the catalog follow orbits oriented so the planet passes in front of their parent star, as seen from Earth. During this so-called transit, some of the starlight travels through the planet's outer atmosphere. "The atmosphere leaves its unique fingerprint on the starlight, which we can study when the light reaches us," explained co-author Hannah Wakeford of NASA's Goddard Space Flight Center in Greenbelt, Maryland.

By combining data from NASA's Hubble and Spitzer Space telescopes, the team was able to attain a broad spectrum of light covering wavelengths from the optical to infrared. The difference in planetary radius as measured between visible and infrared wavelengths was used to indicate the type of planetary atmosphere being observed for each planet in the sample, whether hazy or clear. A cloudy planet will appear larger in visible light than at infrared wavelengths, which penetrate deeper into the atmosphere. It was this comparison that allowed the team to find a correlation between hazy or cloudy atmospheres and faint water detection.

"I'm really excited to finally see the data from this wide group of planets together, as this is the first time we've had sufficient wavelength coverage to compare multiple features from one planet to another," said David Sing of the University of Exeter, United Kingdom, lead author of the paper. "We found the planetary atmospheres to be much more diverse than we expected."

"Our results suggest it's simply clouds hiding the water from prying eyes, and therefore rule out dry hot Jupiters," explained co-author Jonathan Fortney of the University of California, Santa Cruz. "The alternative theory to this is that planets form in an environment deprived of water, but this would require us to completely rethink our current theories of how planets are born."

The results are being published in the Dec. 14, 2015, issue of the British science journal Nature.

The study of exoplanetary atmospheres is currently in its infancy. Hubble's successor, the James Webb Space Telescope, will open a new infrared window on the study of exoplanets and their atmospheres.


Contacts

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4514
villard@stsci.edu

Source: HubbleSite

Thursday, July 24, 2014

Hubble Finds Three Surprisingly Dry Exoplanets

This is an artistic illustration of the gas giant planet HD 209458b (unofficially named Osiris) located 150 light-years away in the constellation Pegasus. This is a "hot Jupiter" class planet. Estimated to be 220 times the mass of Earth. The planet's atmosphere is a seething 2,150 degrees Fahrenheit. It orbits very closely to its bright sunlike star, and the orbit is tilted edge-on to Earth. This makes the planet an ideal candidate for the Hubble Space Telescope to be used to make precise measurements of the chemical composition of the giant's atmosphere as starlight filters though it. To the surprise of astronomers, they have found much less water vapor in the atmosphere than standard planet-formation models predict.  Credit: NASA, ESA, and G. Bacon (STScI)

This graph compares observations with modeled infrared spectra of three hot-Jupiter-class exoplanets that were spectroscopically observed with the Hubble Space Telescope. The red curve in each case is the best-fit model spectrum for the detection of water vapor absorption in the planetary atmosphere. The blue circles and error bars show the processed and analyzed data from Hubble's spectroscopic observations.  Credit: NASA, ESA, N. Madhusudhan (University of Cambridge), and A. Feild and G. Bacon (STScI)

Astronomers using NASA's Hubble Space Telescope have gone looking for water vapor in the atmospheres of three planets orbiting stars similar to the Sun — and have come up nearly dry.

The three planets, HD 189733b, HD 209458b, and WASP-12b, are between 60 and 900 light-years away. These giant gaseous worlds are so hot, with temperatures between 1,500 and 4,000 degrees Fahrenheit, that they are ideal candidates for detecting water vapor in their atmospheres.

However, to the surprise of the researchers, the planets surveyed have only one-tenth to one one-thousandth the amount of water predicted by standard planet-formation theories.

"Our water measurement in one of the planets, HD 209458b, is the highest-precision measurement of any chemical compound in a planet outside the solar system, and we can now say with much greater certainty than ever before that we've found water in an exoplanet," said Dr. Nikku Madhusudhan of the Institute of Astronomy at the University of Cambridge, United Kingdom, who led the research. "However, the low water abundance we are finding is quite astonishing."

Madhusudhan said that this finding presents a major challenge to exoplanet theory. "It basically opens a whole can of worms in planet formation. We expected all these planets to have lots of water in them. We have to revisit planet formation and migration models of giant planets, especially 'hot Jupiters', and investigate how they're formed."

He emphasizes that these results, though found in these large hot planets close to their parent stars, may have major implications for the search for water in potentially habitable Earth-sized exoplanets. Instruments on future space telescopes may need to be designed with a higher sensitivity if target planets are drier than predicted. "We should be prepared for much lower water abundances than predicted when looking at super-Earths (rocky planets that are several times the mass of Earth)," Madhusudhan said.

Using near-infrared spectra of the planets observed with Hubble, Madhusudhan and his collaborators from the Space Telescope Science Institute, Baltimore, Maryland; the University of Maryland, College Park, Maryland; the Johns Hopkins University, Baltimore, Maryland; and the Dunlap Institute at the University of Toronto, Ontario, Canada, estimated the amount of water vapor in the planetary atmospheres based on sophisticated computer models and statistical techniques to explain the data.

The planets were selected because they orbit relatively bright stars that provide enough radiation for an infrared-light spectrum to be taken. Absorption features from the water vapor in the planet's atmosphere are superimposed on the small amount of starlight that glances through the planet's atmosphere.

Detecting water is almost impossible for transiting planets from the ground because Earth's atmosphere has a lot of water in it that contaminates the observation. "We really need the Hubble Space Telescope to make such observations," said Nicolas Crouzet of the Dunlap Institute at the University of Toronto and co-author of the study.

The currently accepted theory on how giant planets in our solar system formed is known as core accretion, in which a planet is formed around the young star in a protoplanetary disk made primarily of hydrogen, helium, and particles of ices and dust composed of other chemical elements. The dust particles stick to each other, eventually forming larger and larger grains. The gravitational forces of the disk draw in these grains and larger particles until a solid core forms. This core then leads to runaway accretion of both solids and gas to eventually form a giant planet.

This theory predicts that the proportions of the different elements in the planet are enhanced relative to those in their star, especially oxygen that is supposed to be the most enhanced. Once the giant planet forms, its atmospheric oxygen is expected to be largely encompassed within water molecules. The very low levels of water vapor found by this research raises a number of questions about the chemical ingredients that lead to planet formation, say researchers.

"There are so many things we still don't know about exoplanets, so this opens up a new chapter in understanding how planets and solar systems form," said Drake Deming of the University of Maryland, who led one of the precursor studies. "The problem is that we are assuming the water to be as abundant as in our own solar system. What our study has shown is that water features could be a lot weaker than our expectations."
The findings are being published on July 24 in The Astrophysical Journal Letters.

CONTACT

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514

villard@stsci.edu

Nikku Madhusudhan
Institute of Astronomy, University of Cambridge, United Kingdom
617-475-5112 (or 011-44-01223-766619)

nmadhu@ast.cam.ac.uk

Source: HubbleSite


Thursday, July 15, 2010

Superhot Planet Likely Possesses Comet-like Tail

Artist's Concept of Exoplanet with Comet-like Tail
Artwork Credit: NASA, ESA, and G. Bacon (STScI)
Science Credit: J. Linsky (University of Colorado, Boulder, Colo.)

As if the debate over what is and what is not a planet hasn't gotten confusing enough, Hubble Space Telescope astronomers have now confirmed the existence of a tortured, baked object that could be called a "cometary planet."

The gas giant planet, dubbed HD 209458b, is orbiting so close to its star that its heated atmosphere is escaping away into space. Now, observations by the new Cosmic Origins Spectrograph (COS) aboard NASA's Hubble suggest that powerful stellar winds are sweeping the castoff material behind the scorched planet and shaping it into a comet-like tail.

"Since 2003 scientists have theorized that the lost mass is being pushed back into a tail and have even calculated what the tail looks like," says astronomer Jeffrey Linsky of the University of Colorado in Boulder, leader of the COS study. "We think we have the best observational evidence to support that theory. We have measured gas coming off the planet at specific speeds, some coming toward Earth. The most likely interpretation is that we have measured the velocity of material in a tail."

HD 209458b weighs slightly less than Jupiter, but it orbits 100 times closer to its star than Jupiter does. The roasted planet zips around in a mere 3.5 days. (In contrast, our solar system's speedster, Mercury, orbits the Sun in a leisurely 88 days.) The planet is one of the most intensely scrutinized extrasolar planets because it is one of the few known alien worlds that can be seen passing in front of, or transiting, its star. The transit causes the starlight to dim slightly. In fact, the gas giant is the first alien world discovered to transit its parent star. It orbits the star HD 209458, located 153 light-years from Earth.

Linsky and his team used COS to analyze the planet's atmosphere during transiting events. During a transit, astronomers can study the structure and chemical makeup of a planet's atmosphere by sampling the starlight that passes through it. The dip in starlight due to the planet's passage, excluding the planet's atmosphere, is very small, only 1.5 percent. When the atmosphere is added, the dip jumps to 8 percent, indicating a bloated atmosphere.

COS detected the heavy elements carbon and silicon in the planet's super-hot (2,000-degree-Fahrenheit) atmosphere. This detection reveals that the parent star is heating the entire atmosphere, dredging up the heavier elements and allowing them to escape the planet.

The COS data also showed that the material leaving the planet was not all traveling at the same velocity. "We found gas escaping at high velocities, with a large amount of this gas flowing toward us at 22,000 miles per hour," Linsky explains. "This large gas flow is likely gas swept up by the stellar wind to form the comet-like tail trailing the planet."

Hubble's newest spectrograph, with its ability to probe a planet's chemistry at ultraviolet wavelengths that are not accessible to ground-based telescopes, is proving to be an important instrument for probing the atmospheres of "hot Jupiters" like HD 209458b. Astronomers have also used COS to sample the atmosphere of another baked planet, WASP-12b, whose puffy atmosphere is spilling onto its star.

Another Hubble instrument, the Space Telescope Imaging Spectrograph (STIS), observed HD 209458b in 2003. The STIS data showed an active, evaporating atmosphere, and a comet-tail-like structure was suggested as a possibility. But STIS wasn't able to obtain the spectroscopic detail necessary to show an earthward-moving component of the gas during transits. Because of COS's unique combination of very high ultraviolet sensitivity and good spectral resolution, the earthward moving component of the gas — the tail — could be directly detected for the first time.

Although this "extreme" planet is getting roasted by its star, it won't be destroyed anytime soon. "It will take about a trillion years for the planet to evaporate," Linsky says.

The results appeared in the July 10 issue of The Astrophysical Journal.

CONTACT

Donna Weaver
Space Telescope Science Institute, Baltimore, Md.
410-338-4493

dweaver@stsci.edu

Jeffrey Linsky
University of Colorado, Boulder, Colo.
303-492-7838

jlinsky@jila.colorado.edu

Wednesday, June 23, 2010

VLT Detects First Superstorm on Exoplanet

Planet with superstorm (artist's impression)

Planet with superstorm (artist's impression)

Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied “hot Jupiter” HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting “first” — measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass.

The results appear this week in the journal Nature.

“HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour‚” says Ignas Snellen, who led the team of astronomers.

HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun–Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. “On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b,” says team member Simon Albrecht.

HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet’s atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO’s Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint fingerprints, observing the planet for about five hours, as it passed in front of its star. “CRIRES is the only instrument in the world that can deliver spectra that are sharp enough to determine the position of the carbon monoxide lines at a precision of 1 part in 100 000,” says another team member Remco de Kok. “This high precision allows us to measure the velocity of the carbon monoxide gas for the first time using the Doppler effect.”

The astronomers achieved several other firsts. They directly measured the velocity of the exoplanet as it orbits its home star. “In general, the mass of an exoplanet is determined by measuring the wobble of the star and assuming a mass for the star, according to theory. Here, we have been able to measure the motion of the planet as well, and thus determine both the mass of the star and of the planet,” says co-author Ernst de Mooij.

Also for the first time, the astronomers measured how much carbon is present in the atmosphere of this planet. “It seems that H209458b is actually as carbon-rich as Jupiter and Saturn. This could indicate that it was formed in the same way,” says Snellen. “In the future, astronomers may be able to use this type of observation to study the atmospheres of Earth-like planets, to determine whether life also exists elsewhere in the Universe.”

More information

This research was presented in a paper that appears this week in the journal Nature: “The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b”, by I. Snellen et al.

The team is composed of Ignas A. G. Snellen and Ernst J. W. de Mooij, (Leiden Observatory, The Netherlands), Remco J. de Kok (SRON, Utrecht, The Netherlands), and Simon Albrecht (Massachusetts Institute of Technology, USA).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and VISTA, the world’s largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Research paper
More info: Exoplanet Media kit PDF (in English and en Español)

Contacts


Ignas Snellen
Leiden Observatory
Leiden, The Netherlands
Tel: +31 63 00 31 983
Email:
snellen@strw.leidenuniv.nl

Henri Boffin
ESO, La Silla, Paranal and E-ELT Press Officer
Garching, Germany
Tel: +49 89 3200 6222
Cell: +49 174 515 43 24
Email:
hboffin@eso.org