Showing posts with label WASP-39b. Show all posts
Showing posts with label WASP-39b. Show all posts

Monday, November 28, 2022

NASA’s Webb Reveals an Exoplanet Atmosphere as Never Seen Before

Exoplanet WASP-39 b and its Star (Illustration)
Credits: Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)


Exoplanet WASP-39 b (Transmission Spectra)
Credits: Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)




NASA’s James Webb Space Telescope just scored another first: a molecular and chemical profile of a distant world’s skies.

While Webb and other space telescopes, including NASA's Hubble and Spitzer, previously have revealed isolated ingredients of this broiling planet’s atmosphere, the new readings from Webb provide a full menu of atoms, molecules, and even signs of active chemistry and clouds.

The latest data also give a hint of how these clouds might look up close: broken up rather than a single, uniform blanket over the planet.

The telescope’s array of highly sensitive instruments was trained on the atmosphere of WASP-39 b, a “hot Saturn” (a planet about as massive as Saturn but in an orbit tighter than Mercury) orbiting a star some 700 light-years away. 

The findings bode well for the capability of Webb’s instruments to conduct the broad range of investigations of all types of exoplanets – planets around other stars – hoped for by the science community. That includes probing the atmospheres of smaller, rocky planets like those in the TRAPPIST-1 system.

“We observed the exoplanet with multiple instruments that, together, provide a broad swath of the infrared spectrum and a panoply of chemical fingerprints inaccessible until [this mission],” said Natalie Batalha, an astronomer at the University of California, Santa Cruz, who contributed to and helped coordinate the new research. “Data like these are a game changer.”

The suite of discoveries is detailed in a set of five new scientific papers, three of which are in press and two of which are under review. Among the unprecedented revelations is the first detection in an exoplanet atmosphere of sulfur dioxide (SO2), a molecule produced from chemical reactions triggered by high-energy light from the planet’s parent star. On Earth, the protective ozone layer in the upper atmosphere is created in a similar way.

“This is the first time we see concrete evidence of photochemistry – chemical reactions initiated by energetic stellar light – on exoplanets,” said Shang-Min Tsai, a researcher at the University of Oxford in the United Kingdom and lead author of the paper explaining the origin of sulfur dioxide in WASP-39 b’s atmosphere. “I see this as a really promising outlook for advancing our understanding of exoplanet atmospheres with [this mission].” 

This led to another first: scientists applying computer models of photochemistry to data that requires such physics to be fully explained. The resulting improvements in modeling will help build the technological know-how to interpret potential signs of habitability in the future.

“Planets are sculpted and transformed by orbiting within the radiation bath of the host star,” Batalha said. “On Earth, those transformations allow life to thrive.”

The planet’s proximity to its host star – eight times closer than Mercury is to our Sun – also makes it a laboratory for studying the effects of radiation from host stars on exoplanets. Better knowledge of the star-planet connection should bring a deeper understanding of how these processes affect the diversity of planets observed in the galaxy.

To see light from WASP-39 b, Webb tracked the planet as it passed in front of its star, allowing some of the star’s light to filter through the planet’s atmosphere. Different types of chemicals in the atmosphere absorb different colors of the starlight spectrum, so the colors that are missing tell astronomers which molecules are present. By viewing the universe in infrared light, Webb can pick up chemical fingerprints that can’t be detected in visible light.

Other atmospheric constituents detected by the Webb telescope include sodium (Na), potassium (K), and water vapor (H2O), confirming previous space- and ground-based telescope observations as well as finding additional fingerprints of water, at these longer wavelengths, that haven’t been seen before.

Webb also saw carbon dioxide (CO2) at higher resolution, providing twice as much data as reported from its previous observations. Meanwhile, carbon monoxide (CO) was detected, but obvious signatures of both methane (CH4) and hydrogen sulfide (H2S) were absent from the Webb data. If present, these molecules occur at very low levels.

To capture this broad spectrum of WASP-39 b’s atmosphere, an international team numbering in the hundreds independently analyzed data from four of the Webb telescope’s finely calibrated instrument modes.

"We had predicted what [the telescope] would show us, but it was more precise, more diverse, and more beautiful than I actually believed it would be,” said Hannah Wakeford, an astrophysicist at the University of Bristol in the United Kingdom who investigates exoplanet atmospheres.

Having such a complete roster of chemical ingredients in an exoplanet atmosphere also gives scientists a glimpse of the abundance of different elements in relation to each other, such as carbon-to-oxygen or potassium-to-oxygen ratios. That, in turn, provides insight into how this planet – and perhaps others – formed out of the disk of gas and dust surrounding the parent star in its younger years. 

WASP-39 b’s chemical inventory suggests a history of smashups and mergers of smaller bodies called planetesimals to create an eventual goliath of a planet.

“The abundance of sulfur [relative to] hydrogen indicated that the planet presumably experienced significant accretion of planetesimals that can deliver [these ingredients] to the atmosphere,” said Kazumasa Ohno, a UC Santa Cruz exoplanet researcher who worked on Webb data. “The data also indicates that the oxygen is a lot more abundant than the carbon in the atmosphere. This potentially indicates that WASP-39 b originally formed far away from the central star.”  In so precisely parsing an exoplanet atmosphere, the Webb telescope’s instruments performed well beyond scientists’ expectations – and promise a new phase of exploration among the broad variety of exoplanets in the galaxy.

“We are going to be able to see the big picture of exoplanet atmospheres,” said Laura Flagg, a researcher at Cornell University and a member of the international team. “It is incredibly exciting to know that everything is going to be rewritten. That is one of the best parts of being a scientist.”

The James Webb Space Telescope is the world's premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).



About This Release: Credits:

Media Contact:

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Permissions:
Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents:




Sunday, March 04, 2018

NASA Finds a Large Amount of Water in an Exoplanet's Atmosphere

Using Hubble and Spitzer space telescopes, scientists studied the "hot Saturn" called WASP-39b - a hot, bloated, Saturn-mass exoplanet located about 700 light-years from Earth. By dissecting starlight filtering through the planet's atmosphere into its component colors, the team found clear evidence for a large amount of water vapor. In fact, WASP-39b has three times as much water as Saturn does. Although the researchers predicted they'd see water, they were surprised by how much they found. This suggests that the planet formed farther out from the star, where it was bombarded by a lot of icy material. Because WASP-39b has so much more water than Saturn, it must have formed differently from our famously ringed neighbor. Credits: NASA, ESA, G. Bacon and A. Feild (STScI), and H. Wakeford (STScI/Univ. of Exeter) .  › Larger view

Using Hubble and Spitzer, astronomers analyzed the atmosphere of the "hot Saturn" exoplanet WASP-39b, and they captured the most complete spectrum of an exoplanet's atmosphere possible with present-day technology. By dissecting starlight filtering through the planet's atmosphere into its component colors, the team found clear evidence for water vapor. Although the researchers predicted they would see water, they were surprised by how much water they found - three times as much water as Saturn has. This suggests that the planet formed farther out from the star, where it was bombarded by icy material. Credits: NASA, ESA, G. Bacon and A. Feild (STScI), and H. Wakeford (STScI/Univ. of Exeter).  › Larger view


Much like detectives who study fingerprints to identify the culprit, scientists used NASA's Hubble and Spitzer space telescopes to find the "fingerprints" of water in the atmosphere of a hot, bloated, Saturn-mass exoplanet some 700 light-years away. And, they found a lot of water. In fact, the planet, known as WASP-39b, has three times as much water as Saturn does.

Though no planet like this resides in our solar system, WASP-39b can provide new insights into how and where planets form around a star, say researchers. This exoplanet is so unique, it underscores the fact that the more astronomers learn about the complexity of other worlds, the more there is to learn about their origins. This latest observation is a significant step toward characterizing these worlds.

Although the researchers predicted they'd see water, they were surprised by how much water they found in this "hot Saturn." Because WASP-39b has so much more water than our famously ringed neighbor, it must have formed differently. The amount of water suggests that the planet actually developed far away from the star, where it was bombarded by a lot of icy material. WASP-39b likely had an interesting evolutionary history as it migrated in, taking an epic journey across its planetary system and perhaps obliterating planetary objects in its path.

"We need to look outward so we can understand our own solar system," explained lead investigator Hannah Wakeford of the Space Telescope Science Institute in Baltimore, and the University of Exeter in Devon, United Kingdom. "But exoplanets are showing us that planet formation is more complicated and more confusing than we thought it was. And that's fantastic!"

Wakeford and her team were able to analyze the atmospheric components of this exoplanet, which is similar in mass to Saturn but profoundly different in many other ways. By dissecting starlight filtering through the planet's atmosphere into its component colors, the team found clear evidence for water. This water is detected as vapor in the atmosphere.

Using Hubble and Spitzer, the team has captured the most complete spectrum of an exoplanet's atmosphere possible with present-day technology. "This spectrum is thus far the most beautiful example we have of what a clear exoplanet atmosphere looks like," said Wakeford.

"WASP-39b shows exoplanets can have much different compositions than those of our solar system," said co-author David Sing of the University of Exeter. "Hopefully, this diversity we see in exoplanets will give us clues in figuring out all the different ways a planet can form and evolve."

Located in the constellation Virgo, WASP-39b whips around a quiet, Sun-like star, called WASP-39, once every four days. The exoplanet is currently positioned more than 20 times closer to its star than Earth is to the Sun. It is tidally locked, meaning it always shows the same face to its star.

Its day-side temperature is a scorching 1,430 degrees Fahrenheit (776.7 degrees Celsius). Powerful winds transport heat from the dayside around the planet, keeping the permanent nightside almost as hot. Although it is called a "hot Saturn," WASP-39b is not known to have rings. Instead, is has a puffy atmosphere that is free of high-altitude clouds, allowing Wakeford and her team to peer down into its depths.

Looking ahead, Wakeford hopes to use NASA's James Webb Space Telescope - scheduled to launch in 2019 - to get an even more complete spectrum of the exoplanet. Webb will be able to give information about the planet's atmospheric carbon, which absorbs light at longer infrared wavelengths than Hubble can see. By understanding the amount of carbon and oxygen in the atmosphere, scientists can learn even more about where and how this planet formed.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.



For more information about NASA's Hubble Space Telescope, visit: https://www.nasa.gov/hubble

For more information about NASA's Spitzer Space Telescope, visit:  https://www.nasa.gov/spitzer



News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-5011

calla.e.cofield@jpl.nasa.gov

Ann Jenkins / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4488 / 410-338-4514

jenkins@stsci.edu / villard@stsci.edu


Monday, December 14, 2015

NASA Space Telescopes Solve Missing Water Mystery in Comprehensive Survey of Exoplanets

Illustration Credit: NASA and ESA
Science Credit: NASA, ESA, and D. Sing (University of Exeter)
This image shows an artist's impression of the 10 hot Jupiter exoplanets studied by astronomer David Sing and his colleagues using the Hubble and Spitzer space telescopes. From top left to lower left, these planets are WASP-12b, WASP-6b, WASP-31b, WASP-39b, HD 189733b, HAT-P-12b, WASP-17b, WASP-19b, HAT-P-1b and HD 209458b.   Highest-quality image


A survey of 10 hot, Jupiter-sized exoplanets conducted with NASA's Hubble and Spitzer space telescopes has led a team to solve a long-standing mystery — why some of these worlds seem to have less water than expected. The findings offer new insights into the wide range of planetary atmospheres in our galaxy and how planets are assembled.

Of the nearly 2,000 planets confirmed to be orbiting other stars, a subset are gaseous planets with characteristics similar to those of Jupiter but that orbit very close to their stars, making them blistering hot.

Their close proximity to the star makes them difficult to observe in the glare of starlight. Due to this difficulty, Hubble has only explored a handful of hot Jupiters in the past. These initial studies have found several planets to hold less water than predicted by atmospheric models.

The international team of astronomers has tackled the problem by making the largest-ever spectroscopic catalog of exoplanet atmospheres. All of the planets in the catalog follow orbits oriented so the planet passes in front of their parent star, as seen from Earth. During this so-called transit, some of the starlight travels through the planet's outer atmosphere. "The atmosphere leaves its unique fingerprint on the starlight, which we can study when the light reaches us," explained co-author Hannah Wakeford of NASA's Goddard Space Flight Center in Greenbelt, Maryland.

By combining data from NASA's Hubble and Spitzer Space telescopes, the team was able to attain a broad spectrum of light covering wavelengths from the optical to infrared. The difference in planetary radius as measured between visible and infrared wavelengths was used to indicate the type of planetary atmosphere being observed for each planet in the sample, whether hazy or clear. A cloudy planet will appear larger in visible light than at infrared wavelengths, which penetrate deeper into the atmosphere. It was this comparison that allowed the team to find a correlation between hazy or cloudy atmospheres and faint water detection.

"I'm really excited to finally see the data from this wide group of planets together, as this is the first time we've had sufficient wavelength coverage to compare multiple features from one planet to another," said David Sing of the University of Exeter, United Kingdom, lead author of the paper. "We found the planetary atmospheres to be much more diverse than we expected."

"Our results suggest it's simply clouds hiding the water from prying eyes, and therefore rule out dry hot Jupiters," explained co-author Jonathan Fortney of the University of California, Santa Cruz. "The alternative theory to this is that planets form in an environment deprived of water, but this would require us to completely rethink our current theories of how planets are born."

The results are being published in the Dec. 14, 2015, issue of the British science journal Nature.

The study of exoplanetary atmospheres is currently in its infancy. Hubble's successor, the James Webb Space Telescope, will open a new infrared window on the study of exoplanets and their atmospheres.


Contacts

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4514
villard@stsci.edu

Source: HubbleSite