Showing posts with label Dual active galactic nuclei (AGNs). Show all posts
Showing posts with label Dual active galactic nuclei (AGNs). Show all posts

Saturday, June 28, 2025

Duel of the Dual: The Mystery of a Quasar Pair

Hubble Space Telescope image of the binary quasar pair J0749+2255
Credit:
NASA, ESA, Yu-Ching Chen (UIUC), Hsiang-Chih Hwang (IAS), Nadia Zakamska (JHU), Yue Shen (UIUC)

Figure 1: A map of the flux detected around the Hɑ and [NII] lines in the J0749+2255 system.
The two quasars are found in the central region, denoted with “NE” and “SW.” 
Credit: Adapted from Ishikawa et al. 2025

Authors: Yuzo Ishikawa et al.
First Author’s Institution: Johns Hopkins University and MIT Kavli Institute for Astrophysics and Space Research
Status: Published in ApJ

Binary supermassive black holes are an interesting phenomenon, with implications for galaxy evolution and gravitational wave observations. It is thought that these supermassive black hole pairs most often arise from galaxy mergers, during which gas accretion can spark active galactic nucleus activity. Today’s article analyzes JWST observations of one particular pair of quasars (a type of active galactic nucleus) with the lovely poetic name of J0749+2255. As shown in Figure 1, these quasars (observed at a redshift of z = 2.17) are quite close together, separated by only 12,300 light-years. They find that the southwest quasar is about three times brighter than its partner in the northeast, but the real interesting stuff is found in the spectral analysis.

Figure 2: Spectral observations of the two quasars, vertically offset for clarity. The blue and red curves represent JWST observations, with the gray lines representing observations from previous works with other telescopes. The JWST results shown here demonstrate the remarkable similarity between the two quasars. Adapted from Ishikawa et al. 2025

Seeing Double?

Figure 2 shows the spectra for the SW and NE quasars, and the first thing that is impossible to ignore is just how similar they are. There are some small differences; for example, the NE quasar is slightly redder than the SW quasar, and some emission lines have different shapes and are a smidge offset from one another. But the general similarity brings up the possibility that what we’re looking at isn’t two separate quasars, but rather one object that’s being gravitationally lensed! The small differences in the spectra could be consistent with a lensing scenario, as they could be explained by time delays in the lensing or foreground contamination. A major problem with this idea, however, is that no observations of this system have provided evidence for a lens: we have not seen the massive foreground object that would actually be causing the gravitational lensing. While it’s possible that the lens is just incredibly faint, there’s no smoking gun for lensing happening here.

Figure 3: Maps of Hɑ emission with the quasar contributions removed. Left panel shows the flux, middle shows the velocity dispersion, and right the radial velocity. The radial velocity measurements provide strong evidence for a disk with gas rotation and relatively little disturbance, which is not usually the case for merger environments. Credit: Ishikawa et al. 2025

Disk Gas Enters the Chat

The story becomes even more complicated when you look beyond the quasars, as JWST observations also detected diffuse emission from gas as shown in Figure 3. This gas is at the same redshift as the quasars, and can thus be associated with their host galaxy. And crucially, this gas doesn’t show any signs of lensing, such as the distinct arcs or symmetry you find in other lensed systems. This, coupled with the differences in the quasar spectra, suggests that this is not a lensed system, and that in fact we are looking at two different quasars.

But even within this model there are mysteries afoot! It’s generally thought that dual quasar systems are found in galaxy mergers, and there is some evidence that we’re seeing that here. The region labeled T1 in Figure 1 is one such piece of evidence, thought to be a tidal tail formed by gravitational disruptions during a merger event. It’s also generally thought that mergers provide a key way to trigger active galactic nucleus activity, where the two supermassive black holes of the merging galaxies become fed by the same gas reservoir. This could explain why the two quasars in J0749+2255 are so similar, as they may have undergone very similar accretion histories.

However, this story is complicated by the dynamics within the gas surrounding the quasars. As shown in the rightmost panel of Figure 3, the quasars are embedded in a gas disk that’s rotating, with one half of the gas being redshifted and the other half blue shifted. The quasars aren’t separated into these two regions, but are rather both found at the center of the disk. And the gas is showing none of the kinematic disturbance we would expect during a major merger, as the disk seems to be relatively stable. So maybe we’re not witnessing a merger in progress, but rather a disk galaxy that is playing host to two quasars! Based on simulations, one way this could happen is if a major merger takes place at an earlier time, and two black holes form from the resulting instabilities. This is another possible explanation for why the quasars are so similar.

Overall, this work points to the complicated nature of dual quasar systems. Is this one quasar being lensed or two different quasars? If they are distinct objects, are we witnessing a merger of galaxies, or did they both form in one galaxy? Future observations may be the key to answering these questions, but for now it remains a very interesting system.

Original astrobite edited by Hillary Andales




About the author, Skylar Grayson:

Skylar Grayson is an astrophysics PhD candidate and NSF Graduate Research Fellow at Arizona State University. Her primary research focuses on active galactic nucleus feedback processes in cosmological simulations. She also works in astronomy education research, studying online learners in both undergraduate and free-choice environments. In her free time, Skylar keeps herself busy doing science communication on social media, playing drums and guitar, and crocheting!



Editor’s Note: Astrobites is a graduate-student-run organization that digests astrophysical literature for undergraduate students. As part of the partnership between the AAS and astrobites, we occasionally repost astrobites content here at AAS Nova. We hope you enjoy this post from astrobites; the original can be viewed at astrobites.org.


Friday, March 28, 2025

NASA's Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe

Credits/Image: NASA, ESA, CSA, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Phill Cargile (CfA), Joris Witstok (Cambridge, University of Copenhagen), P. Jakobsen (University of Copenhagen), Alyssa Pagan (STScI), Mahdi Zamani (ESA/Webb), JADES Collaboration

Credits/Image: NASA, ESA, CSA, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Phill Cargile (CfA), Joris Witstok (Cambridge, University of Copenhagen), P. Jakobsen (University of Copenhagen), Alyssa Pagan (STScI), Mahdi Zamani (ESA/Webb), JADES Collaboration

Credits/Illustration: NASA, ESA, CSA, S. Carniani (Scuola Normale Superiore), P. Jakobsen (University of Copenhagen), Joseph Olmsted (STScI)



Using the unique infrared sensitivity of NASA’s James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.

The Webb telescope discovered the incredibly distant galaxy JADES-GS-z13-1, observed to exist just 330 million years after the big bang, in images taken by Webb’s NIRCam (Near-Infrared Camera) as part of the James Webb Space Telescope Advanced Deep Extragalactic Survey (JADES). Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.

The NIRCam imaging yielded an initial redshift estimate of 12.9. Seeking to confirm its extreme redshift, an international team lead by Joris Witstok of the University of Cambridge in the United Kingdom as well as the Cosmic Dawn Center and the University of Copenhagen in Denmark, then observed the galaxy using Webb’s NIRSpec (Near-Infrared Spectrograph) instrument. In the resulting spectrum the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.

“The early universe was bathed in a thick fog of neutral hydrogen," explained Roberto Maiolino, a team member from the University of Cambridge and University College London. "Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”

Before and during the era of reionization, the immense amounts of neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of colored glass. Until enough stars had formed and were able to ionize the hydrogen gas, no such light — including Lyman-alpha emission — could escape from these fledgling galaxies to reach Earth. The confirmation of Lyman-alpha radiation from this galaxy, therefore, has great implications for our understanding of the early universe.

“We really shouldn’t have found a galaxy like this, given our understanding of the way the universe has evolved," said Kevin Hainline, a team member from the University of Arizona. "We could think of the early universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil. This fascinating emission line has huge ramifications for how and when the universe reionized.”

The source of the Lyman-alpha radiation from this galaxy is not yet known, but may include the first light from the earliest generation of stars to form in the universe. “The large bubble of ionized hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars," said Witstok. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.

This research was published Wednesday in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).




About This Release

Credits:

Media Contact:

Bethany Downer
ESA/Webb, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Permissions: Content Use Policy

Contact Us: Direct inquiries to the News Team.

Related Links and Documents


Monday, March 24, 2025

Gravitationally Lensed Gravitational Waves from Black Holes Around Black Holes

I
llustration of stellar-mass black holes embedded within the accretion disk of a supermassive black hole.
Credit: Caltech/R. Hurt (IPAC)


Diagram of a binary black hole system orbiting within the disk of a supermassive black hole
The observer is located at N in this diagram.
Credit:Leong et al. 2025

Gravitational-wave detectors have captured the chirps of dozens of merging black holes. Could any of these mergers have happened in the disk around a supermassive black hole?

Black Holes Around Black Holes

At the centers of galaxies across the universe, the disks surrounding accreting supermassive black holes — known as active galactic nuclei — provide an extreme ecosystem for stars and stellar-mass black holes. When a pair of black holes within an active galactic nucleus disk merges, the collision produces gravitational waves that can be picked up by detectors on Earth. If, from our perspective, that merger takes place behind the supermassive black hole, the gravitational-wave signal will be gravitationally lensed: split into two “images” of the same wave with slightly different properties.

Detecting a gravitationally lensed gravitational-wave signal from merging black holes would provide valuable information about the population of black holes that reside in active galactic nucleus disks, as well as the properties of the disks themselves.

Constraints able to be placed on the fraction of binary black hole mergers happening in active galactic nucleus disks as a function of the number of observations, Nobs, and the distance between the binary system and the central supermassive black hole, indicated by the fill pattern. The filled area shows the values that are ruled out. This plot assumes that no gravitationally lensed gravitational waves are observed. Adapted from Leong et al. 2025

Lensing Likelihood

So far, no gravitationally lensed gravitational waves have been detected — but luckily, even this non-detection contains valuable information. To explore the implications of this non-detection, Samson Leong (The Chinese University of Hong Kong) and collaborators developed an analytical model that describes a binary black hole pair orbiting and merging within the disk of an active galactic nucleus. The team calculated the probability that gravitational waves from the merger of these black holes would be gravitationally lensed from the perspective of a distant observer. This probability is dependent upon the orientation of the disk relative to the viewer, as well as the distance from the binary system to the central supermassive black hole.

Then, given the fact that none of the dozens of mergers detected so far have had gravitationally lensed signals, Leong’s team constrained the fraction of observed mergers happening in active galactic nucleus disks. With only about 100 binary black hole merger observed to date, the constraining power of the non-detection is limited. For now, all that can be said is that no more than 47% of the observed mergers took place in the disks around active galactic nuclei. As the number of detected black hole mergers grows, the constraint will grow more stringent; if no lensed events have been observed after roughly 1,000 mergers have been detected, that would mean that no more than 5% of the mergers took place within an active galactic nucleus disk.

Similar to the previous figure, but this time emphasizing the impact of the orbital distance of the merging black holes. The vertical dotted lines indicate the locations of potential migration traps. Adapted from Leong et al. 2025

To Be Constrained

This estimate is based on the assumption that all black holes in active galactic nucleus disks merge within the migration trap nearest the central supermassive black hole. Several migration traps — particular orbital radii within the disk where black holes are expected to collect — are predicted to exist. If the black holes instead merge within a migration trap at a much larger radius, many more observations will be needed to narrowly constrain the number of mergers happening within accretion disks.

Future observations may yield new information about active galactic nucleus accretion disks. In particular, it may be possible to discern the minimum size of an accretion disk, as well as where within the disk binary black holes are most likely to merge.

By Kerry Hensley

Citation

“Constraining Binary Mergers in Active Galactic Nuclei Disks Using the Nonobservation of Lensed Gravitational Waves,” Samson H. W. Leong et al 2025 ApJL 979 L27.
doi:10.3847/2041-8213/ad9ead
 


Thursday, August 12, 2021

The Hunt for Wandering Black Holes

Simulated image of a black hole wandering in the Milky Way
Credit: SXS Lensing

When two galaxies collide, the resulting galaxy will contain multiple supermassive black holes
Credit: NASA/Hubble Heritage Team (STScI)

Wandering supermassive black holes — those that don’t lie at their galaxies’ centers — may be tricky to find, but not all black holes that wander are lost! A new study demonstrates how we can hope to discover these missing nomads in the future.

When Galaxies Collide

We know that the center of every massive galaxy hosts a supermassive black hole weighing millions to billions of solar masses. But galactic centers aren’t the only place that supermassive black holes can lurk! In fact, we expect that the majority of galaxies host many more of these monsters beyond just the central supermassive black holes. Why? Because galaxies merge.

Structure in our universe is largely built hierarchically: over time, galaxies have frequently collided with each other, growing progressively larger with each merger. But with each of these mergers, at least two supermassive black holes — one from each of the merging galaxies — are introduced into the resulting turmoil.

While gas and stars reorder themselves neatly into a new galaxy, eventually erasing all evidence of the merger, the black holes aren’t as well-behaved. Indeed, simulations show that it can take billions of years for those supermassive black holes to make their way to the center of the newly formed galaxy and merge — if they even make it at all!

As more galaxy collisions occur, more off-center “wandering” supermassive black holes are produced — and by present day, galaxies can potentially host dozens of black holes above a million solar masses. So how do we find this vast population of wanderers? A new study led by Angelo Ricarte (Center for Astrophysics | Harvard & Smithsonian; Black Hole Initiative) explores the possibilities.


This extreme example shows a simulated galaxy whose halo contains dozens of black holes (circled) above a million solar masses, including five (orange circles) shining with a bolometric luminosity above 1042 erg/s. The galaxy’s stars (top) and gas (center) show no evidence of the past mergers that led to this accumulation of black holes. The simulated X-ray image of the galaxy (bottom) reveals the five brightest black holes. Credit: Adapted from Ricarte et al. 2021

Revealing a Hidden Population

Ricarte and collaborators use a suite of cosmological simulations called ROMULUS to produce a realistic expectation of the black holes lurking in our universe. These simulations carefully track the positions and dynamics of supermassive black holes as galaxies merge and evolve over time, allowing us to explore the population of wandering supermassive black holes predicted to arise in galaxies at different times in the universe.

From this simulated population, the authors then predict the ways in which these wanderers may betray their locations:

1. Hyperluminous X-ray sources
Some nearby, accreting, wandering black holes should be detectable as exceedingly bright X-ray sources.

2. Dual active galactic nuclei
The simulations predict that galaxies will often host more than one dramatically accreting supermassive black hole — particularly at higher redshifts.

3. X-ray halo
If the black holes are too distant or dim to resolve individually, we can identify wanderers by stacking images of galaxies of similar mass. The “halo” of excess X-ray radiation can then be used to describe the wandering black hole population.

4. Tidal disruption events
Wandering supermassive black holes can tear apart stars that come too close! These disruptions should produce transient signals offset from galactic centers. The ROMULUS simulations show that, for black holes smaller than 10 billion solar masses, wanderers greatly outnumber the central supermassive black holes in our universe. Ricarte and collaborators’ work demonstrates that we’ll need to consider this nomadic population carefully as we analyze our observations of the universe.

Citation

“Unveiling the Population of Wandering Black Holes via Electromagnetic Signatures,” Angelo Ricarte et al 2021 ApJL 916 L18. doi:10.3847/2041-8213/ac1170

By Susanna Kohler