A strange 'garden sprinkler-like' jet coming from a neutron star has been pictured for the first time.
This particular object sits in the binary system Circinus X-1 more than 30,000 light-years from Earth and formed from the core of a massive supergiant star that collapsed around the same time Stonehenge was built.
It is so dense that a teaspoon of its material weighs as much as Mount Everest.
Binary systems have two stars that are bound together by gravity. In the case of Circinus X-1, one of these is a neutron star.
However, the latter are considerably more massive and can only be detected through their gravitational effects, while the former can be observed directly despite their denseness.
They are some of the most extreme objects in the Universe and have interiors almost entirely made of neutrons.
The pictures, which were presented at this week’s National Astronomy Meeting at the University of Hull, include the first-ever image of an S-shaped jet coming from a confirmed neutron star – a breakthrough that could help unravel the extreme physics behind the astronomical phenomenon.
Lead researcher Fraser Cowie said there was another system known for its S-shaped jets, called SS433, but recent results suggest that object is likely a black hole.
"This image is the first time we have seen strong evidence for a precessing jet from a confirmed neutron star," he said.
"This will give valuable information about the extreme physics behind the launching of the jet, a phenomenon which is still not well understood."
The neutron star's huge density creates a strong force of gravity that strips gas from the companion star, forming a disc of hot gas around it that spirals down towards its surface.
This process, called accretion, releases huge amounts of energy per second with more power than a million Suns. Some of this energy powers jets – narrow beams of outflowing material from the binary system travelling close to the speed of light.
Not only that, but researchers also discovered moving termination shocks – the first recorded from an X-ray binary. These are regions where the jet violently rams into the surrounding material, causing a shockwave.
Cowie's team measured the waves moving at roughly 10 per cent of the speed of light, confirming that they were caused by the fast-moving jet and not something slower such as a wind of material from the stars.
"The fact that these shockwaves span a wide angle agrees with our model," Cowie said. "So we have two strong pieces of evidence telling us the neutron star jet is precessing."
Measuring the velocity of the shockwaves will also help astronomers understand what the jet causing them is made from.
"Circinus X-1 is one of the brightest objects in the X-ray sky and has been studied for over half a century," Cowie said. "But despite this, it remains one of the most enigmatic systems we know of.
"Several aspects of its behaviour are not well explained so it's very rewarding to help shed new light on this system, building on 50 years of work from others."
He added: "The next steps will be to continue to monitor the jets and see if they change over time in the way we expect.
"This will allow us to more precisely measure their properties and continue to learn more about this puzzling object."
Media contacts:
Sam Tonkin
Royal Astronomical Society
+44 (0)7802 877 700
press@ras.ac.uk
Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)7802 877 699
press@ras.ac.uk
Megan Eaves
Royal Astronomical Society
press@ras.ac.uk
Science contacts:
Fraser Cowie
University of Oxford
fraser.cowie@physics.ox.ac.uk
Images and captions
Fig 1: Cowie1 - s-shape-jet
Fig 2: Cowie2 - rotated_zoomed_out_snr
Fig 3: Cowie3 - Moving shocks Cir X-1
Further information
In July 2007, observations of Circinus X-1 revealed the system is highly luminous in X-rays and emits jets normally found in black hole systems – the first of this kind discovered to display this similarity to black holes. This makes Circinus X-1 a peculiar system that defies conventional classification. Discovered in the late 1960s, it has shown variation over several orders of magnitude in X-ray and radio on time periods from hours to decades. Strong evidence suggests it is surrounded by its natal supernova remnant, aged at ~4000 years, making Circinus X-1 the youngest known X-ray binary star system. This provides a unique, complex laboratory for astronomers to test their knowledge of accretion, jets, jet interactions with surrounding material and much more.
Notes for editors
About the Royal Astronomical Society
The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.
The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.
Keep up with the RAS on X, Facebook, LinkedIn and YouTube
About the Science and Technology Facilities Council
STFC funds and supports research in particle and nuclear physics, astronomy, gravitational research and astrophysics, and space science and also operates a network of five national laboratories, including the Rutherford Appleton Laboratory and the Daresbury Laboratory, as well as supporting UK research at a number of international research facilities including CERN, FERMILAB, the ESO telescopes in Chile and many more.
STFC's Astronomy and Space Science programme provides support for a wide range of facilities, research groups and individuals in order to investigate some of the highest priority questions in astrophysics, cosmology and solar system science.
STFC's astronomy and space science programme
is delivered through grant funding for research activities, and also
through support of technical activities at STFC's UK Astronomy
Technology Centre and RAL Space at the Rutherford Appleton Laboratory.
STFC also supports UK astronomy through the international European
Southern Observatory and the Square Kilometre Array Organisation.
Visit https://stfc.ukri.org/ for more information. Follow STFC on Twitter: @STFC_Matters
About the University of Hull’s E.A. Milne Centre
The centre employs observations, theory and computational methods in collaboration with international partners. Postgraduate and undergraduate students work alongside staff to understand the wonders of the Universe. Through a series of outreach activities, the centre also aims to share its passion for astronomy and astrophysics with the region and beyond.
Submitted by Sam Tonkin