Showing posts with label Outer Planet Atmospheres Legacy (OPAL). Show all posts
Showing posts with label Outer Planet Atmospheres Legacy (OPAL). Show all posts

Saturday, February 09, 2019

Hubble Reveals Dynamic Atmospheres of Uranus and Neptune

Uranus  and Neptune
Credits: NASA, ESA, A. Simon (NASA Goddard Space Flight Center), 
and M.H. Wong and A. Hsu (University of California, Berkeley)

During its routine yearly monitoring of the weather on our solar system's outer planets, NASA's Hubble Space Telescope has uncovered a new mysterious dark storm on Neptune (right) and provided a fresh look at a long-lived storm circling around the north polar region on Uranus (left).

Like Earth, Uranus and Neptune have seasons, which likely drive some of the features in their atmospheres. But their seasons are much longer than on Earth, spanning decades rather than months.

The new Hubble view of Neptune shows the dark storm, seen at top center. Appearing during the planet's southern summer, the feature is the fourth and latest mysterious dark vortex captured by Hubble since 1993. Two other dark storms were discovered by the Voyager 2 spacecraft in 1989 as it flew by the remote planet. Since then, only Hubble has had the sensitivity in blue light to track these elusive features, which have appeared and faded quickly. A study led by University of California, Berkeley, undergraduate student Andrew Hsu estimated that the dark spots appear every four to six years at different latitudes and disappear after about two years.

Hubble uncovered the latest storm in September 2018 in Neptune's northern hemisphere. The feature is roughly 6,800 miles across.

To the right of the dark feature are bright white "companion clouds." Hubble has observed similar clouds accompanying previous vortices. The bright clouds form when the flow of ambient air is perturbed and diverted upward over the dark vortex, causing gases to freeze into methane ice crystals. These clouds are similar to clouds that appear as pancake-shaped features when air is pushed over mountains on Earth (though Neptune has no solid surface). The long, thin cloud to the left of the dark spot is a transient feature that is not part of the storm system.

It's unclear how these storms form. But like Jupiter's Great Red Spot, the dark vortices swirl in an anti-cyclonic direction and seem to dredge up material from deeper levels in the ice giant's atmosphere.

The Hubble observations show that as early as 2016, increased cloud activity in the region preceded the vortex's appearance. The images indicate that the vortices probably develop deeper in Neptune's atmosphere, becoming visible only when the top of the storm reaches higher altitudes.

The snapshot of Uranus, like the image of Neptune, reveals a dominant feature: a vast bright cloud cap across the north pole.

Scientists believe this feature is a result of Uranus' unique rotation. Unlike every other planet in the solar system, Uranus is tipped over almost onto its side. Because of this extreme tilt, during the planet's summer the Sun shines almost directly onto the north pole and never sets. Uranus is now approaching the middle of its summer season, and the polar-cap region is becoming more prominent. This polar hood may have formed by seasonal changes in atmospheric flow.

Near the edge of the cloud cap is a large, compact methane-ice cloud, which is sometimes bright enough to be photographed by amateur astronomers. A narrow cloud band encircles the planet north of the equator. It is a mystery how bands like these are confined to such narrow widths, because Uranus and Neptune have very broad westward-blowing wind jets.

Both planets are classified as ice giant planets. They have no solid surface but rather mantles of hydrogen and helium surrounding a water-rich interior, itself perhaps wrapped around a rocky core. Atmospheric methane absorbs red light but allows blue-green light to be scattered back into space, giving each planet a cyan hue.

The new Neptune and Uranus images are from the Outer Planet Atmospheres Legacy (OPAL) program, a long-term Hubble project, led by Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, that annually captures global maps of our solar system's outer planets when they are closest to Earth in their orbits. OPAL's key goals are to study long-term seasonal changes, as well as capture comparatively transitory events, such as the appearance of Neptune's dark spot. These dark storms may be so fleeting that in the past some of them may have appeared and faded during multi-year gaps in Hubble's observations of Neptune. The OPAL program ensures that astronomers won't miss another one.

These images are part of a scrapbook of Hubble snapshots of Neptune and Uranus that track the weather patterns over time on these distant, cold planets. Just as meteorologists cannot predict the weather on Earth by studying a few snapshots, astronomers cannot track atmospheric trends on solar system planets without regularly-repeated observations. Astronomers hope that Hubble's long-term monitoring of the outer planets will help them unravel the mysteries that still persist about these faraway worlds.

Analyzing the weather on these worlds also will help scientists better understand the diversity and similarities of the atmospheres of solar-system planets, including Earth.



Related Links

This site is not responsible for content found on external links



Contact

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

Amy Simon
NASA Goddard Space Flight Center, Greenbelt, Maryland
amy.simon@nasa.gov

Mike Wong
University of California, Berkeley, California
mikewong@astro.berkeley.edu



Saturday, July 28, 2018

New family photos of Mars and Saturn from Hubble

Mars and Saturn close to opposition

PR Image heic1814b
Saturn and its rings in 2018

PR Image heic1814c
Stormy Mars in opposition in 2018

PR Image heic1814d
The moons of Saturn

PR Image heic1814e
The moons of Saturn (annotated)

PR Image heic1814f
Mars in opposition in 2018 (annotated)

PR Image heic1814g
Mars 2016/2018 side-by-side



Videos

Hubblecast 112 Light: Mars and Saturn
Hubblecast 112 Light: Mars and Saturn

Zoom on rotating Saturn
Zoom on rotating Saturn

Saturn and its orbiting moons
Saturn and its orbiting moons

The surface and the moons of Mars
The surface and the moons of Mars

Animation of difference in Mars orientation, 2016 and 2018
Animation of difference in Mars orientation, 2016 and 2018



In summer 2018 the planets Mars and Saturn are, one after the other, in opposition to Earth. During this event the planets are relatively close to Earth, allowing astronomers to observe them in greater detail. Hubble took advantage of this preferred configuration and imaged both planets to continue its long-standing observation of the outer planets in the Solar System.

Since the NASA/ESA Hubble Space Telescope was launched, its goal has always been to study not only distant astronomical objects, but also the planets within our Solar System. Hubble’s high-resolution images of our planetary neighbours can only be surpassed by pictures taken from spacecraft that actually visit these bodies. However, Hubble has one advantage over space probes: it can look at these objects periodically and observe them over much longer periods than any passing probe could.

In the last months the planets Mars and Saturn have each been in opposition to Earth — Saturn on 27 June and Mars on 27 July. An opposition occurs when the Sun, Earth and an outer planet are lined up, with Earth sitting in between the Sun and the outer planet. During an opposition, a planet is fully lit by the Sun as seen from Earth, and it also marks the time when the planet is closest to Earth, allowing astronomers to see features on the planet’s surface in greater detail [1].

A month before Saturn’s opposition — on 6 June — Hubble was used to observe the ringed planet [2]. At this time Saturn was approximately 1.4 billion kilometres from Earth. The taken images show Saturn’s magnificent ring system near its maximum tilt toward Earth, allowing a spectacular view of the rings and the gaps between them. Though all of the gas giants boast rings, Saturn’s are the largest and most spectacular, stretching out to eight times the radius of the planet.

Alongside a beautiful view of the ring system, Hubble’s new image reveals a hexagonal pattern around the north pole — a stable and persistent wind feature discovered during the flyby of the Voyager 1 space probe in 1981. To the south of this feature a string of bright clouds is visible: remnants of a disintegrating storm.

While observing the planet Hubble also managed to capture images of six of Saturn’s 62 currently known moons: Dione, Enceladus, Tethys, Janus, Epimetheus, and Mimas. Scientists hypothesise that a small, wayward moon like one of these disintegrated 200 million years ago to form Saturn’s ring system.

Hubble shot the second portrait, of the planet Mars, on 18 July, just 13 days before Mars reached its closest approach to Earth. This year Mars will get as close as 57.6 million kilometres from Earth. This makes it the closest approach since 2003, when the red planet made its way closer to us than at any other time in almost 60 000 years (opo0322).

While previous images showed detailed surface features of the planet, this new image is dominated by a gigantic sandstorm enshrouding the entire planet. Still visible are the white polar caps, Terra Meridiani, the Schiaparelli Crater, and Hellas Basin — but all of these features are slightly blurred by the dust in the atmosphere.

Comparing these new images of Mars and Saturn with older data gathered by Hubble, other telescopes and even space probes allows astronomers to study how cloud patterns and large-scale structures on other planets in our Solar System change over time.



Notes

[1] The dates of opposition and closest approach differ slightly. This difference is caused by the elliptical orbit of the planets and the fact that the orbits are not in exactly the same plane.

[2] The observations of Saturn were made as part of the Outer Planet Atmospheres Legacy (OPAL) project. OPAL is helping astronomers understand the atmospheric dynamics and evolution of the gas giant planets in our Solar System. Jupiter, Uranus and Neptune have already been observed several times as part of this project, but this is the first time Saturn was observed as part of OPAL.



More Information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

Image credit: NASA, ESA, STScI, M. Mutchler (STScI), A. Simon (GSFC) and the OPAL Team, J. DePasquale (STScI)



Links



Contacts

Mathias Jäger

ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email:
mjaeger@partner.eso.org



Tuesday, October 13, 2015

Hubble’s Planetary Portrait Captures New Changes in Jupiter’s Great Red Spot

This new portrait of Jupiter was produced from observations made using NASA’s Hubble Space Telescope.


Scientists using NASA’s Hubble Space Telescope have produced new maps of Jupiter – the first in a series of annual portraits of the solar system’s outer planets.

Collecting these yearly images – essentially the planetary version of annual school picture days for children – will help current and future scientists see how these giant worlds change over time. The observations are designed to capture a broad range of features, including winds, clouds, storms and atmospheric chemistry.

Already, the Jupiter images have revealed a rare wave just north of the planet’s equator and a unique filamentary feature in the core of the Great Red Spot not seen previously.

“Every time we look at Jupiter, we get tantalizing hints that something really exciting is going on,” said Amy Simon, a planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This time is no exception.”

Simon and her colleagues produced two global maps of Jupiter from observations made using Hubble’s high-performance Wide Field Camera 3. The two maps represent nearly back-to-back rotations of the planet, making it possible to determine the speeds of Jupiter’s winds. The findings are described in an Astrophysical Journal paper, available online.

The new images confirm that the Great Red Spot continues to shrink and become more circular, as it has been doing for years. The long axis of this characteristic storm is about 150 miles (240 kilometers) shorter now than it was in 2014. Recently, the storm had been shrinking at a faster-than-usual rate, but the latest change is consistent with the long-term trend.

The Great Red Spot remains more orange than red these days, and its core, which typically has more intense color, is less distinct than it used to be. An unusual wispy filament is seen, spanning almost the entire width of the vortex. This filamentary streamer rotates and twists throughout the 10-hour span of the Great Red Spot image sequence, getting distorted by winds blowing at 330 miles per hour (150 meters per second) or even greater speeds.

In Jupiter’s North Equatorial Belt, the researchers found an elusive wave that had been spotted on the planet only once before, decades earlier, by Voyager 2. In those images, the wave is barely visible, and nothing like it was seen again, until the current wave was found traveling at about 16 degrees north latitude, in a region dotted with cyclones and anticyclones. Similar waves – called baroclinic waves – sometimes appear in Earth’s atmosphere where cyclones are forming.


In Jupiter’s North Equatorial Belt, scientists spotted a rare wave that had been seen there only once before. It is similar to a wave that sometimes occurs in Earth’s atmosphere when cyclones are forming. This false-color close-up of Jupiter shows cyclones (arrows) and the wave (vertical lines). Credits: NASA/ESA/Goddard/UCBerkeley/JPL-Caltech/STScI


“Until now, we thought the wave seen by Voyager 2 might have been a fluke,” said co-author Glenn Orton of NASA’s Jet Propulsion Laboratory in Pasadena, California. “As it turns out, it’s just rare!”

The wave may originate in a clear layer beneath the clouds, only becoming visible when it propagates up into the cloud deck, according to the researchers. That idea is supported by the spacing between the wave crests.

In addition to Jupiter, the researchers have observed Neptune and Uranus, and maps of those planets also will be placed in the public archive. Saturn will be added to the series later. Hubble will dedicate time each year to this special set of observations, called the Outer Planet Atmospheres Legacy program.

The movement of Jupiter’s clouds can be seen by comparing the first map to the second one. Zooming in on the Great Red Spot at blue (left) and red (right) wavelengths reveals a unique filamentary feature not previously seen.   Credits: NASA/ESA/Goddard/UCBerkeley/JPL-Caltech/STScI


“The long-term value of the Outer Planet Atmospheres Legacy program is really exciting,” said co-author Michael H. Wong of the University of California, Berkeley. “The collection of maps that we will build up over time will not only help scientists understand the atmospheres of our giant planets, but also the atmospheres of planets being discovered around other stars, and Earth’s atmosphere and oceans, too.”


Please direct inquiries for the University of California, Berkeley, to Robert Sanders at rlsanders@berkeley.edu.

To access the Outer Planet Atmospheres Legacy program images and data, visit: https://archive.stsci.edu/prepds/opal/

For images and more information about Hubble, visit: http://www.nasa.gov/hubble  and  http://hubblesite.org/news/2015/37

Related multimedia is available at:  http://svs.gsfc.nasa.gov/goto?12021



Nancy Neal-Jones/Elizabeth Zubritsky
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-0039/301-614-5438
nancy.n.jones@nasa.gov/elizabeth.a.zubritsky@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore
410-338-4514
villard@stsci.edu

Preston Dyches
NASA’s Jet Propulsion Laboratory, Pasadena, Calif.
818-354-7013
preston.dyches@jpl.nasa.gov

Editor: Rob Garner

Source:  NASA/Jupiter