Showing posts with label Lyman-alpha emitter (LAE). Show all posts
Showing posts with label Lyman-alpha emitter (LAE). Show all posts

Wednesday, September 03, 2025

QSO MUSEUM: A large atlas of cosmic structures surrounding high-redshift quasars


Figure 1. Nine of the targeted quasars (white circles) and the uncovered cosmic structures as seen in Lyman-alpha emission (blue-green). Each cut-out image is roughly 1 million light years in size. Credit: MPA/Jay Gonzalez Lobos, Fabrizio Arrigoni Battaia

Figure 2: Average surface brightness (top panel) and velocity dispersion (bottom panel) of the Lyman-alpha emission as a function of distance from each of the 120 targeted quasars. The curves are colour-coded according to the luminosity of each quasar. Credit: MPA/Jay Gonzalez Lobos



Quasars are active supermassive black holes located at the centres of massive galaxies that emit energy levels that far exceed the binding energy of their host galaxies. This substantial amount of energy has the potential to impact the gas within and around the galaxies, thereby influencing their evolution. While the importance of this process is acknowledged, its details are still the subject of significant debate. An international team of researchers led by MPA scientists has now obtained observations of the most extensive sample of hydrogen structures surrounding quasars in the early universe to better understand this feedback process. The data reveal how the gas responds to the energy released by the supermassive black holes over distances of several hundred thousand light years, providing a new way to study the impact of quasars on galaxy evolution.

Quasar feedback plays a key role in shaping the evolution of the most massive galaxies in the universe. As the supermassive black hole at the centre of a galaxy accretes matter, it powers a quasar — a bright, energetic outburst that can blow powerful winds and emit radiation into the surrounding galaxy. This energy can either heat up or sweep away the gas that would otherwise form new stars, thereby effectively shutting down star formation. This explains why giant galaxies stop growing and become filled with older stars. However, in principle, a quasar is not only able to affect its host galaxy's interstellar medium (its local fuel reservoir), but also the surrounding intergalactic gas. This means that a quasar could have an impact also on the fresh fuel for future star formation in the galaxy, thereby accelerating the galaxy quenching. Despite these ideas have been extensively discussed, the details of this feedback process still need to be fully understood.

Since the 1980s, it has been proposed that the impact of quasar energy on the surrounding gas could be assessed by targeting one of the most important lines of the hydrogen atom: the Lyman-alpha line. In a hydrogen atom, the electron can occupy different energy levels, like steps on a ladder. This specific ultraviolet line is emitted when an electron drops from the second energy level to the first. Since hydrogen is the most abundant element in the universe, this transition is ubiquitous and results in such bright emission that it can be seen at distances of billions of light years, enabling us to study galaxies and their surrounding gas in the early universe. Novel wide-field spectrographs, in particular, have opened a new window on the Lyman-alpha emission surrounding quasars. They allow the detection of emitting gas at distances of several hundred thousand light years from their host galaxies with short exposure times (about one hour; see, for example, Highlights from November 2019, May 2022 and January 2025).

Thanks to this new instrumentation — specifically the integral-field spectrograph MUSE on the Very Large Telescope — an international team led by MPA scientists has surveyed the largest sample of quasars to date in order to study their surrounding Lyman-alpha emission. The observations revealed intricate structures enveloping these quasars during cosmic noon, an epoch corresponding to approximately 11.5 billion years ago (examples are shown in Figure 1). Importantly, the 120 targeted quasars cover two orders of magnitude in luminosity, enabling the team to explore the effects of different energy inputs.

The scientists discovered that the surface brightness of the Lyman-alpha emission — how bright the emission appears per unit angular area — depends on quasar luminosity. Brighter quasars are associated with brighter extended emission (see Figure 2, top panel). Similarly, brighter quasars are associated with more turbulent gas reservoirs within about 30 kpc (approximately 100,000 light years; see Figure 2, bottom panel). Both these trends are evidence of the impact of quasar feedback (radiation and winds) on their surroundings. The team is now quantifying these trends in detail. For example, they have found that the velocity dispersion on inner scales varies as a function of quasar luminosity, following a well-defined power law. These findings could be used to test quasar feedback models and how they couple with the gas. Future work will focus on targeting additional line emissions besides Lyman-alpha in order to further constrain the impact of quasars on the gas on such large scales, as well as the physical properties of the emitting gas (e.g. MPA Highlights July 2025).




Authors:

Jay González Lobos, Jay
PhD student
Tel:
2030
valegl@mpa-garching.mpg.de

Fabrizio Arrigoni Battaia
Scientific Staff
Tel:
2288
arrigoni@mpa-garching.mpg.de



Original publication

Jay González Lobos, Fabrizio Arrigoni Battaia, Aura Obreja, Guinevere Kauffmann, Emanuele Paolo Farina, Tiago Costa
QSO MUSEUM III: the circumgalactic medium in Lyα emission around 120 z\sim3 quasars covering the SDSS parameter space. Witnessing the instantaneous AGN feedback on halo scales
Submitted to A&A

Source


Monday, September 30, 2024

DECam Confirms that Early-Universe Quasar Neighborhoods are Indeed Cluttered

PR Image noirlab2422a
Artist Illustration of Early-Universe Quasar Cosmic Neighborhood



Videos

Cosmoview Episode 86: DECam Confirms that Early-Universe Quasar Neighborhoods are Indeed Cluttered
PR Video noirlab2422a
Cosmoview Episode 86: DECam Confirms that Early-Universe Quasar Neighborhoods are Indeed Cluttered

Cosmoview Episodio 86: DECam confirma que los vecindarios de los cuásares del Universo primitivo están realmente abarrotados



New finding with the expansive Dark Energy Camera offers a clear explanation to quasar ‘urban density’-conundrum

Observations using the Dark Energy Camera (DECam) confirm astronomers’ expectation that early-Universe quasars formed in regions of space densely populated with companion galaxies. DECam’s exceptionally wide field of view and special filters played a crucial role in reaching this conclusion, and the observations reveal why previous studies seeking to characterize the density of early-Universe quasar neighborhoods have yielded conflicting results.

Quasars are the most luminous objects in the Universe and are powered by material accreting onto supermassive black holes at the centers of galaxies. Studies have shown that early-Universe quasars have black holes so massive that they must have been swallowing gas at very high rates, leading most astronomers to believe that these quasars formed in some of the densest environments in the Universe where gas was most available. However, observational measurements seeking to confirm this conclusion have thus far yielded conflicting results. Now, a new study using the Dark Energy Camera (DECam) points the way to both an explanation for these disparate observations and also a logical framework to connect observation with theory.

DECam was fabricated by the Department of Energy and is mounted on the U.S. National Science Foundation Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF NOIRLab.

The study was led by Trystan Lambert, who completed this work as a PhD student at Diego Portales University’s Institute of Astrophysical Studies in Chile [1] and is now a postdoc at the University of Western Australia node at the International Centre for Radio Astronomy Research (ICRAR). Utilizing DECam’s massive field of view, the team conducted the largest on-sky area search ever around an early-Universe quasar in an effort to measure the density of its environment by counting the number of surrounding companion galaxies.

For their investigation, the team needed a quasar with a well-defined distance. Luckily, quasar VIK 2348–3054 has a known distance, determined by previous observations with the Atacama Large Millimeter/submillimeter Array (ALMA), and DECam’s three-square-degree field of view provided an expansive look at its cosmic neighborhood. Serendipitously, DECam is also equipped with a narrowband filter perfectly matched for detecting its companion galaxies. “This quasar study really was the perfect storm,” says Lambert. “We had a quasar with a well-known distance, and DECam on the Blanco telescope offered the massive field of view and exact filter that we needed.”

DECam’s specialized filter allowed the team to count the number of companion galaxies around the quasar by detecting a very specific type of light they emit, known as Lyman-alpha radiation. Lyman alpha radiation is a specific energy signature of hydrogen, produced when it is ionized and then recombined during the process of star formation. Lyman-alpha emitters are typically younger, smaller galaxies, and their Lyman-alpha emission can be used as a way to reliably measure their distances. Distance measurements for multiple Lyman-alpha emitters can then be used to construct a 3D map of a quasar’s neighborhood.

After systematically mapping the region of space around quasar VIK J2348-3054, Lambert and his team found 38 companion galaxies in the wider environment around the quasar — out to a distance of 60 million light-years — which is consistent with what is expected for quasars residing in dense regions. However, they were surprised to find that within 15 million light-years of the quasar, there were no companions at all.

This finding illuminates the reality of past studies aimed at classifying early-Universe quasar environments and proposes a possible explanation for why they have turned out conflicting results. No other survey of this kind has used a search area as large as the one provided by DECam, so to smaller-area searches a quasar’s environment can appear deceptively empty.

“DECam’s extremely wide view is necessary for studying quasar neighborhoods thoroughly. You really have to open up to a larger area,” says Lambert. “This suggests a reasonable explanation as to why previous observations are in conflict with one another.”

The team also suggests an explanation for the lack of companion galaxies in the immediate vicinity of the quasar. They postulate that the intensity of the radiation from the quasar may be large enough to affect, or potentially stop, the formation of stars in these galaxies, making them invisible to our observations.

“Some quasars are not quiet neighbors,” says Lambert. “Stars in galaxies form from gas that is cold enough to collapse under its own gravity. Luminous quasars can potentially be so bright as to illuminate this gas in nearby galaxies and heat it up, preventing this collapse.”

Lambert’s team is currently following up with additional observations to obtain spectra and confirm star formation suppression. They also plan to observe other quasars to build a more robust sample size.

“These findings show the value of the National Science Foundation’s productive partnership with the Department of Energy,” says Chris Davis, NSF program director for NSF NOIRLab. “We expect that productivity will be amplified enormously with the upcoming NSF–DOE Vera C. Rubin Observatory, a next-generation facility that will reveal even more about the early Universe and these remarkable objects.”




Notes

[1] This study was made possible through a collaboration between researchers at Diego Portales University and the Max Planck Institute of Astronomy. A portion of this work was funded through a grant by Chile’s National Research and Development Agency (ANID) for collaborations with the Max Planck Institutes.



More information

This research was presented in a paper entitled “A lack of LAEs within 5 Mpc of a luminous quasar in an overdensity at z=6.9: potential evidence of quasar negative feedback at protocluster scales” to appear in Astronomy & Astrophysics. DOI: 10.1051/0004-6361/202449566

The team is composed of Trystan S. Lambert (Universidad Diego Portales, Chile/University of Western Australia, Australia), R.J. Assef (Universidad Diego Portales, Chile), C. Mazzucchelli (Universidad Diego Portales, Chile), E. Bañados (Max Planck Institute of Astronomy, Germany), M. Aravena (Universidad Diego Portales, Chile), F. Barrientos (Pontificia Universidad Católica de Chile, Chile), J. González-López (Las Campanas Observatory, Chile/Universidad Diego Portales, Chile), W. Hu (George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, USA), L. Infante (Pontificia Universidad Católica de Chile, Chile), S. Malhotra (NASA Goddard Space Flight Center, USA), C. Moya-Sierralta (Pontificia Universidad Católica de Chile, Chile), J. Rhoads (NASA Goddard Space Flight Center, USA), F. Valdes (NSF NOIRLab), J. Wang (University of Science and Technology of China, People’s Republic of China), I.G.B. Wold (Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, USA/Catholic University of America, USA), and Z. Zheng (Shanghai Astronomical Observatory, People’s Republic of China).

NSF NOIRLab (U.S. National Science Foundation National Optical-Infrared Astronomy Research Laboratory), the U.S. center for ground-based optical-infrared astronomy, operates the International Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on I’oligam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O’odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.




Links



Contacts

Trystan Lambert
Postdoc Scholar
University of Western Australia
Email:
trystanscottlambert@gmail.com

Josie Fenske
Jr. Public Information Officer
NSF NOIRLab
Email:
josie.fenske@noirlab.edu


Monday, February 06, 2017

An Intrinsically Very Luminous Lensed High-Redshift Galaxy

WHT and GTC imaging and spectra of BG1429+1202 as well as colour image from the Dark Energy Camera Legacy Survey (DECaLS). The locations of the long-slits of the spectroscopic observations with WHT/ACAM and GTC/OSIRIS as well as the BOSS fibre are shown. Large format: JPG


An international team led by researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL) has discovered one of the brightest non-active galaxies in the early universe. 

This galaxy, called BG1429+1202, is located at a redshift of 2.82 and it is a gravitationally lensed Lyman-Alpha Emitter (LAE) from the Bells Gallery project. Although, in general, LAEs are faint, BG1429+1202 is intrinsically very luminous. Additionally, its flux is boosted by a factor of about nine by gravitational lensing by a massive elliptical galaxy in the line of sight at redshift 0.55. 

BG1429+1202 was selected for observations using ACAM at the William Herschel Telescope (WHT) from a large sample of lensed LAE candidates discovered using the Sloan Digital Sky Survey BOSS spectroscopic database. "This is one of the few known cases of galaxies with a very high apparent brightness and also an intrinsically high luminosity", says Rui Marques-Chaves, a doctoral student at the IAC-ULL. 

To study this system, astronomers applied for a few hours of Director's Discretionary Time (DDT) at the WHT. They expected to detect a very bright continuum and Lyman-alpha emission from the blue features around the foreground galaxy visible on the Sloan Digital Sky Survey images, and that's actually what they already saw in the first 15-minute ACAM spectrum. BG1429+1202 is so bright that it can even be detected on the photographic images of the Digital Sky Survey. 

Motivated by the promising results of the WHT observations, the team applied for DDT time at the Gran Telescopio Canarias (GTC). Observations were carried out just one month after the WHT data were obtained, and provided higher signal-to-noise imaging and low-resolution spectroscopy of the brightest lensed features. 

Lens modeling of this system revealed the main properties of the high-redshift LAE. Ismael Pérez-Fournon, from the IAC and ULL and coordinator of this project says, "Its luminosity and the star formation rate are much higher in the rest-frame UV continuum and in the Lyman-alpha line than in typical LAEs at high redshift. With telescopes such as the GTC or the WHT we can observe these high-redshift galaxies because they are gravitationally lensed. If they weren't, then we would need a future telescope, such as the Extremely Large European Telescope (E-ELT) or the Thirty Meter Telescope (TMT), to study them in detail." 

To select lensed-LAEs like BG1429+1202, astronomers analysed around a million and a half spectra of galaxies obtained using the Sloan Telescope. Lyman-alpha emission was detected from galaxies much further away than their lenses in 187 cases, of which 21 have been observed with the Hubble Space Telescope. Those observations confirm that the majority of these objects are indeed gravitationally lensed. 

"Via these same techniques, future data sets from projects such as WHT/WEAVE and the Dark Energy Spectroscopic Instrument (DESI) will lead to the discovery of many more types of lensed systems at all redshifts", concludes Adam Bolton, Associate Director of the NOAO and an author on this research.

More information:

Rui Marques-Chaves, Ismael Pérez-Fournon, Yiping Shu, Paloma I. Martínez-Navajas, Adam S. Bolton, Christopher S. Kochanek, Masamune Oguri, Zheng Zheng, Shude Mao, Antonio D. Montero-Dorta, Matthew A. Cornachione, and Joel R. Brownstein, 2017, "Discovery of a very bright and intrinsically very luminous, strongly lensed Ly-alpha emitting galaxy at z = 2.82 in the BOSS Emission-Line Lens Survey", ApJL, 834, L18 [ ADS ].

"Discovered one of the brightest distant galaxies so far known", IAC Press Release, 17 Jan 2017.

"17 New Strong Gravitational Lenses Discovered by NAOC Researchers Using HST Data", NAOC Press Release.

Contact:  

Javier Méndez
(Public Relations Officer)



Thursday, November 20, 2014

Subaru Telescope Detects Sudden Appearance of Galaxies in the Early Universe

Figure 1: Color composite images of seven LAEs found in this study as they appeared 13.1 billion years ago. This represents the combination of three filter images from Subaru Telescope. Red objects between two white lines are the LAEs. The LAEs of 13.1 billion years ago have a quite red color due to the effects of cosmic expansion on their component wavelengths of light. (Credit: ICRR, University of Tokyo)

Figure 2: This shows evolution of the Lyman-alpha luminosities of the galaxies. The yellow circle at 1 billion years after the Big Bang is used for normalization. The yellow circles come from previous studies, and the yellow dashed line shows the expected evolutionary trend of the luminosity. The current finding is shown by a red circle, and we can see that the galaxies appear suddenly when the universe was 700 million years old. This indicates that the neutral hydrogen fog was suddenly cleared, allowing the galaxies to shine out, as indicated by the backdrop shown for scale and illustration. Click here to see the diagram without the labels inside. (Credit: ICRR, University of Tokyo; Hubble Space Telescope/NASA/ESA)

A team of astronomers using the Subaru Telescope's Suprime-Cam to perform the Subaru Ultra-Deep Survey for Lyman-alpha Emitters have looked back more than 13 billion years to find 7 early galaxies that appeared quite suddenly within 700 million years of the Big Bang (Note 1). The team, led by graduate student Akira Konno and Dr. Masami Ouchi (Associate Professor at the University of Tokyo's ICRR) was looking for a specific kind of galaxy called a Lyman-alpha emitter (LAE), to understand the role such galaxies may have played in an event called "cosmic reionization". (Figure 1)

LAE galaxies are illuminated by strong hydrogen excitation (called Lyman-alpha emission) (Note 2). The team's discovery of these LAEs at a distance of 13.1 billion light-years suggests that LAE galaxies appeared rather suddenly in the early universe.

The universe was born in the Big Bang some 13.8 billion years ago. In its earliest epochs, it was filled with a hot "soup" of charged protons and electrons. As the newborn universe expanded, its temperature decreased uniformly. When the universe was 400,000 years old, conditions were cool enough to allow the protons and electrons to bond and form neutral hydrogen atoms. That event is called "recombination" and resulted in a universe filled with a "fog" of these neutral atoms.

Eventually the first stars and galaxies began to form, and their ultraviolet light ionized (energized) the hydrogen atoms, and "divided" the neutral hydrogen into protons and electrons again. As this occurred, the "fog" of neutrals cleared. Astronomers call this event "cosmic reionization" and think that it ended about 12.8 billion years ago (about a billion years after the Big Bang). The timing of this event – when it started and how long it lasted – is one of the big questions in astronomy.

To investigate this cosmic reionization, the Subaru team searched for early LAE galaxies at a distance of 13.1 billion light years. Although Hubble Space Telescope has found more distant LAE galaxies, the discovery of seven such galaxies at 13.1 billion light-years represents a distance milestone for Subaru Telescope (Note 3).
Mr. Konno, the graduate student heading the analysis of the data from the Subaru Telescope pointed out the obstacles that Subaru had to overcome to make the observations. "It is quite difficult to find the most distant galaxies due to the faintness of the galaxies." he said. "So, we developed a special filter to be able to find a lot of faint LAEs. We loaded the filter onto Suprime-Cam and conducted the most distant LAE survey with the integration time of 106 hours."

That extremely long integration time was one of the longest ever performed at Subaru Telescope. It allowed for unprecedented sensitivity and enabled the team to search for as many of the most distant LAEs as possible. According to Konno, the team expected to find several tens of LAEs. Instead they only found seven.

"At first we were very disappointed at this small number," Konno said. "But we realized that this indicates LAEs appeared suddenly about 13 billion years ago. This is an exciting discovery. Figure 2 shows how the luminosities of LAEs changed based on this study. We can see that the luminosities suddenly brightened during the 700-800 million years after the Big Bang. What would cause this?

According to the team's analysis, one reason that LAEs appeared very quickly is cosmic reionization. LAEs in the epoch of cosmic reionization became darker than the actual luminosity due to the presence of the neutral hydrogen fog. In the team's analysis of their observations, they suggest the possibility that the neutral fog filling the universe was cleared about 13.0 billion years ago and LAEs suddenly appeared in sight for the first time."

"However, there are other possibilities to explain why LAEs appeared suddenly," said Dr. Ouchi, who is the principal investigator of this program. "One is that clumps of neutral hydrogen around LAEs disappeared. Another is that LAEs became intrinsically bright. The reason of the intrinsic brightening is that the Lyman-alpha emission is not efficiently produced by the ionized clouds in a LAE due to the significant escape of ionizing photons from the galaxy. In either case, our discovery is an important key to understanding cosmic reionization and the properties of the LAEs in early universe."

Dr. Masanori Iye, who is a representative of the Thirty Meter Telescope (TMT) project of Japan, commented on the observations and analysis. "To investigate which possibility is correct, we will observe with HSC (Hyper Suprime-Cam) on Subaru Telescope, which has a field of view 7 times wider than Suprime-Cam, and TMT currently being built on the summit of Mauna Kea in Hawaii in the future. By these observations, we will clarify the mystery of how galaxies were born and cosmic reionization occurred."

This research is published in the November 20, 2014 issue of The Astrophysical Journal. The work was supported by the Carnegie Observatory, World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and KAKENHI (23244025) Grant-in-Aid for Scientific Research (A) through Japan Society for the Promotion of Science (JSPS).

Notes:

  1. The values of the cosmic age and distance in this press release are based on the latest Planck results. Planck observes the cosmic microwave background. A previous press release on this subject used values based on the cosmological parameters derived from the measurements by WMAP (Wilkinson Microwave Anisotropy Probe).
    The parameters used here are H_0=67.1 km/s/Mpc, Ω=0.317, Λ=0.683 instead of the ones used in the past articles at Subaru Telescope's website H_0=71, Ω=0.27, Λ=0.73.
  2. Lyman-alpha emission line is a spectral line of hydrogen, with a wavelength of 121.6 nm (1nm is one billionth of a meter), and is in the ultraviolet portion of the spectrum. Galaxies illuminated by strong Lyman-alpha line are called "Lyman-alpha emitting galaxies" (LAEs).
  3. In previous studies, astronomers have found hundreds of LAEs existing 12.9 billion years ago, which corresponds to the epoch when cosmic reionization finally ended.