A Cosmic Pretzel
The mouthpiece of the Pipe Nebula
Barnard 59, a dark nebula in the constellation of Ophiuchus
Videos
ESOcast 208 Light: A Cosmic Pretzel (4K UHD)
Animation of two circumstellar disk orbiting and accreting gas and dust
Twin baby stars grow amongst a twisting network of gas and dust
Astronomers using ALMA have obtained an
extremely high-resolution image showing two disks in which young stars
are growing, fed by a complex pretzel-shaped network of filaments of gas
and dust. Observing this remarkable phenomenon sheds new light on the
earliest phases of the lives of stars and helps astronomers determine
the conditions in which binary stars are born.
The two baby stars were found in the [BHB2007] 11 system –
the youngest member of a small stellar cluster in the Barnard 59 dark
nebula, which is part of the clouds of interstellar dust called the Pipe nebula. Previous observations of this binary system showed the outer structure. Now, thanks to the high resolution of the Atacama Large Millimeter/submillimeter Array (ALMA) and an international team of astronomers led by scientists from the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, we can see the inner structure of this object.
“We see two compact sources that we interpret as circumstellar disks around the two young stars,”
explains Felipe Alves from MPE who led the study. A circumstellar disk
is the ring of dust and gas that surrounds a young star. The star
accrete matter from the ring to grow bigger. “The size of each of
these disks is similar to the asteroid belt in our Solar System and the
separation between them is 28 times the distance between the Sun and the
Earth,” notes Alves.
The two circumstellar disks are surrounded by a bigger disk
with a total mass of about 80 Jupiter masses, which displays a complex
network of dust structures distributed in spiral shapes – the pretzel
loops. “This is a really important result,” stresses Paola Caselli, managing director at MPE, head of the Centre of Astrochemical Studies and co-author of the study. “We
have finally imaged the complex structure of young binary stars with
their feeding filaments connecting them to the disk in which they were
born. This provides important constraints for current models of star
formation.”
The baby stars accrete mass from the bigger disk in two
stages. The first stage is when mass is transferred to the individual
circumstellar disks in beautiful twirling loops, which is what the new
ALMA image showed. The data analysis also revealed that the less-massive
but brighter circumstellar disk — the one in the lower part of the
image — accretes more material. In the second stage, the stars accrete
mass from their circumstellar disks. “We expect this two-level accretion process to drive the dynamics of the binary system during its mass accretion phase,” adds Alves.
“While
the good agreement of these observations with theory is already very
promising, we will need to study more young binary systems in detail to
better understand how multiple stars form.”
More Information
More Information
This research was presented in a paper published on 3 October 2019 in the journal Science.
The team is composed of F. O. Alves (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany), P. Caselli (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Germany), J. M. Girart (Institut de Ciències de l’Espai, Consejo Superior de Investigaciones Científicas, Spain and Institut d’Estudis Espacials de Catalunya, Spain), D. Segura-Cox (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany), G. A. P. Franco (Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Brazil), A. Schmiedeke (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany) and B. Zhao (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany).
The Atacama Large Millimeter/submillimeter Array (ALMA), an
international astronomy facility, is a partnership of ESO, the U.S.
National Science Foundation (NSF) and the National Institutes of Natural
Sciences (NINS) of Japan in cooperation with the Republic of Chile.
ALMA is funded by ESO on behalf of its Member States, by NSF in
cooperation with the National Research Council of Canada (NRC) and the
National Science Council of Taiwan (NSC) and by NINS in cooperation with
the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space
Science Institute (KASI). ALMA construction and operations are led by
ESO on behalf of its Member States; by the National Radio Astronomy
Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on
behalf of North America; and by the National Astronomical Observatory of
Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO)
provides the unified leadership and management of the construction,
commissioning and operation of ALMA.
ESO is the foremost intergovernmental astronomy
organisation in Europe and the world’s most productive ground-based
astronomical observatory by far. It has 16 Member States: Austria,
Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland,
Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland
and the United Kingdom, along with the host state of Chile and with
Australia as a Strategic Partner. ESO carries out an ambitious programme
focused on the design, construction and operation of powerful
ground-based observing facilities enabling astronomers to make important
scientific discoveries. ESO also plays a leading role in promoting and
organising cooperation in astronomical research. ESO operates three
unique world-class observing sites in Chile: La Silla, Paranal and
Chajnantor. At Paranal, ESO operates the Very Large Telescope and its
world-leading Very Large Telescope Interferometer as well as two survey
telescopes, VISTA working in the infrared and the visible-light VLT
Survey Telescope. Also at Paranal ESO will host and operate the
Cherenkov Telescope Array South, the world’s largest and most sensitive
gamma-ray observatory.
ESO is also a major partner in two facilities on
Chajnantor, APEX and ALMA, the largest astronomical project in
existence. And on Cerro Armazones, close to Paranal, ESO is building the
39-metre Extremely Large Telescope, the ELT, which will become “the
world’s biggest eye on the sky”.
Links
Contact
Felipe Alves
Center for Astrochemical Studies — Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel: +49 89 30000 3897
Email: falves@mpe.mpg.de
Mariya Lyubenova
ESO Head of Media Relations
Garching bei München, Germany
Tel: +49 89 3200 6188
Email: pio@eso.org
Source: ESO/News