Hubble view of the surroundings of a hidden neutron star in the Small Magellanic Cloud
MUSE view of the surroundings of a hidden neutron star in the Small Magellanic Cloud
X-ray view of the surroundings of a hidden neutron star in the Small Magellanic Cloud
The Small Magellanic Cloud
Videos
ESOcast 155 Light: Dead Star Circled by Light (4K UHD)
Zooming in on a neutron star in the Small Magellanic Cloud
MUSE data points to isolated neutron star beyond our galaxy
New images from ESO’s Very Large
Telescope in Chile and other telescopes reveal a rich landscape of stars
and glowing clouds of gas in one of our closest neighbouring galaxies,
the Small Magellanic Cloud. The pictures have allowed astronomers to
identify an elusive stellar corpse buried among filaments of gas left
behind by a 2000-year-old supernova explosion. The MUSE instrument was
used to establish where this elusive object is hiding, and existing
Chandra X-ray Observatory data confirmed its identity as an isolated
neutron star.
Spectacular new pictures, created from images from both ground- and space-based telescopes [1], tell the story of the hunt for an elusive missing object hidden amid a complex tangle of gaseous filaments in the Small Magellanic Cloud, about 200 000 light-years from Earth.
New data from the MUSE instrument
on ESO’s Very Large Telescope in Chile has revealed a remarkable ring
of gas in a system called 1E 0102.2-7219, expanding slowly within the
depths of numerous other fast-moving filaments of gas and dust left
behind after a supernova explosion. This discovery allowed a team led by Frédéric Vogt, an ESO Fellow in Chile, to track down the first ever isolated neutron star with low magnetic field located beyond our own Milky Way galaxy.
The team noticed that the ring was centred on an X-ray source that had been noted years before and designated p1. The nature of this source had remained a mystery. In particular, it was not clear whether p1
actually lies inside the remnant or behind it. It was only when the
ring of gas — which includes both neon and oxygen — was observed with
MUSE that the science team noticed it perfectly circled p1. The coincidence was too great, and they realised that p1
must lie within the supernova remnant itself. Once p1’s location was
known, the team used existing X-ray observations of this target from the
Chandra X-ray Observatory to determine that it must be an isolated neutron star, with a low magnetic field.
In the words of Frédéric Vogt: “If you look for a point
source, it doesn’t get much better than when the Universe quite
literally draws a circle around it to show you where to look.”
When massive stars explode as supernovae, they leave behind
a curdled web of hot gas and dust, known as a supernova remnant. These
turbulent structures are key to the redistribution of the heavier
elements — which are cooked up by massive stars as they live and die —
into the interstellar medium, where they eventually form new stars and
planets.
Typically barely ten kilometres across, yet weighing more
than our Sun, isolated neutron stars with low magnetic fields are
thought to be abundant across the Universe, but they are very hard to
find because they only shine at X-ray wavelengths [2]. The fact that the confirmation of p1 as an isolated neutron star was enabled by optical observations is thus particularly exciting.
Co-author Liz Bartlett, another ESO Fellow in Chile, sums up this discovery: “This
is the first object of its kind to be confirmed beyond the Milky Way,
made possible using MUSE as a guidance tool. We think that this could
open up new channels of discovery and study for these elusive stellar
remains.”
Notes
Links
Contact
[1] The image combines data from the MUSE instrument on ESO’s Very Large Telescope in Chile and the orbiting the NASA/ESA Hubble Space Telescope and NASA Chandra X-Ray Observatory.
[2] Highly-magnetic spinning neutron stars are called pulsars.
They emit strongly at radio and other wavelengths and are easier to
find, but they are only a small fraction of all the neutron stars
predicted to exist.
More Information
More Information
This research was presented in a paper entitled
“Identification of the central compact object in the young supernova
remnant 1E 0102.2-7219”, by Frédéric P. A. Vogt et al., in the journal Nature Astronomy.
The team is composed of Frédéric P. A. Vogt (ESO, Santiago,
Chile & ESO Fellow), Elizabeth S. Bartlett (ESO, Santiago, Chile
& ESO Fellow), Ivo R. Seitenzahl (University of New South Wales
Canberra, Australia), Michael A. Dopita (Australian National University,
Canberra, Australia), Parviz Ghavamian (Towson University, Baltimore,
Maryland, USA), Ashley J. Ruiter (University of New South Wales Canberra
& ARC Centre of Excellence for All-sky Astrophysics, Australia) and
Jason P. Terry (University of Georgia, Athens, USA).
ESO is the foremost intergovernmental astronomy
organisation in Europe and the world’s most productive ground-based
astronomical observatory by far. It has 15 Member States: Austria,
Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy,
the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the
United Kingdom, along with the host state of Chile and with Australia as
a strategic partner. ESO carries out an ambitious programme focused on
the design, construction and operation of powerful ground-based
observing facilities enabling astronomers to make important scientific
discoveries. ESO also plays a leading role in promoting and organising
cooperation in astronomical research. ESO operates three unique
world-class observing sites in Chile: La Silla, Paranal and Chajnantor.
At Paranal, ESO operates the Very Large Telescope and its world-leading
Very Large Telescope Interferometer as well as two survey telescopes,
VISTA working in the infrared and the visible-light VLT Survey
Telescope. ESO is also a major partner in two facilities on Chajnantor,
APEX and ALMA, the largest astronomical project in existence. And on
Cerro Armazones, close to Paranal, ESO is building the 39-metre
Extremely Large Telescope, the ELT, which will become “the world’s
biggest eye on the sky”.
Links
Contact
Frédéric P. A. Vogt
ESO Fellow
Santiago, Chile
Email: fvogt@eso.org
Elizabeth S. Bartlett
ESO Fellow
Santiago, Chile
Email: ebartlet@eso.org
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org
ESO Fellow
Santiago, Chile
Email: fvogt@eso.org
Elizabeth S. Bartlett
ESO Fellow
Santiago, Chile
Email: ebartlet@eso.org
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org
Source: ESO/News