Tuesday, March 16, 2010

Jupiter’s Spot Seen Glowing

PR Image eso1010a
Jupiter’s Storms: Temperatures and Cloud Colours
Credit:ESO/NASA/JPL/ESA/L. Fletcher

Scientists Get First Look at Weather
Inside the Solar System’s Biggest Storm


New ground-breaking thermal images obtained with ESO’s Very Large Telescope and other powerful ground-based telescopes show swirls of warmer air and cooler regions never seen before within Jupiter’s Great Red Spot, enabling scientists to make the first detailed interior weather map of the giant storm system linking its temperature, winds, pressure and composition with its colour.

“This is our first detailed look inside the biggest storm of the Solar System,” says Glenn Orton, who led the team of astronomers that made the study. “We once thought the Great Red Spot was a plain old oval without much structure, but these new results show that it is, in fact, extremely complicated.”

The observations reveal that the reddest colour of the Great Red Spot corresponds to a warm core within the otherwise cold storm system, and images show dark lanes at the edge of the storm where gases are descending into the deeper regions of the planet. The observations, detailed in a paper appearing in the journal Icarus, give scientists a sense of the circulation patterns within the solar system’s best-known storm system.

Sky gazers have been observing the Great Red Spot in one form or another for hundreds of years, with continuous observations of its current shape dating back to the 19th century. The spot, which is a cold region averaging about -160 degrees Celsius, is so wide that about three Earths could fit inside its boundaries.

The thermal images were mostly obtained with the VISIR [1] instrument attached to ESO’s Very Large Telescope in Chile, with additional data coming from the Gemini South telescope in Chile and the National Astronomical Observatory of Japan’s Subaru Telescope in Hawaii. The images have provided an unprecedented level of resolution and extended the coverage provided by NASA’s Galileo spacecraft in the late 1990s. Together with observations of the deep cloud structure by the 3-metre NASA Infrared Telescope Facility in Hawaii, the level of thermal detail observed from these giant observatories is for the first time comparable to visible-light images from the NASA/ESA Hubble Space Telescope.

VISIR allows the astronomers to map the temperature, aerosols and ammonia within and surrounding the storm. Each of these parameters tells us how the weather and circulation patterns change within the storm, both spatially (in 3D) and with time. The years of VISIR observations, coupled with those from the other observatories, reveals how the storm is incredibly stable despite turbulence, upheavals and close encounters with other anticyclones that affect the edge of the storm system.

“One of the most intriguing findings shows the most intense orange-red central part of the spot is about 3 to 4 degrees warmer than the environment around it,” says lead author Leigh Fletcher. This temperature difference might not seem like a lot, but it is enough to allow the storm circulation, usually counter-clockwise, to shift to a weak clockwise circulation in the very middle of the storm. Not only that, but on other parts of Jupiter, the temperature change is enough to alter wind velocities and affect cloud patterns in the belts and zones.

“This is the first time we can say that there’s an intimate link between environmental conditions — temperature, winds, pressure and composition — and the actual colour of the Great Red Spot,” says Fletcher. “Although we can speculate, we still don’t know for sure which chemicals or processes are causing that deep red colour, but we do know now that it is related to changes in the environmental conditions right in the heart of the storm.”

Notes

[1] VISIR stands for VLT Imager and Spectrometer for mid Infrared (eso0417). It is a complex multi-mode instrument designed to operate in the 10 and 20 micron atmospheric windows, i.e. at wavelengths up to about 40 times longer than visible light, and to provide images as well as spectra.

More information

This research was presented in a paper to appear in Icarus (“Thermal Structure and Composition of Jupiter’s Great Red Spot from High-Resolution Thermal Imaging”, by L. Fletcher et al.).

The team is composed of Leigh N. Fletcher and P. G. J. Irwin (University of Oxford, UK), G. S. Orton, P. Yanamandra-Fisher, and B. M. Fisher (Jet Propulsion Laboratory, California Institute of Technology, USA), O. Mousis (Observatoire de Besançon, France, and University of Arizona, Tucson, USA), P. D. Parrish (University of Edinburgh, UK), L. Vanzi (Pontificia Universidad Catolica de Chile, Santiago, Chile), T. Fujiyoshi and T. Fuse (Subaru Telescope, National Astronomical Observatory of Japan, Hawaii, USA), A.A. Simon-Miller (NASA/Goddard Spaceflight Center, Greenbelt, Maryland, USA), E. Edkins (University of California, Santa Barbara, USA), T.L. Hayward (Gemini Observatory, La Serena, Chile), and J. De Buizer (SOFIA - USRA, NASA Ames Research Center, Moffet Field, CA 94035, USA). Leigh Fletcher was working at JPL during the study.

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and VISTA, the world’s largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Research paper

Contacts

Leigh N. Fletcher
University of Oxford, UK
Tel: +44 18 65 27 20 89
Email: fletcher@atm.ox.ac.uk

Glenn Orton
Jet Propulsion Laboratory
Pasadena, USA
Tel: +1 818 354 2460
Email: go@orton.jpl.nasa.gov

Henri Boffin
ESO
Garching, Germany
Tel: +49 89 3200 6222
Cell: +49 174 515 43 24
Email: hboffin@eso.org

Jia-Rui C. Cook
Jet Propulsion Laboratory
Pasadena, USA
Tel: +1 818 354 0850
Email: jia-rui.c.cook@jpl.nasa.gov