Showing posts with label giant galaxies. Show all posts
Showing posts with label giant galaxies. Show all posts

Wednesday, July 29, 2015

What happens when Cosmic Giants meet Galactic Dwarfs?

Cosmic Giants Meet Galactic Dwarfs in GAMA

 A still from the animation available on Dropbox


When two different sized galaxies smash together, the larger galaxy stops the smaller one making new stars, according to a study of more than 20,000 merging galaxies.

The research, published today, also found that when two galaxies of the same size collide, both galaxies produce stars at a much faster rate.

Astrophysicist Luke Davies, from The University of Western Australia node of the International Centre for Radio Astronomy Research (ICRAR), says our nearest major galactic neighbour, Andromeda, is hurtling on a collision course with the Milky Way at about 400,000 kilometres per hour.

“Don’t panic yet, the two won’t smash into each other for another four billion years or so,” he says.

“But investigating such cosmic collisions lets us better understand how galaxies grow and evolve.”

Previously, astronomers thought that when two galaxies smash into each other their gas clouds—where stars are born—get churned up and seed the birth of new stars much faster than if they remained separate.

However Dr Davies’ research, using the Galaxy and Mass Assembly (GAMA) survey observed using the Anglo-Australian Telescope in regional New South Wales, suggests this idea is too simplistic.

He says whether a galaxy forms stars more rapidly in a collision, or forms any new stars at all, depends on if it is the big guy or the little guy in this galactic car crash.

“When two galaxies of similar mass collide, they both increase their stellar birth rate,” Dr Davies says.

“However when one galaxy significantly outweighs the other, we have found that star formation rates are affected for both, just in different ways."

“The more massive galaxy begins rapidly forming new stars, whereas the smaller galaxy suddenly struggles to make any at all."

“This might be because the bigger galaxy strips away its smaller companion’s gas, leaving it without star-forming fuel or because it stops the smaller galaxy obtaining the new gas required to form more stars.”

The study was released today in the journal Monthly Notices of the Royal Astronomical Society, published by Oxford University Press.

So what will happen in four billion years to the Milky Way and Andromeda?

Dr Davies says the pair are like “cosmic tanks”—both relatively large and with similar mass.

“As they get closer together they will begin to affect each other’s star formation, and will continue to do so until they eventually merge to become a new galaxy, which some call ‘Milkdromeda’,” he says.


Further information:
ICRAR is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

Original publication details:

‘Galaxy and Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies’ in the Monthly Notices of the Royal Astronomical Society. Published online on 13/7/2015 at: http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv1241


Imagens and Animation:

All images and an animation are available in various resolutions on Dropbox.


Contacts:

Dr Luke Davies
ICRAR – UWA (Perth, GMT +8:00)
Ph: +61 8 6488 7750
M: +61 466 277 672
E:
luke.davies@icrar.org

Pete Wheeler
Media Contact, ICRAR (Perth, GMT +8:00)
Ph: +61 8 6488 7758
M: +61 423 982 018
E:
pete.wheeler@icrar.org

UWA Media Office
Ph: +61 8 6488 7977



Friday, April 17, 2015

Giant Galaxies Die from the Inside Out

Galaxies die from the inside out

Elliptical galaxy IC 2006


VLT and Hubble observations show that star formation shuts down in the centres of elliptical galaxies first

Astronomers have shown for the first time how star formation in “dead” galaxies sputtered out billions of years ago. ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have revealed that three billion years after the Big Bang, these galaxies still made stars on their outskirts, but no longer in their interiors. The quenching of star formation seems to have started in the cores of the galaxies and then spread to the outer parts. The results will be published in the 17 April 2015 issue of the journal Science.

A major astrophysical mystery has centred on how massive, quiescent elliptical galaxies, common in the modern Universe, quenched their once furious rates of star formation. Such colossal galaxies, often also called spheroids because of their shape, typically pack in stars ten times as densely in the central regions as in our home galaxy, the Milky Way, and have about ten times its mass.

Astronomers refer to these big galaxies as red and dead as they exhibit an ample abundance of ancient red stars, but lack young blue stars and show no evidence of new star formation. The estimated ages of the red stars suggest that their host galaxies ceased to make new stars about ten billion years ago. This shutdown began right at the peak of star formation in the Universe, when many galaxies were still giving birth to stars at a pace about twenty times faster than nowadays.

Massive dead spheroids contain about half of all the stars that the Universe has produced during its entire life,” said Sandro Tacchella of ETH Zurich in Switzerland, lead author of the article. “We cannot claim to understand how the Universe evolved and became as we see it today unless we understand how these galaxies come to be.”

Tacchella and colleagues observed a total of 22 galaxies, spanning a range of masses, from an era about three billion years after the Big Bang [1]. The SINFONI instrument on ESO’s Very Large Telescope (VLT) collected light from this sample of galaxies, showing precisely where they were churning out new stars. SINFONI could make these detailed measurements of distant galaxies thanks to its adaptive optics system, which largely cancels out the blurring effects of Earth’s atmosphere.

The researchers also trained the NASA/ESA Hubble Space Telescope on the same set of galaxies, taking advantage of the telescope’s location in space above our planet’s distorting atmosphere. Hubble’s WFC3 camera snapped images in the near-infrared, revealing the spatial distribution of older stars within the actively star-forming galaxies.

What is amazing is that SINFONI’s adaptive optics system can largely beat down atmospheric effects and gather information on where the new stars are being born, and do so with precisely the same accuracy as Hubble allows for the stellar mass distributions,” commented Marcella Carollo, also of ETH Zurich and co-author of the study.

According to the new data, the most massive galaxies in the sample kept up a steady production of new stars in their peripheries. In their bulging, densely packed centres, however, star formation had already stopped.

The newly demonstrated inside-out nature of star formation shutdown in massive galaxies should shed light on the underlying mechanisms involved, which astronomers have long debated,” says Alvio Renzini, Padova Observatory, of the Italian National Institute of Astrophysics.

A leading theory is that star-making materials are scattered by torrents of energy released by a galaxy’s central supermassive black hole as it sloppily devours matter. Another idea is that fresh gas stops flowing into a galaxy, starving it of fuel for new stars and transforming it into a red and dead spheroid.

There are many different theoretical suggestions for the physical mechanisms that led to the death of the massive spheroids,” said co-author Natascha Förster Schreiber, at the Max-Planck-Institut für extraterrestrische Physik in Garching, Germany. “Discovering that the quenching of star formation started from the centres and marched its way outwards is a very important step towards understanding how the Universe came to look like it does now.

Notes

[1] The Universe’s age is about 13.8 billion years, so the galaxies studied by Tacchella and colleagues are generally seen as they were more than 10 billion years ago.


More Information

This research was presented in a paper entitled “Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang” by S. Tacchella et al., to appear in the journal Science on 17 April 2015.

The team is composed of Sandro Tacchella (ETH Zurich, Switzerland), Marcella Carollo (ETH Zurich), Alvio Renzini (Italian National Institute of Astrophysics, Padua, Italy), Natascha Förster Schreiber (Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany), Philipp Lang (Max-Planck-Institut für Extraterrestrische Physik), Stijn Wuyts (Max-Planck-Institut für Extraterrestrische Physik), Giovanni Cresci (Istituto Nazionale di Astrofisica), Avishai Dekel (The Hebrew University, Israel), Reinhard Genzel (Max-Planck-Institut für extraterrestrische Physik and University of California, Berkeley, California, USA), Simon Lilly (ETH Zurich), Chiara Mancini (Italian National Institute of Astrophysics), Sarah Newman (University of California, Berkeley, California, USA), Masato Onodera (ETH Zurich), Alice Shapley (University of California, Los Angeles, USA), Linda Tacconi (Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany), Joanna Woo (ETH Zurich) and Giovanni Zamorani (Italian National Institute of Astrophysics, Bologna, Italy).


ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


Links

Contacts

Sandro Tacchella
ETH Zurich
Zurich, Switzerland
Tel: +41 44 633 6314
Cell: +41 76 480 7963
Email:
sandro.tacchella@phys.ethz.ch
 
Marcella Carollo
ETH Zurich
Zurich, Switzerland
Tel: +41 797 926 581
Email:
marcella@phys.ethz.ch

Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email:
rhook@eso.org

Source: ESO