Showing posts with label NGC 5548. Show all posts
Showing posts with label NGC 5548. Show all posts

Thursday, January 19, 2023

Study finds active galactic nuclei are even more powerful than thought

An artist’s impression of what the dust around a quasar might look like from a light year away
Credit: Peter Z. Harrington
Licence type:
Attribution (CC BY 4.0)

A new study indicates that scientists have substantially underestimated the energy output of active galactic nuclei by not recognising the extent to which their light is dimmed by dust. The work is published in Monthly Notices of the Royal Astronomical Society.

Powered by supermassive black holes swallowing matter in the centres of galaxies, active galactic nuclei are the most powerful compact steady sources of energy in the universe. The brightest active galactic nuclei have long been known to far outshine the combined light of the billions of stars in their host galaxies. Although the possibility of dust dimming the light from active galactic nuclei has been recognised for a long time, the amount has been considered controversial and was widely believed to be negligible.

Now, the new research reveals that the energy output of active galactic nuclei is underestimated. The team reached this conclusion by studying the reddening effect of dust on the light fromone of the most well-studied active galactic nuclei, known as NGC 5548. Just as the Earth’s atmosphere makes the Sun appear redder as well as dimmer at sunset, so dust in active galactic nuclei also makes them appear redder than they really are. The amount of reddening correlates with the amount of dimming.

Scientists quantify the colours of an object by measuring the ratios of the intensity of its light at different wavelengths. While we know what the unreddened colour of the Sun is, there has been much debate over the unreddened colours of the various types of emission from active galactic nuclei. This is because, although simple theories predict the intrinsic, unreddened colours, there were doubts about whether these simple theories applied to active galactic nuclei.

In the new study of NGC 5548, the UCSC researchers used seven different indicators of the amount of dust and found them all to be in good agreement. Furthermore, the dimming of NGC 5548 due to dust was found to be large, more than ten times the dimming caused by dust as we look out of our own galaxy, the Milky Way.

The colours of NGC 5548 are typical of other active galactic nuclei, which has wide- ranging implications. Because of the dimming effects of dust, active galactic nuclei are even more powerful than had been realised. The results imply that in the ultraviolet, where most of the energy is radiated, a typical active galactic nucleus is putting out an order of magnitude more energy than previously thought.

Another implication is that active galactic nuclei are very similar, and what had hitherto been thought to be major fundamental differences between them are really just the consequences of different amounts of reddening by dust.

“When there are intervening small particles along our line of sight, this makes things behind them look dimmer. We see this at sunset on any clear day when the sun looks fainter,” said Dr Martin Gaskell, a research associate in astronomy and astrophysics at UC Santa Cruz and lead author of the paper. “The good agreement between the different indicators of the amount of reddening was a pleasant surprise,” said Gaskell. “It strongly supports simple theories of emission from active galactic nuclei. Exotic explanations of colours are not needed. This makes life simpler for researchers and is speeding up our understanding of what happens as black holes swallow material,” Gaskell said.






Media contacts:

Gurjeet Kahlon
Royal Astronomical Society
Mob: +44 (0)7802 877700

press@ras.ac.uk

Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)7802 877699

press@ras.ac.uk

Science contacts:

Dr Martin Gaskell
University of California Santa Cruz

mgaskell@ucsc.edu



Further information

Gaskell’s co-authors—Frances Anderson (now at Harvey Mudd College), Sufia Birmingham (now at Princeton University), and Samhita Ghosh (now at UC Berkeley)—worked on thisproject as high school seniors participating in the UCSC Science Internship Program.

The work appears in ‘Estimating reddening of the continuum and broad-line region of active galactic nuclei: the mean reddening of NGC 5548 and the size of the accretion disc ’, Gaskell et al., published in Monthly Notices of the Royal Astronomical Society, in press.

Notes for editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.



Friday, December 17, 2021

Astronomers just got better at finding "bright" Black Holes

A spiral galaxy named NGC 4051 — about 45 million light-years from Earth
Credit: ESA/Hubble & NASA, D. Crenshaw and O. Fox

One of the galaxies involved in the study
Credit: GAMA Survey Team-ICRAR/UWA, and the KiDS and VIKING Teams

Astronomers have a new way of detecting active black holes in the Universe and measuring how much matter they are sucking in.

The technique can be applied to millions of galaxies, searching for bright, supermassive black holes at the centre of the galaxies.

Lead author Jessica Thorne, a PhD student at the University of Western Australia node of the International Centre for Radio Astronomy Research, said active black holes are typically found in the largest galaxies in the Universe.


“The black holes we’re looking for are between a million and a billion times more massive than our Sun,” she said.

“As they suck in matter from around them, the matter gets super-heated because of friction and becomes very, very luminous.

“And when they’re active, these black holes can outshine the rest of the galaxy.”

Until now, identifying bright black holes has been challenging, with astronomers having to specifically look for them using complex methods unique to different types of telescopes.

Instead, the new technique works on typical telescope observations that already exist for millions of galaxies.

“We can identify these active black holes and look at how much light they’re emitting, but also measure the properties of the galaxy it is in at the same time,” Thorne said.

“By doing both at once, we can have a better idea of exactly how the black hole is impacting its host galaxy.”

The researchers developed the new technique by using an algorithm called ProSpect to model emission from galaxies and black holes at different wavelengths of light.

They then applied the method to almost half a million galaxies from Anglo-Australian Telescope’s DEVILS survey.

They also applied it to more than 200,000 galaxies from the GAMA survey, which brings together observations from six of the world’s best ground and space-based telescopes.

A mosaic of some of the galaxies involved in the study
Credit: GAMA Survey Team-ICRAR/UWA, and the KiDS and VIKING Teams

“One of the reasons we’ve ignored them in the past is because it’s hard to find them all,” she said.

“We don’t really understand these bright black holes to incorporate them into our modelling with sufficient detail.”


Galaxy NGC 5548. At its heart, though not visible here, is a supermassive black hole behaving in a strange and unexpected manner. Researchers detected a clumpy gas stream flowing quickly outwards and blocking 90 percent of the X-rays emitted by the black hole. This activity could provide insights into how supermassive black holes interact with their host galaxies. Credit: ESA/Hubble, A. Riess et al., J. Greene

Dr Bellstedt said the new technique is easier, more consistent and more thorough.

“It suddenly means we can look for active black holes in so many more places than we were able to before,” she said.

“It’s going to help us search more galaxies, and look further back in time to the distant Universe.”

Supermassive black holes are thought to have a huge impact on how galaxies evolve.

“We think that an active black hole in a galaxy is able to decrease the amount of star formation really quickly and stop the galaxy from growing any further,” Thorne said. “It can effectively kill it.”

With observations from new telescopes such as the James Webb Space Telescope, the Vera C. Rubin Observatory in Chile, and the Square Kilometre Array in Australia and South Africa, astronomers may be able to apply the technique to millions of galaxies at once.

“It’s exciting to think about how many doors this has unlocked for the future,” Thorne said.

Publication

‘Deep Extragalactic VIsible Legacy Survey (DEVILS): Identification of AGN through SED Fitting and the Evolution of the Bolometric AGN Luminosity Function’, published in Monthly Notices of the Royal Astronomical Society on December 14th, 2021.

Research Paper

Monday, June 23, 2014

Swiftly moving gas streamer eclipses supermassive black hole

 
Supermassive black hole at the heart of NGC 5548
 
Artist’s impression of gas filament eclipsing a black hole

Astronomers have discovered strange and unexpected behaviour around the supermassive black hole at the heart of the galaxy NGC 5548. The international team of researchers detected a clumpy gas stream flowing quickly outwards and blocking 90 percent of the X-rays emitted by the black hole. This activity could provide insights into how supermassive black holes interact with their host galaxies.

The discovery of the unusual behaviour in NGC 5548 is the result of an intensive observing campaign using major ESA and NASA space observatories, including the NASA/ESA Hubble Space Telescope [1]. In 2013 and 2014 the international team carried out the most extensive monitoring campaign of an active galaxy [2] ever conducted.

There are other galaxies that show gas streams near a black hole, but this is the first time that a stream like this has been seen to move into the line of sight.

The researchers say that this is the first direct evidence for the long-predicted shielding process that is needed to accelerate powerful gas streams, or winds, to high speeds. “This is a milestone in understanding how supermassive black holes interact with their host galaxies,” says Jelle Kaastra of the SRON Netherlands Institute for Space Research, who led the research team [3]. “We were very lucky. 

You don’t normally see this kind of event with objects like this. It tells us more about the powerful ionised winds that allow supermassive black holes in the nuclei of active galaxies to expel large amounts of matter. In larger quasars than NGC 5548, these winds can regulate the growth of both the black hole and its host galaxy.”

As matter spirals down into a black hole it forms a flat disc, known as an accretion disc. The disc is heated so much that it emits X-rays, near to the black hole, and less energetic ultraviolet radiation further out. The ultraviolet radiation can create winds strong enough to blow gas away from the black hole, which otherwise would have fallen into it. But, the winds only come into existence if their starting point is shielded from X-rays.

Earlier observations had seen the effects of both X-rays and ultraviolet radiation on a region of warm gas for away from the black hole, but these most recent observations have shown the presence of a new gas stream between the disc and the original cloud. The newly discovered gas stream in the archetypal Seyfert galaxy NGC 5548 — one of the best-studied sources of this type over the past half-century — absorbs most of the X-ray radiation before it reaches the original cloud, shielding it from X-rays and leaving only the ultraviolet radiation. The same stream shields gas closer to the accretion disc. This makes the strong winds possible, and it appears that the shielding has been going on for at least three years.

Directly after Hubble had observed NGC 5548 on 22 June 2013, the team discovered unexpected features in the data. “There were dramatic changes since the last observation with Hubble in 2011. We saw signatures of much colder gas than was present before, indicating that the wind had cooled down, due to a strong decrease in the ionising X-ray radiation from the nucleus,” said team member Gerard Kriss of the Space Telescope Science Institute in Baltimore, USA.

After combining and analysing data from the six observatories involved, the team was able to put the pieces of the puzzle together. NGC 5548’s persistent wind, which has been known about for two decades, reaches velocities exceeding 3.5 million kilometres per hour. But, a new wind has arisen which is much stronger and faster than the persistent wind.

“The new wind reaches speeds of up to 18 million kilometres per hour, but is much closer to the nucleus than the persistent wind,” says Kaastra. “The new gas outflow blocks 90 percent of the low-energy X-rays that come from very close to the black hole, and it obscures up to a third of the region that emits the ultraviolet radiation at a distance of a few light-days from the black hole.”

Strong X-ray absorption by ionised gas has been seen in several other sources, and it has been attributed for instance to passing clouds. “However, in our case, thanks to the combined XMM-Newton and Hubble data, we know this is a fast stream of outflowing gas very close to the nucleus,” said team member Massimo Cappi, of INAF-IASF Bologna. “It may even originate from the accretion disc,” added team member Pierre-Olivier Petrucci, of CNRS, IPAG Grenoble.

These results are being published online in the 19 June issue of Science Express.

Notes

[1] The observatories include ESA’s X-ray Multi-Mirror Mission (XMM-Newton), the NASA/ESA Hubble Space Telescope, NASA’s Swift, NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR), NASA’s Chandra X-ray Observatory, and ESA's International Gamma-Ray Astrophysics Laboratory (INTEGRAL).

[2] An active galaxy is a galaxy which hosts an active galactic nucleus (AGN). An AGN is a compact region at the centre of a galaxy that has a much higher than normal luminosity. The high level of radiation, sometimes across the whole of the electromagnetic spectrum, is thought to be a result the supermassive black hole at the centre pulling in mass from the surroundings.

[3] The interactions between black holes and their host galaxies are believed to have a fundamental importance on the way galaxies evolve.

 

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

More information

ESA/Hubble and NASA. Acknowledgement: Davide de Martin.

 Links

Images of Hubble

Contacts

Jelle Kaastra
SRON Netherlands Institute for Space Research
Utrecht, Netherlands
Tel: +31 88 7775870
Email:
J.Kaastra@sron.nl

Gerard A. Kriss
Space Telescope Science Institute
Baltimore, USA
Tel: +1 4103384353
Email:
gak@stsci.edu

Georgia Bladon
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Tel: +44 7816291261
Email:
gbladon@partner.eso.org