Showing posts with label Luhman 16AB. Show all posts
Showing posts with label Luhman 16AB. Show all posts

Friday, June 09, 2017

Waltzing dwarfs

Credit: ESA/Hubble & NASA, L. Bedin et al.


This seemingly unspectacular series of dots with varying distances between them actually shows the slow waltz of two brown dwarfs. The image is a stack of 12 images made over the course of three years with the NASA/ESA Hubble Space Telescope. Using high-precision astrometry, an Italian-led team of astronomers tracked the two components of the system as they moved both across the sky and around each other.

The observed system, Luhman 16AB, is only about six light-years away and is the third closest stellar system to Earth — after the triple star system Alpha Centauri and Barnard’s Star. Despite its proximity, Luhman 16AB was only discovered in 2013 by the astronomer Kevin Luhman. The two brown dwarfs that make up the system, Luhman 16A and Luhman 16B, orbit each other at a distance of only three times the distance between the Earth and the Sun, and so these observations are a showcase for Hubble’s precision and high resolution.

The astronomers using Hubble to study Luhman 16AB were not only interested in the waltz of the two brown dwarfs, but were also searching for a third, invisible, dancing partner. Earlier observations with ESO’s Very Large Telescope indicated the presence of an exoplanet in the system. The team wanted to verify this claim by analysing the movement of the brown dwarfs in great detail over a long period of time, but the Hubble data showed that the two dwarfs are indeed dancing alone, unperturbed by a massive planetary companion.

Links

Thursday, January 30, 2014

First Weather Map of Brown Dwarf

Surface map of Luhman 16B recreated from VLT observations

 
Surface map of Luhman 16B recreated from VLT observations (annotated)

Artist's impression of Luhman 16B recreated from VLT observations

Surface map of Luhman 16B recreated from VLT observations

Surface map of Luhman 16B recreated from VLT observations

Wide-field view of the sky around the nearby brown dwarf pair

***************************************

Videos

Artist's impression of Luhman 16B recreated from VLT observations
Artist's impression of Luhman 16B recreated from VLT observations

Surface map of Luhman 16B recreated from VLT observations
Surface map of Luhman 16B recreated from VLT observations

Zooming in on the nearby brown dwarf Luhman 16B
Zooming in on the nearby brown dwarf Luhman 16B

Flying among the closest stars to the Solar System
Flying among the closest stars to the Solar System

   

ESO’s VLT charts surface of nearest brown dwarf

ESO's Very Large Telescope has been used to create the first ever map of the weather on the surface of the nearest brown dwarf to Earth. An international team has made a chart of the dark and light features on WISE J104915.57-531906.1B, which is informally known as Luhman 16B and is one of two recently discovered brown dwarfs forming a pair only six light-years from the Sun. The new results are being published in the 30 January 2014 issue of the journal Nature.

Brown dwarfs fill the gap between giant gas planets, such as Jupiter and Saturn, and faint cool stars. They do not contain enough mass to initiate nuclear fusion in their cores and can only glow feebly at infrared wavelengths of light. The first confirmed brown dwarf was only found twenty years ago and only a few hundred of these elusive objects are known.

The closest brown dwarfs to the Solar System form a pair called Luhman 16AB [1] that lies just six light-years from Earth in the southern constellation of Vela (The Sail). This pair is the third closest system to the Earth, after Alpha Centauri and Barnard's Star, but it was only discovered in early 2013. The fainter component, Luhman 16B, had already been found to be changing slightly in brightness every few hours as it rotated — a clue that it might have marked surface features.

Now astronomers have used the power of ESO's Very Large Telescope (VLT) not just to image these brown dwarfs, but to map out dark and light features on the surface of Luhman 16B.

Ian Crossfield (Max Planck Institute for Astronomy, Heidelberg, Germany), the lead author of the new paper, sums up the results: “Previous observations suggested that brown dwarfs might have mottled surfaces, but now we can actually map them. Soon, we will be able to watch cloud patterns form, evolve, and dissipate on this brown dwarf — eventually, exometeorologists may be able to predict whether a visitor to Luhman 16B could expect clear or cloudy skies.”

To map the surface the astronomers used a clever technique. They observed the brown dwarfs using the CRIRES instrument on the VLT. This allowed them not just to see the changing brightness as Luhman 16B rotated, but also to see whether dark and light features were moving away from, or towards the observer. By combining all this information they could recreate a map of the dark and light patches of the surface.

The atmospheres of brown dwarfs are very similar to those of hot gas giant exoplanets, so by studying comparatively easy-to-observe brown dwarfs [2] astronomers can also learn more about the atmospheres of young, giant planets — many of which will be found in the near future with the new SPHERE instrument that will be installed on the VLT in 2014.

Crossfield ends on a personal note: “Our brown dwarf map helps bring us one step closer to the goal of understanding weather patterns in other solar systems. From an early age I was brought up to appreciate the beauty and utility of maps. It's exciting that we're starting to map objects out beyond the Solar System!”

Notes

[1] This pair was discovered by the American astronomer Kevin Luhman on images from the WISE infrared survey satellite. It is formally known as WISE J104915.57-531906.1, but a shorter form was suggested as being much more convenient. As Luhman had already discovered fifteen double stars the name Luhman 16 was adopted. Following the usual conventions for naming double stars, Luhman 16A is the brighter of the two components, the secondary is named Luhman 16B and the pair is referred to as Luhman 16AB.

[2] Hot Jupiter exoplanets lie very close to their parent stars, which are much brighter. This makes it almost impossible to observe the faint glow from the planet, which is swamped by starlight. But in the case of brown dwarfs there is nothing to overwhelm the dim glow from the object itself, so it is much easier to make sensitive measurements.

More information

This research was presented in a paper, “A Global Cloud Map of the Nearest Known Brown Dwarf”, by Ian Crossfield et al. to appear in the journal Nature.

The team is composed of I. J. M. Crossfield (Max Planck Institute for Astronomy [MPIA], Heidelberg, Germany), B. Biller (MPIA; Institute for Astronomy, University of Edinburgh, United Kingdom), J. Schlieder (MPIA), N. R. Deacon (MPIA), M. Bonnefoy (MPIA; IPAG, Grenoble, France), D. Homeier (CRAL-ENS, Lyon, France), F. Allard (CRAL-ENS), E. Buenzli (MPIA), Th. Henning (MPIA), W. Brandner (MPIA), B. Goldman (MPIA) and T. Kopytova (MPIA; International Max-Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg, Germany).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world's biggest eye on the sky”.

Links

Contacts

Ian Crossfield
Max Planck Institute for Astronomy
Heidelberg, Germany
Tel: +49 6221 528 406
Email:
ianc@mpia.de

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email:
rhook@eso.org

 Source: ESO 

 

Thursday, December 19, 2013

Nearby Failed Stars May Harbor Planet


Image of Luhman 16AB 
Courtesy NASA / JPL / Gemini Observatory / AURA / NSF

Pasadena, CA— Astronomers, including Carnegie’s Yuri Beletsky, took precise measurements of the closest pair of failed stars to the Sun, which suggest that the system harbors a third, planetary-mass object.The research is published as a letter to the editor in Astronomy & Astrophysics available online at http://arxiv.org/abs/1312.1303.

Failed stars are known as brown dwarfs and have a mass below 8% of the mass of the Sun—not massive enough to burn hydrogen in their centers. This particular system, Luhman 16AB, was discovered earlier this year and is only 6.6 light-years away.

After the discovery announcement, several teams of astronomers, including the one with Beletsky, used a variety of telescopes to characterize the neighbouring couple.

After two-months of observations and extensive data analysis, Beletsky’s team, led by Henri Boffin of the European Southern Observatory (ESO), found that both objects have a mass between 30 and 50 Jupiter masses. By comparison, the Sun has a mass of about 1,000 Jupiter masses.

“The two brown dwarfs are separated by about three times the distance between the Earth and the Sun. Binary brown dwarf systems are gravitationally bound and orbit about each other. Because these two dwarfs have so little mass, they take about 20 years to complete one orbit,” explained Beletsky.

The team used the FORS2 instrument on ESO’s Very Large Telescope at Paranal to image the brown dwarf couple in the best possible conditions, every 5 or 6 days over the period April 14, to June 22, 2013. Because of the instrument enabled the observers to make very precise measurements, the scientists were already able to detect tiny displacements of the two objects in their orbit during only this the two-month period.

The astronomers were able to measure the positions of the two brown dwarfs with ten times better accuracy than before and thereby detect even small perturbations of their orbit.

“We have been able to measure the positions of these two objects with a precision of a few milli-arcseconds,” said Boffin. “That is like a person in Paris being able to measure the position of someone in New York with a precision of 10 centimetres.”

The measurements were so fine that the astronomers were able to see some very small deviations from the expected motion of the two brown dwarfs around each other. The fact that the deviations appear correlated is a strong indication that a companion perturbs the motion of one of the two brown dwarfs. This companion is most likely a planetary-mass object, which has an orbital period between two months and a year.

“Further observations are required to confirm the existence of a planet,” concludes Boffin. “But it may well turn out that the closest brown dwarf binary system to the Sun turns out to be a triple system!”

The team is composed of Henri Boffin, Kora Muzic, Valentin Ivanov, Andrea Mehner, Jean-Philippe Berger, Julien Girard, and Dimitri Mawet (ESO, Chile), Dimitri Pourbaix (Université Libre de Bruxelles, Belgium), Rudy Kurtev (Universidad de Valparaiso, Chile), and Yuri Beletsky (Carnegie Observatories at Las Campanas Observatory, Chile).