Showing posts with label Comet 67P/Churyumov–Gerasimenko. Show all posts
Showing posts with label Comet 67P/Churyumov–Gerasimenko. Show all posts

Tuesday, October 03, 2017

ALMA and Rosetta Detect Freon-40 in Space

ALMA and Rosetta Detect Freon-40 in Space

ROSINA on Rosetta finds Freon-40 at Comet 67P/Churyumov–Gerasimenko

IRAS 16293-2422 in the constellation of Ophiuchus

The Rho Ophiuchi star formation region in the constellation of Ophiuchus

ALMA and Rosetta Detect Freon-40 in Space



Videos
 
Zooming in on the Rho Ophiuchi star formation region
Zooming in on the Rho Ophiuchi star formation region



 Dashing Hopes that Molecule May be Marker of Life

Observations made with the Atacama Large Millimeter/submillimeter Array (ALMA) and ESA’s Rosetta mission, have revealed the presence of the organohalogen Freon-40 in gas around both an infant star and a comet. Organohalogens are formed by organic processes on Earth, but this is the first ever detection of them in interstellar space. This discovery suggests that organohalogens may not be as good markers of life as had been hoped, but that they may be significant components of the material from which planets form. This result, which appears in the journal Nature Astronomy, underscores the challenge of finding molecules that could indicate the presence of life beyond Earth.

Using data captured by ALMA in Chile and from the ROSINA instrument on ESA’s Rosetta mission, a team of astronomers has found faint traces of the chemical compound Freon-40 (CH3Cl), also known as methyl chloride and chloromethane, around both the infant star system IRAS 16293-2422 [1], about 400 light-years away, and the famous comet 67P/Churyumov-Gerasimenko (67P/C-G) in our own Solar System. The new ALMA observation is the first detection ever of a stable organohalogen in interstellar space [2].

Organohalogens consist of halogens, such as chlorine and fluorine, bonded with carbon and sometimes other elements. On Earth, these compounds are created by some biological processes — in organisms ranging from humans to fungi —  as well as by industrial processes such as the production of dyes and medical drugs [3].

This new discovery of one of these compounds, Freon-40, in places that must predate the origin of life, can be seen as a disappointment, as earlier research had suggested that these molecules could indicate the presence of life.

Finding the organohalogen Freon-40 near these young, Sun-like stars was surprising,” said Edith Fayolle, a researcher with the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts in the USA, and lead author of the new paper. “We simply didn't predict its formation and were surprised to find it in such significant concentrations. It’s clear now that these molecules form readily in stellar nurseries, providing insights into the chemical evolution of planetary systems, including our own.”

Exoplanet research has gone beyond the point of finding planets — more than 3000 exoplanets are now known — to looking for chemical markers that might indicate the potential presence of life. A vital step is determining which molecules could indicate life, but establishing reliable markers remains a tricky process.

ALMA’s discovery of organohalogens in the interstellar medium also tells us something about the starting conditions for organic chemistry on planets. Such chemistry is an important step toward the origins of life,” adds Karin Öberg, a co-author on the study. “Based on our discovery, organohalogens are likely to be a constituent of the so-called ‘primordial soup’, both on the young Earth and on nascent rocky exoplanets.”

This suggests that astronomers may have had things around the wrong way; rather than indicating the presence of existing life, organohalogens may be an important element in the little-understood chemistry involved in the origin of life.

Co-author Jes Jørgensen from the Niels Bohr Institute at University of Copenhagen adds: "This result shows the power of ALMA to detect molecules of astrobiological interest toward young stars on scales where planets may be forming. Using ALMA we have previously found precursors to sugars and amino acids around different stars. The additional discovery of Freon-40 around Comet 67P/C-G strengthens the links between the pre-biological chemistry of distant protostars and our own Solar System."

The astronomers also compared the relative amounts of Freon-40 that contain different isotopes of chlorine in the infant star system and the comet — and found similar abundances. This supports the idea that a young planetary system can inherit the chemical composition of its parent star-forming cloud and opens up the possibility that organohalogens could arrive on planets in young systems during planet formation or via comet impacts.

Our results shows that we still have more to learn about the formation of organohalogens,” concludes Fayolle. “Additional searches for organohalogens around other protostars and comets need to be undertaken to help find the answer.”



Notes


[1] This protostar is a binary star system surrounded by a molecular cloud in the Rho Ophiuchi star-forming region, which makes it an excellent target for ALMA’s millimetre/submillimetre view.

[2] The data used were from the ALMA Protostellar Interferometric Line Survey (PILS). The aim of this survey is to chart the chemical complexity of IRAS 16293-2422 by imaging the full wavelength range covered by ALMA in the 0.8-millimetre atmospheric window on very small scales, equivalent to the size of the Solar System.

The species CF+, which could be considered as an organohalogen, had already been detected, but is not stable.

[3] Freons were widely used as a refrigerants (hence the name) but are now banned as they have a destructive effect on the Earth’s protective ozone layer.



More Information

This research was presented in a paper “Protostellar and Cometary Detections of Organohalogens” by E. Fayolle et al., to appear in Nature Astronomy on 2 October 2017.


The team is composed of Edith C. Fayolle (Harvard-Smithsonian Center for Astrophysics, USA), Karin I. Öberg (Harvard-Smithsonian Center for Astrophysics, USA),  Jes K. Jørgensen (University of Copenhagen, Denmark), Kathrin Altwegg (University of Bern, Switzerland),  Hannah Calcutt (University of Copenhagen, Denmark), Holger S. P. Müller (Universität zu Köln, Germany), Martin Rubin (University of Bern, Switzerland), Matthijs H. D. van der Wiel (The Netherlands Institute for Radio Astronomy, The Netherlands), Per Bjerkeli (Onsala Space Observatory, Sweden), Tyler L. Bourke (Jodrell Bank Observatory, UK), Audrey Coutens (University College London, UK), Ewine F. van Dishoeck (Leiden University, The Netherlands; Max-Planck-Institut für extraterrestrische Physik, Germany), Maria N. Drozdovskaya (University of Bern, Switzerland), Robin T. Garrod (University of Virginia, USA), Niels F. W. Ligterink (Leiden University, The Netherlands), Magnus V. Persson (Onsala Space Observatory, Sweden), Susanne F. Wampfler (University of Bern, Switzerland) and the ROSINA team.


The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).


ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.


ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.




Links



Contacts

Edith Fayolle
Harvard-Smithsonian Center for Astrophysics
Cambridge, Massachusetts, USA
Email: fayolle@cfa.harvard.edu

Jes K. Jørgensen
Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Tel: +45 4250 9970
Email: jeskj@nbi.dk

Ewine van Dishoeck
Leiden Observatory
Leiden, Netherlands
Tel: +31 71 5275814
Email: ewine@strw.leidenuniv.nl

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org


Source: ESO/News

Saturday, September 24, 2016

Summer fireworks on Rosetta's comet

Copyright: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; 
NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0

Copyright: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; 
NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0

Copyright: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA 

Copyright: Based on J.-B. Vincent et al (2015)



Brief but powerful outbursts seen from Comet 67P/Churyumov–Gerasimenko during its most active period last year have been traced back to their origins on the surface.

In the three months centred around the comet’s closest approach to the Sun, on 13 August 2015, Rosetta’s cameras captured 34 outbursts.

These violent events were over and above regular jets and flows of material seen streaming from the comet’s nucleus. The latter switch on and off with clockwork repeatability from one comet rotation to the next, synchronised with the rise and fall of the Sun’s illumination.

By contrast, outbursts are much brighter than the usual jets – sudden, brief, high-speed releases of dust. They are typically seen only in a single image, indicating that they have a lifetime shorter than interval between images – typically 5–30 minutes.

A typical outburst is thought to release 60–260 tonnes of material in those few minutes.

On average, the outbursts around the closest approach to the Sun occurred once every 30 hours – about 2.4 comet rotations. Based on the appearance of the dust flow, they can be divided into three categories.

One type is associated with a long, narrow jet extending far from the nucleus, while the second involves a broad, wide base that expands more laterally. The third category is a complex hybrid of the other two.

“As any given outburst is short-lived and only captured in one image, we can’t tell whether it was imaged shortly after the outburst started, or later in the process,” notes Jean-Baptiste Vincent, lead author of the paper published today in Monthly Notices of the Astronomical Society .

“As a result, we can’t tell if these three types of plume ‘shapes’ correspond to different mechanisms, or just different stages of a single process.

"But if just one process is involved, then the logical evolutionary sequence is that an initially long narrow jet with dust is ejected at high speed, most likely from a confined space.

"Then, as the local surface around the exit point is modified, a larger fraction of fresh material is exposed, broadening the plume ‘base’.

"Finally, when the source region has been altered so much as not to be able to support the narrow jet anymore, only a broad plume survives.”

The other key question is how these outbursts are triggered.

The team found that just over half of the events occurred in regions corresponding to early morning, as the Sun began warming up the surface after many hours in darkness.

The rapid change in local temperature is thought to trigger thermal stresses in the surface that might lead to a sudden fracturing and exposure of volatile material. This material rapidly heats up and vaporises explosively.

The other events occurred after local noon – after illumination of a few hours.

These outbursts are attributed to a different cause, where the cumulative heat makes its down to pockets of ‘volatiles’ buried beneath the surface, again causing sudden heating and an explosion.

“The fact that we have clear morning and noon outbursts points to at least two different ways of triggering an outburst,” says Jean-Baptiste.

But it is also possible that yet another cause is involved in some outbursts.

“We found that most of the outbursts seem to originate from regional boundaries on the comet, places where there are changes in texture or topography in the local terrain, such as steep cliffs, pits or alcoves,” adds Jean-Baptiste.

Indeed, the fact that boulders or other debris are also seen around the regions identified as the sources of the outbursts confirms that these areas are particularly susceptible to erosion.

While slowly eroding cliff faces are thought to be responsible for some of the regular, long-lived jet features, a weakened cliff edge may also suddenly collapse at any time, night or day. This collapse would reveal substantial amounts of fresh material and could lead to an outburst even when the region is not exposed to sunlight.

At least one of the events studied took place in local darkness and may be linked to cliff collapse.

“Studying the comet over a long period of time has given us the chance to look into the difference between ‘normal’ activity and short-lived outbursts, and how these outbursts may be triggered,” says Matt Taylor, ESA’s Rosetta project scientist. 

“Studying how these phenomena vary as the comet progresses along its orbit around the Sun give us new insight into how comets evolve during their lifetimes.”



Notes for Editors

Summer fireworks on Comet 67P ,” by J.-B. Vincent et al is accepted for publication in Monthly Notices of the Royal Astronomical Society.
 
This article also uses information from “ Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P ,” by J.-B. Vincent et al, published in Astronomy & Astrophysics 2015

Of the 34 outbursts, 26 were detected with the OSIRIS narrow-angle camera, three with the OSIRIS wide-angle camera, and five with the Navigation Camera.
 


For further information, please contact:

Jean-Baptiste Vincent
Max Planck Institute for Solar System Research, Gottingen, Germany
Email: vincent@mps.mpg.de

Matt Taylor

ESA Rosetta project scientist

Email: matt.taylor@esa.int

Markus Bauer








ESA Science and Robotic Exploration Communication Officer









Tel: +31 71 565 6799









Mob: +31 61 594 3 954









Email: markus.bauer@esa.int


Source: ESA/Rosetta

Saturday, August 27, 2016

Rosetta captures comet outburst

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

Nine of Rosetta’s instruments, including its cameras, dust collectors, and gas and plasma analysers, were monitoring the comet from about 35 km in a coordinated planned sequence when the outburst happened on 19 February.

“Over the last year, Rosetta has shown that although activity can be prolonged, when it comes to outbursts, the timing is highly unpredictable, so catching an event like this was pure luck,” says Matt Taylor, ESA’s Rosetta project scientist.

“By happy coincidence, we were pointing the majority of instruments at the comet at this time, and having these simultaneous measurements provides us with the most complete set of data on an outburst ever collected.”

Copyright image: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; all data from Grün et al (2016)

Location of the outburst
Copyright: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0

 Copyright: ESA/ATG medialab


The data were sent to Earth only a few days after the outburst, but subsequent analysis has allowed a clear chain of events to be reconstructed, as described in a paper led by Eberhard Grün of the Max-Planck-Institute for Nuclear Physics, Heidelberg, accepted for publication in Monthly Notices of the Royal Astronomical Society.
Over the next two hours, Rosetta recorded outburst signatures that exceeded background levels in some instruments by factors of up to a hundred. For example, between about 10:00–11:00 GMT, ALICE saw the ultraviolet brightness of the sunlight reflected by the nucleus and the emitted dust increase by a factor of six, while ROSINA and RPC detected a significant increase in gas and plasma, respectively, around the spacecraft, by a factor of 1.5–2.5.

In addition, MIRO recorded a 30ºC rise in temperature of the surrounding gas.

Shortly after, Rosetta was blasted by dust: GIADA recorded a maximum hit count at around 11:15 GMT. Almost 200 particles were detected in the following three hours, compared with a typical rate of 3–10 collected on other days in the same month.

At the same time, OSIRIS narrow-angle camera images began registering dust grains emitted during the blast. Between 11:10 GMT and 11:40 GMT, a transition occurred from grains that were distant or slow enough to appear as points in the images, to those either close or fast enough to be captured as trails during the exposures.

In addition, the startrackers, which are used to navigate and help control Rosetta’s attitude, measured an increase in light scattered from dust particles as a result of the outburst.

The startrackers are mounted at 90º to the side of the spacecraft that hosts the majority of science instruments, so they offered a unique insight into the 3D structure and evolution of the outburst. 
Astronomers on Earth also noted an increase in coma density in the days after the outburst.

By examining all of the available data, scientists believe they have identified the source of the outburst.

“From Rosetta’s observations, we believe the outburst originated from a steep slope on the comet’s large lobe, in the Atum region,” says Eberhard.

The fact that the outburst started when this area just emerged from shadow suggests that thermal stresses in the surface material may have triggered a landslide that exposed fresh water ice to direct solar illumination. The ice then immediately turned to gas, dragging surrounding dust with it to produce the debris cloud seen by OSIRIS.

“Combining the evidence from the OSIRIS images with the long duration of the GIADA dust impact phase leads us to believe that the dust cone was very broad,” says Eberhard.

“As a result, we think the outburst must have been triggered by a landslide at the surface, rather than a more focused jet bringing fresh material up from within the interior, for example.”

“We’ll continue to analyse the data not only to dig into the details of this particular event, but also to see if it can help us better understand the many other outbursts witnessed over the course of the mission,” adds Matt.

“It’s great to see the instrument teams working together on the important question of how cometary outbursts are triggered.”



Notes for Editors
 
“The 19 Feb. 2016 outburst of comet 67P/CG: A Rosetta multi-instrument study,” by E. Grün et al is published in the Monthly Notices of the Royal Astronomical Society. doi: 10.1093/mnras/stw2088



For further information, please contact:
 
Eberhard Grün
Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany
Email: eberhard.gruen@mpi-hd.mpg.de

Matt Taylor
ESA Rosetta project scientist
Email: matthew.taylor@esa.int

Markus Bauer 



ESA Science and Robotic Exploration Communication Officer




Tel: +31 71 565 6799





Mob: +31 61 594 3 954





Email: markus.bauer@esa.int





 Source: ESA/ROSETTA

Friday, April 08, 2016

The colour-changing comet

Copyright: Spacecraft: ESA/ATG medialab; 
Data: ESA/Rosetta/VIRTIS/INAF-IAPS/OBS DE PARIS-LESIA/DLR; G. Filacchione et al (2016)


Rosetta’s comet has been seen changing colour and brightness in front of the ESA orbiter’s eyes, as the Sun’s heat strips away the older surface to reveal fresher material.

Rosetta’s Visible and InfraRed Thermal Imaging Spectrometer, VIRTIS, began to detect these changes in the sunlit parts of Comet 67P/Churyumov–Gerasimenko – mostly the northern hemisphere and equatorial regions – in the months immediately following the spacecraft’s arrival in August 2014.

A new paper, published in the journal Icarus, reports on the early findings of this study, up to November 2014, during which time Rosetta was operating between 100 km to within 10 km of the comet nucleus. At the same time, the comet itself moved along its orbit closer to the Sun, from about 542 million km to 438 million km.

VIRTIS monitored the changes in light reflected from the surface over a wide range of visible and infrared wavelengths, as an indicator of subtle changes in the composition of the comet’s outermost layer. 

Copyright: ESA/Rosetta/NAVCAM

When it arrived, Rosetta found an extremely dark body, reflecting about 6% of the visible light falling on it. This is because the majority of the surface is covered with a layer of dark, dry, dust made out of mixture of minerals and organics.

Some surfaces are slightly brighter, some slightly darker, indicating differences in composition. Most of the surface is slightly reddened by organic-rich material, while the occasional ice-rich material shows up as somewhat bluer.

Even when Rosetta first rendezvoused with the comet far from the Sun, ices hidden below the surface were being gently warmed, sublimating into gas, and escaping, lifting some of the surface dust away and contributing to the comet’s coma and tail.

VIRTIS shows that as the ‘old’ dust layers were slowly ejected, fresher material was gradually exposed. 

This new surface was both more reflective, making the comet brighter, and richer in ice, resulting in bluer measurements.

Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


On average, the comet’s brightness changed by about 34%. In the Imhotep region, it increased from 6.4% to 9.7% over the three months of observations.

“The overall trend seems to be that there is an increasing water-ice abundance in the comet’s surface layers that results in a change in the observed spectral signatures. In that respect, it’s like the comet is changing colour in front of our eyes,” says Gianrico Filacchione, lead author of the study.

“This evolution is a direct consequence of the activity occurring on and immediately beneath the comet’s surface. The partial removal of the dust layer caused by the start of gaseous activity is the probable cause of the increasing abundance of water ice at the surface.”

“The surface properties are really dynamic, changing with the distance from the Sun and with the levels of comet activity,” adds Fabrizio Capaccioni, VIRTIS principal investigator.

“We’ve started analysing the subsequent datasets and can already see that the trend continues in the observations made beyond November 2014.”

“The evolution of surface properties with activity has never been observed by a cometary mission before and is a major science objective of the Rosetta mission,” says Matt Taylor, ESA’s Rosetta Project Scientist.

“It is great to see science papers being published directly addressing this topic and we’re looking forward to seeing how things have changed over the entire mission.”




Notes for Editors

“The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. 1) Pre-landing phase,” by G. Filacchione et al. is published in Icarus. doi:10.1016/j.icarus.2016.02.055

A follow-up paper is in preparation covering the period November 2014 to May 2015.





For further information, please contact:

Gianrico Filacchione
VIRTIS deputy principal investigator
INAF-IAPS, Rome, Italy
Email: gianrico.filacchione@iaps.inaf.it

Fabrizio Capaccioni
VIRTIS principal investigator
INAF-IAPS, Rome, Italy
Email: fabrizio.capaccioni@iaps.inaf.it

Matt Taylor
ESA Rosetta Project Scientist
Email: matt.taylor@esa.int

Markus Bauer 



ESA Science and Robotic Exploration Communication Officer




Tel: +31 71 565 6799





Mob: +31 61 594 3 954





Email: markus.bauer@esa.int





Source: ESA/Rosetta

Thursday, September 24, 2015

Rosetta reveals comet's water-ice cycle

Copyright Data: ESA/Rosetta/VIRTIS/INAF-IAPS/OBS DE PARIS-LESIA/DLR; M.C. De Sanctis et al (2015); 
Comet: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0

Copyright ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Copyright: ESA/Rosetta/VIRTIS/INAF-IAPS/OBS DE PARIS-LESIA/DLR; M.C. De Sanctis et al (2015)

Copyright: ESA/Rosetta/VIRTIS/INAF-IAPS/OBS DE PARIS-LESIA/DLR; M.C. De Sanctis et al (2015)


ESA’s Rosetta spacecraft has provided evidence for a daily water-ice cycle on and near the surface of comets.

Comets are celestial bodies comprising a mixture of dust and ices, which they periodically shed as they swing towards their closest point to the Sun along their highly eccentric orbits.

As sunlight heats the frozen nucleus of a comet, the ice in it – mainly water but also other ‘volatiles’ such as carbon monoxide and carbon dioxide – turns directly into a gas.

This gas flows away from the comet, carrying dust particles along. Together, gas and dust build up the bright halo and tails that are characteristic of comets.

Rosetta arrived at Comet 67P/Churyumov–Gerasimenko in August 2014 and has been studying it up close for over a year. On 13 August 2015, the comet reached the closest point to the Sun along its 6.5-year orbit, and is now moving back towards the outer Solar System.

A key feature that Rosetta’s scientists are investigating is the way in which activity on the comet and the 
associated outgassing are driven, by monitoring the increasing activity on and around the comet since Rosetta’s arrival.

Scientists using Rosetta’s Visible, InfraRed and Thermal Imaging Spectrometer, VIRTIS, have identified a region on the comet’s surface where water ice appears and disappears in sync with its rotation period. Their findings are published today in the journal Nature.

“We found a mechanism that replenishes the surface of the comet with fresh ice at every rotation: this keeps the comet ‘alive’,” says Maria Cristina De Sanctis from INAF-IAPS in Rome, Italy, lead author of the study.
 
The team studied a set of data taken in September 2014, concentrating on a one square km region on the comet’s neck. At the time, the comet was about 500 million km from the Sun and the neck was one of the most active areas.

As the comet rotates, taking just over 12 hours to complete a full revolution, the various regions undergo different illumination.

“We saw the tell-tale signature of water ice in the spectra of the study region but only when certain portions were cast in shadow,” says Maria Cristina.

Conversely, when the Sun was shining on these regions, the ice was gone. This indicates a cyclical behaviour of water ice during each comet rotation.”

The data suggest that water ice on and a few centimetres below the surface ‘sublimates’ when illuminated by sunlight, turning it into gas that then flows away from the comet. Then, as the comet rotates and the same region falls into darkness, the surface rapidly cools again.

However, the underlying layers remain warm owing to the sunlight they received in the previous hours, and, as a result, subsurface water ice keeps sublimating and finding its way to the surface through the comet’s porous interior.

But as soon as this ‘underground’ water vapour reaches the cold surface, it freezes again, blanketing that patch of comet surface with a thin layer of fresh ice.

Eventually, as the Sun rises again over this part of the surface on the next comet day, the molecules in the newly formed ice layer are the first to sublimate and flow away from the comet, restarting the cycle.

“We suspected such a water ice cycle might be at play at comets, on the basis of theoretical models and previous observations of other comets but now, thanks to Rosetta's extensive monitoring at 67P/Churyumov–Gerasimenko, we finally have observational proof,” says Fabrizio Capaccioni, VIRTIS principal investigator at INAF-IAPS in Rome, Italy.

From these data, it is possible to estimate the relative abundance of water ice with respect to other material. 

Down to a few cm deep over the region of the portion of the comet nucleus that was surveyed, water ice accounts for 10–15% of the material and appears to be well-mixed with the other constituents.

The scientists also calculated how much water vapour was being emitted by the patch that they analysed with VIRTIS, and showed that this accounted for about 3% of the total amount of water vapour coming out from the whole comet at the same time, as measured by Rosetta’s MIRO microwave sensor.

“It is possible that many patches across the surface were undergoing the same diurnal cycle, thus providing additional contributions to the overall outgassing of the comet,” adds Dr Capaccioni.

The scientists are now busy analysing VIRTIS data collected in the following months, as the comet’s activity increased around the closest approach to the Sun.

“These initial results give us a glimpse of what is happening underneath the surface, in the comet’s interior,” concludes Matt Taylor, ESA Rosetta Project Scientist.

“Rosetta is capable of tracking changes on the comet over short as well as longer time scales, and we are looking forward to combining all of this information to understand the evolution of this and other comets.”


Notes for Editors

“The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko,” by Maria Cristina De Sanctis et al. is published in the 24 September 2015 issue of Nature.

The results are based on images and spectra taken at visible and infrared wavelengths of light on 12–14 September 2014 with VIRTIS.

These results will be presented next week at the European Planetary Science Congress, taking place from 27 September to 2 October 2015 in Nantes, France.


About Rosetta


Rosetta is an ESA mission with contributions from its Member States and NASA. Rosetta’s Philae lander is contributed by a consortium led by DLR, MPS, CNES and ASI.


For further information, please contact:

Maria Cristina De Sanctis
INAF-IAPS, Rome, Italy
Email: mariacristina.desanctis@iaps.inaf.it

Fabrizio Capaccioni
VIRTIS principal investigator
INAF-IAPS, Rome, Italy
Email: fabrizio.capaccioni@iaps.inaf.it

Matt Taylor
ESA Rosetta Project Scientist
Email: matt.taylor@esa.int

Markus Bauer



ESA Science and Robotic Exploration Communication Officer




Tel: +31 71 565 6799





Mob: +31 61 594 3 954





Email: markus.bauer@esa.int




Source: ESA/ROSETTA