Touring
the Milky Way now is as easy as clicking a button with NASA's new
zoomable, 360-degree mosaic presented Thursday at the TEDActive 2014
Conference in Vancouver, Canada.
The star-studded panorama of our galaxy is constructed from more than
2 million infrared snapshots taken over the past 10 years by NASA's
Spitzer Space Telescope.
"If we actually printed this out, we'd need a billboard as big as the
Rose Bowl Stadium to display it," said Robert Hurt, an imaging
specialist at NASA's Spitzer Space Science Center in Pasadena, Calif.
"Instead we’ve created a digital viewer that anyone, even astronomers,
can use."
The 20-gigapixel mosaic uses Microsoft’s WorldWide Telescope
visualization platform. It captures about three percent of our sky, but
because it focuses on a band around Earth where the plane of the Milky
Way lies, it shows more than half of all the galaxy's stars.
The image, derived primarily from the Galactic Legacy Mid-Plane Survey Extraordinaire project, or GLIMPSE360, is online at: http://www.spitzer.caltech.edu/glimpse360
Spitzer, launched into space in 2003, has spent more than 10 years
studying everything from asteroids in our solar system to the most
remote galaxies at the edge of the observable universe. In this time, it
has spent a total of 4,142 hours (172 days) taking pictures of the
disk, or plane, of our Milky Way galaxy in infrared light. This is the
first time those images have been stitched together into a single
expansive view.
Our galaxy is a flat spiral disk; our solar system sits in the outer
one-third of the Milky Way, in one of its spiral arms. When we look
toward the center of our galaxy, we see a crowded, dusty region
jam-packed with stars. Visible-light telescopes cannot look as far into
this region because the amount of dust increases with distance, blocking
visible starlight. Infrared light, however, travels through the dust
and allows Spitzer to view past the galaxy's center.
"Spitzer is helping us determine where the edge of the galaxy lies,"
said Ed Churchwell, co-leader of the GLIMPSE team at the University of
Wisconsin-Madison. "We are mapping the placement of the spiral arms and
tracing the shape of the galaxy."
Using GLIMPSE data, astronomers have created the most accurate map of
the large central bar of stars that marks the center of the galaxy,
revealing the bar to be slightly larger than previously thought. GLIMPSE
images have also shown a galaxy riddled with bubbles. These bubble
structures are cavities around massive stars, which blast wind and
radiation into their surroundings.
All together, the data allow scientists to build a more global model
of stars, and star formation in the galaxy -- what some call the "pulse"
of the Milky Way. Spitzer can see faint stars in the "backcountry" of
our galaxy -- the outer, darker regions that went largely unexplored
before.
"There are a whole lot more lower-mass stars seen now with Spitzer on
a large scale, allowing for a grand study," said Barbara Whitney of the
University of Wisconsin, Madison, co-leader of the GLIMPSE team.
"Spitzer is sensitive enough to pick these up and light up the entire
'countryside' with star formation."
The Spitzer team previously released an image compilation showing 130
degrees of our galaxy, focused on its hub. The new 360-degree view will
guide NASA's upcoming James Webb Space Telescope to the most
interesting sites of star-formation, where it will make even more
detailed infrared observations.
Some sections of the GLIMPSE mosaic include longer-wavelength data
from NASA's Wide-field Infrared Survey Explorer, or WISE, which scanned
the whole sky in infrared light.
The GLIMPSE data are also part of a citizen science project, where
users can help catalog bubbles and other objects in our Milky Way
galaxy. To participate, visit: http://www.milkywayproject.org
More information about Spitzer is online at: http://www.nasa.gov/spitzer
J.D. Harrington
Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov
Whitney Clavin
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-4673
whitney.clavin@jpl.nasa.gov