Wednesday, March 12, 2014

Milky Way amidst a ‘Council of Giants’

We live in a galaxy known as the Milky Way – a vast conglomeration of 300 billion stars, planets whizzing around them, and clouds of gas and dust floating in between. Though it has long been known that the Milky Way and its orbiting companion Andromeda are the dominant members of a small group of galaxies, the Local Group, which is about 3 million light years across, much less was known about our immediate neighbourhood in the universe. Now, a new paper by York University Physics & Astronomy Professor Marshall McCall, published today in the journal Monthly Notices of the Royal Astronomical Society, maps out bright galaxies within 35-million light years of the Earth, offering up an expanded picture of what lies beyond our doorstep.

A diagram showing the brightest galaxies within 20 million light years of the Milky Way, as seen from above. The largest galaxies, here shown in yellow at different points around the dotted line, make up the ‘Council of Giants’. Credit: Marshall McCall / York University. Click here for a full-size image

“All bright galaxies within 20 million light years, including us, are organized in a ‘Local Sheet’ 34-million light years across and only 1.5-million light years thick,” says McCall. “The Milky Way and Andromeda are encircled by twelve large galaxies arranged in a ring about 24-million light years across – this ‘Council of Giants’ stands in gravitational judgment of the Local Group by restricting its range of influence.”

A diagram showing the brightest galaxies within 20 million light years of the Milky Way, this time viewed from the side. Credit: Marshall McCall / York University. Click here for a full-size image 

McCall says twelve of the fourteen giants in the Local Sheet, including the Milky Way and Andromeda, are "spiral galaxies" which have highly flattened disks in which stars are forming.  The remaining two are more puffy "elliptical galaxies", whose stellar bulks were laid down long ago.  Intriguingly, the two ellipticals sit on opposite sides of the Council.  Winds expelled in the earliest phases of their development might have shepherded gas towards the Local Group, thereby helping to build the disks of the Milky Way and Andromeda.

McCall also examined how galaxies in the Council are spinning. He comments: “Thinking of a galaxy as a screw in a piece of wood, the direction of spin can be described as the direction the screw would move (in or out) if it were turned the same way as the galaxy rotates. Unexpectedly, the spin directions of Council giants are arranged around a small circle on the sky.  This unusual alignment might have been set up by gravitational torques imposed by the Milky Way and Andromeda when the universe was smaller.”

The boundary defined by the Council has led to insights about the conditions which led to the formation of the Milky Way.  Most important, only a very small enhancement in the density of matter in the universe appears to have been required to produce the Local Group.  To arrive at such an orderly arrangement as the Local Sheet and its Council, it seems that nearby galaxies must have developed within a pre-existing sheet-like foundation comprised primarily of dark matter.

“Recent surveys of the more distant universe have revealed that galaxies lie in sheets and filaments with large regions of empty space called voids in between,” says McCall. “The geometry is like that of a sponge.  What the new map reveals is that structure akin to that seen on large scales extends down to the smallest.”


Media Contacts

Robin Heron
Media Relations
York University
Canada
Tel: +1 416 736 2100 x22097

rheron@yorku.ca

Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 x214
Mob: +44 (0)794 124 8035

rm@ras.org.uk


Animation

 This movie illustrates the positions of the nearby galaxies, including those in the ‘Council of Giants’, in three dimensions. Credit: Marshall McCall / York University


Further information

The new work appears in “A Council of Giants”, M. L. McCall, Monthly Notices of the Royal Astronomical Society, Oxford University Press, in press.


Notes for editors


York University is helping to shape the global thinkers and thinking that will define tomorrow. York U’s unwavering commitment to excellence reflects a rich diversity of perspectives and a strong sense of social responsibility that sets us apart. A York U degree empowers graduates to thrive in the world and achieve their life goals through a rigorous academic foundation balanced by real-world experiential education. As a globally recognized research centre, York U is fully engaged in the critical discussions that lead to innovative solutions to the most pressing local and global social challenges. York U’s 11 faculties and 27 research centres are thinking bigger, broader and more globally, partnering with 288 leading universities worldwide. 

York U's community is strong − 55,000 students, 7,000 faculty and staff, and more than 250,000 alumni.
The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

Follow the RAS on Twitter