Showing posts with label Ross 154. Show all posts
Showing posts with label Ross 154. Show all posts

Tuesday, September 12, 2017

Do-it-yourself Science — is Proxima c hiding in this graph?


Credit: O/G. Anglada-Escudé


This unusual Picture of the Week showcases the latest data gathered by ESO’s exoplanet hunter, the High Accuracy Radial velocity Planet Searcher (HARPS), during the ongoing Red Dots campaign, a search for terrestrial planets around our nearest three red dwarf stars: Proxima Centauri, Barnard’s Star, and Ross 154. The campaign was launched earlier in 2017 to build on the 2016 discovery of Proxima b around our nearest stellar neighbour, Proxima Centauri. Red Dots is designed as an open notebook science experiment, meaning the public has access to the data and can even contribute observations. Can you see a new exoplanet in these data of Proxima Centauri?

By carefully tracing the movement of a star over time, graphs like these can reveal the presence of exoplanets. Just as a star pulls on its orbiting planets using gravity, planets pull on the star, causing the star to wobble and shift the wavelength of its light by a small but measureable amount. By analysing the predictable, repeating changes, astronomers can infer the presence of a planet. The top left graph displays the 2016 data that confirmed the existence of Proxima b, showing how the planet is causing its parent star, Proxima Centauri, to move towards and away from Earth over time. The curved line represents the wobbling signal of the star, with the regular pattern of changing radial velocities (RV) repeating every 11.2 days.

The top right graph shows new measurements made with HARPS during the Red Dots campaign. The new data once again confirms Proxima b’s signal (in yellow), but also includes additional data patterns — visible here as a downward slope in both the 2016 and 2017 data points — hinting that there may be more to be discovered. To make a firmer statement on what is causing these patterns, astronomers need to use quantitative mathematical tools.

One such mathematical tool is called a periodogram, which searches for repeating signals in the data — displayed here as prominent peaks — that indicate the presence of a planet. The graph on the bottom panel shows the periodogram for the new data. The first signal (in white) corresponds to Proxima b. The second set of possible periods (in red), of around 200 days, are produced from patterns seen in the top panels. The presence of multiple peaks of similar heights means a signal cannot be precisely pinpointed and that its origin remains unclear.

The project will continue acquiring measurements until the end of September this year. You can follow along as the Red Dots campaign unfolds and even contribute observations via the Red Dots website, Facebook, or Twitter accounts.


Tuesday, August 23, 2011

NASA's Wise Mission Discovers Coolest Class of Stars

This artist's conception illustrates what a "Y dwarf" might look like. Y dwarfs are the coldest star-like bodies known, with temperatures that can be even cooler than the human body. Image credit: NASA/JPL-Caltech. Full image and caption

NASA's Wide-field Infrared Survey Explorer, or WISE, has uncovered the coldest brown dwarf known so far (green dot in very center of this infrared image). Image credit: NASA/JPL-Caltech/UCLA . Full image and caption - enlarge image

This artist's conception illustrates what brown dwarfs of different types might look like to a hypothetical interstellar traveler who has flown a spaceship to each one. Image credit: NASA/JPL-Caltech . Full image and caption - enlarge image

PASADENA, Calif. – Scientists using data from NASA's Wide-field Infrared Survey Explorer (WISE) have discovered the coldest class of star-like bodies, with temperatures as cool as the human body.

Astronomers hunted these dark orbs, termed Y dwarfs, for more than a decade without success. When viewed with a visible-light telescope, they are nearly impossible to see. WISE's infrared vision allowed the telescope to finally spot the faint glow of six Y dwarfs relatively close to our sun, within a distance of about 40 light-years.

"WISE scanned the entire sky for these and other objects, and was able to spot their feeble light with its highly sensitive infrared vision," said Jon Morse, Astrophysics Division director at NASA Headquarters in Washington. "They are 5,000 times brighter at the longer infrared wavelengths WISE observed from space than those observable from the ground."

The Y's are the coldest members of the brown dwarf family. Brown dwarfs are sometimes referred to as "failed" stars. They are too low in mass to fuse atoms at their cores and thus don't burn with the fires that keep stars like our sun shining steadily for billions of years. Instead, these objects cool and fade with time, until what little light they do emit is at infrared wavelengths.

Astronomers study brown dwarfs to better understand how stars form, and to understand the atmospheres of planets beyond our solar system. The atmospheres of brown dwarfs are similar to those of gas-giant planets like Jupiter, but they are easier to observe because they are alone in space, away from the blinding light of a parent star.

So far, WISE data have revealed 100 new brown dwarfs. More discoveries are expected as scientists continue to examine the enormous quantity of data from WISE. The telescope performed the most advanced survey of the sky at infrared wavelengths to date, from Jan. 2010 to Feb. 2011, scanning the entire sky about 1.5 times.

Of the 100 brown dwarfs, six are classified as cool Y's. One of the Y dwarfs, called WISE 1828+2650, is the record holder for the coldest brown dwarf, with an estimated atmospheric temperature cooler than room temperature, or less than about 80 degrees Fahrenheit (25 degrees Celsius).

"The brown dwarfs we were turning up before this discovery were more like the temperature of your oven," said Davy Kirkpatrick, a WISE science team member at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, Calif. "With the discovery of Y dwarfs, we've moved out of the kitchen and into the cooler parts of the house."

Kirkpatrick is lead author of a paper appearing in the Astrophysical Journal Supplement Series, describing the 100 confirmed brown dwarfs. Michael Cushing, a WISE team member at NASA's Jet Propulsion Laboratory in Pasadena, Calif., is lead author of a paper describing the Y dwarfs in the Astrophysical Journal.

The Y dwarfs are in our sun's neighborhood, from approximately nine to 40 light-years away. The Y dwarf approximately nine light-years away, WISE 1541-2250, may become the seventh closest star system, bumping Ross 154 back to eighth. By comparison, the star closest to our solar system, Proxima Centauri, is about four light-years away.

"Finding brown dwarfs near our sun is like discovering there's a hidden house on your block that you didn't know about," Cushing said. "It's thrilling to me to know we've got neighbors out there yet to be discovered. With WISE, we may even find a brown dwarf closer to us than our closest known star."

Once the WISE team identified brown dwarf candidates, they turned to NASA's Spitzer Space Telescope to narrow their list. To definitively confirm them, the WISE team used some of the most powerful telescopes on Earth to split apart the objects' light and look for telltale molecular signatures of water, methane and possibly ammonia. For the very coldest of the new Y dwarfs, the team used NASA's Hubble Space Telescope. The Y dwarfs were identified based on a change in these spectral features compared to other brown dwarfs, indicating they have a lower atmospheric temperature.

The ground-based telescopes used in these studies include the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii; Caltech's Palomar Observatory near San Diego; the W.M. Keck Observatory atop Mauna Kea, Hawaii; and the Magellan Telescopes at Las Campanas Observatory, Chile, among others.

JPL manages WISE for NASA's Science Mission Directorate. The principal investigator is Edward Wright at UCLA. The WISE satellite was decommissioned in 2011 after completing its sky survey observations. The mission was selected under NASA's Explorers Program managed by the Goddard Space Flight Center in Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory in Logan, Utah, and the spacecraft by Ball Aerospace & Technologies Corp., in Boulder, Colo. Science operations and data processing are at the Infrared Processing and Analysis Center at the California Institute of Technology. JPL is a division of the California Institute of Technology in Pasadena.


Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.
whitney.clavin@jpl.nasa.gov

Trent Perrotto 202-358-0321
Headquarters, Washington
Trent.j.perrotto@nasa.gov