Showing posts with label NSF’s NOIRLab. Show all posts
Showing posts with label NSF’s NOIRLab. Show all posts

Thursday, June 22, 2023

Gemini North Detects Multiple Rock-Forming Elements in the Atmosphere of a Scorching Exoplanet


Astronomers using the Gemini North telescope, one half of the International Gemini Observatory operated by NSF’s NOIRLab, have made multiple detections of rock-forming elements in the atmosphere of a Jupiter-sized exoplanet, WASP-76b. The so-called “hot Jupiter” is perilously close to its host star, which is heating the planet’s atmosphere to astounding temperatures and vaporized rock-forming elements such as magnesium, calcium and iron, providing insight into how our own Solar System formed.Credit: International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani. download:
Large JPEG

Chemistry of so-called ‘hot Jupiter’ provides new insights into the formation of our Solar System

Astronomers using the Gemini North telescope, one half of the International Gemini Observatory operated by NSF’s NOIRLab, have detected multiple rock-forming elements in the atmosphere of a Jupiter-sized exoplanet, WASP-76b. The planet is so perilously close to its host star that rock-forming elements — such as magnesium, calcium, and nickel — become vaporized and dispersed throughout its scorching atmosphere. This intriguing chemical profile provides new insights into the formation of planetary systems, including our own.

WASP-76b is a strange world. Located 634 light-years from Earth in the direction of the constellation of Pisces, the Jupiter-like exoplanet orbits its host star at an exceptionally close distance — approximately 12 times closer than Mercury is to the Sun — which heats its atmosphere to a searing 2000°C. Such extreme temperatures have “puffed up” the planet, increasing its volume to nearly six times that of Jupiter.

At such extreme temperatures, mineral- and rock-forming elements, which would otherwise remain hidden in the atmosphere of a colder gas-giant planet, can reveal themselves. 

Using the Gemini North telescope, one half of the International Gemini Observatory operated by NSF’s NOIRLab, an international team of astronomers has detected 11 of these rock-forming elements in the atmosphere of WASP-76b. The presence and relative amounts of these elements can provide key insights into exactly how giant gas planets form — something that remains uncertain even in our own Solar System. The results are published in the journal Nature

Since its discovery in 2013 during the Wide Angle Search for Planets (WASP) program, many astronomers have studied the enigmatic WASP-76b. These studies have led to the identification of various elements present in the hot exoplanet’s atmosphere. Notably, in a study published in March 2020, a team concluded that there could be iron rain on the planet.

Aware of these existing studies, Stefan Pelletier, a PhD student with the Trottier Institute for Research on Exoplanets at the Université de Montréal and lead author on the paper, was inspired to explore the mysteries of this strange exoplanet and the chemistry of its searing atmosphere. 

In 2020 and 2021, using Gemini North’s MAROON-X (a new instrument specially designed to detect and study exoplanets), Pelletier and his team observed the planet as it passed in front of its host star on three separate occasions. These new observations uncovered a number of rock-forming elements in the atmosphere of WASP-76b, including sodium, potassium, lithium, nickel, manganese, chromium, magnesium, vanadium, barium, calcium, and, as previously detected, iron.

Due to the extreme temperatures of WASP-76b’s atmosphere, the elements detected by the researchers,  which would normally form rocks here on Earth, are instead vaporized and thus present in the atmosphere in their gaseous forms. While these elements contribute to the composition of gas giants in our Solar System, those planets are too cold for the elements to vaporize into the atmosphere making them virtually undetectable.

“Truly rare are the times when an exoplanet hundreds of light-years away can teach us something that would otherwise likely be impossible to know about our own Solar System,” said Pelletier. “That is the case with this study.”

The abundance of many of these elements closely match the abundances found in both our Sun and the exoplanet’s host star. This may be no coincidence and provides additional evidence that gas-giant planets, like Jupiter and Saturn, form in a manner more akin to star formation — coalescing out of the gas and dust of a protoplanetary disk — rather than the gradual accretion and collision of dust, rocks, and planetesimals, which go on to form rocky planets, like Mercury, Venus, and Earth.

Another notable result of the study is the first-ever unambiguous detection of vanadium oxide (V2O5) on an exoplanet. “This molecule is of high interest to astronomers because it can have a great impact on the atmospheric structure of hot giant planets,” says Pelletier. “This molecule plays a similar role to ozone being extremely efficient at heating Earth’s upper atmosphere.” 

Pelletier and his team are motivated to learn more about WASP-76b and other ultra-hot planets. They also hope other researchers will leverage what they learned from this giant exoplanet and apply it to better our understanding of our own Solar System planets and how they came to be. 

Available to astronomers across the globe, the International Gemini Observatory continues to deliver new insights that push our understanding of the physical and chemical structure of other worlds. Through such observational programs we are developing a clearer picture of the wider universe and our own place in it,” said NSF Gemini Observatory program director Martin Still.

“Generations of researchers have used Jupiter, Saturn, Uranus, and Neptune measured abundances for hydrogen and helium to benchmark formation theories of gaseous planets,” says Université de Montréal professor Björn Benneke, a co-author on the study. “Likewise, the measurements of heavier elements such as calcium or magnesium on WASP-76b will help further understanding the formation of gaseous planets.”


Notes

Reference: Pelletier, S, Benneke, B, and Ali-Dib, M, et al. (2023). “Vanadium oxide and a sharp onset of cold-trapping on a giant exoplanet.” Nature.

NSF’s NOIRLab, the US center for ground-based optical-infrared astronomy, operates the International Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O’odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.



Links




Contacts:

Stefan Pelletier
Université de Montréal, Montréal, Canada
Email:
stefan.pelletier@umontreal.ca

Charles Blue
Public Information Officer
NSF’s NOIRLab
Tel: +1 202 236 6324
Email:
charles.blue@noirlab.edu

Josie Fenske
NSF’s NOIRLab
Email:
 josie.fenske@noirlab.edu



Tuesday, January 25, 2022

Sidewinding Young Stellar Jets Spied by Gemini South


The sinuous young stellar jet, MHO 2147, meanders lazily across a field of stars in this image captured from Chile by the international Gemini Observatory, a Program of NSF's NOIRLab. The stellar jet is the outflow from a young star that is embedded in an infrared dark cloud. Astronomers suspect its sidewinding appearance is caused by the gravitational attraction of companion stars. These crystal-clear observations were made using the Gemini South telescope’s adaptive optics system, which helps astronomers counteract the blurring effects of atmospheric turbulence. Credit: International Gemini Observatory/NOIRLab/NSF/AURA. Acknowledgments: PI: L. Ferrero (Universidad Nacional de Córdoba). Download  Large JPEG


The knotted young stellar jet, MHO 1502, is captured in this image from Chile by the international Gemini Observatory, a Program of NSF's NOIRLab. The stellar jet is embedded in an area of star formation known as an HII region. The bipolar jet is composed of a chain of knots, suggesting that its source, thought to be two stars, has been intermittently emitting material. These crystal-clear observations were made using the Gemini South telescope’s adaptive optics system, which helps astronomers counteract the blurring effects of atmospheric turbulence. Credit: International Gemini Observatory/NOIRLab/NSF/AURA. Acknowledgments: PI: L. Ferrero (Universidad Nacional de Córdoba). Download  Large JPEG


Young stellar jet MHO 2147 (wider crop). The sinuous young stellar jet, MHO 2147, meanders lazily across a field of stars in this image captured from Chile by the international Gemini Observatory, a Program of NSF's NOIRLab. The stellar jet is the outflow from a young star that is embedded in an infrared dark cloud. Astronomers suspect its sidewinding appearance is caused by the gravitational attraction of companion stars. These crystal-clear observations were made using the Gemini South telescope’s adaptive optics system, which helps astronomers counteract the blurring effects of atmospheric turbulence. Credit: International Gemini Observatory/NOIRLab/NSF/AURA. Acknowledgments: PI: L. Ferrero (Universidad Nacional de Córdoba). Download  JPEG


CosmoView Episode 40: Sidewinding Young Stellar Jets Spied by Gemini South. Sinuous stellar jets meander lazily across a field of stars in new images captured from Chile by the international Gemini Observatory, a Program of NSF's NOIRLab. The gently curving stellar jets are the outflow from young stars, and astronomers suspect their sidewinding appearances are caused by the gravitational attraction of companion stars. These crystal-clear observations were made using the Gemini South telescope’s adaptive optics system, which helps astronomers counteract the blurring effects of atmospheric turbulence. Credit: Images and videos: International Gemini Observatory/NOIRLab/NSF/AURA. Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab) & D. de Martin (NSF’s NOIRLab). Music: Stellardrone - Billions and Billions.

Crystal-clear images of meandering bipolar stellar jets from young stars captured with adaptive optics.

Sinuous stellar jets meander lazily across a field of stars in new images captured from Chile by the international Gemini Observatory, a Program of NSF's NOIRLab. The gently curving stellar jets are the outflow from young stars, and astronomers suspect their sidewinding appearances are caused by the gravitational attraction of companion stars. These crystal-clear observations were made using the Gemini South telescope’s adaptive optics system, which helps astronomers counteract the blurring effects of atmospheric turbulence.

Young stellar jets are a common by-product of star formation and are thought to be caused by the interplay between the magnetic fields of rotating young stars and the disks of gas surrounding them. These interactions eject twin torrents of ionized gas in opposite directions, such as those pictured in two images captured by astronomers using the Gemini South telescope on Cerro Pachón on the edge of the Chilean Andes. Gemini South is one half of the international Gemini Observatory, a Program of NSF's NOIRLab, that comprises twin 8.1-meter optical/infrared telescopes on two of the best observing sites on the planet. Its counterpart, Gemini North, is located near the summit of Maunakea in Hawai‘i.

The jet in the first image, named MHO 2147, is roughly 10,000 light-years from Earth, and lies in the galactic plane of the Milky Way, close to the boundary between the constellations Sagittarius and Ophiuchus. MHO 2147 snakes across a starry backdrop in the image — an appropriately serpentine appearance for an object close to Ophiuchus. Like many of the 88 modern astronomical constellations, Ophiuchus has mythological roots — in ancient Greece it represented a variety of gods and heroes grappling with a serpent. MHO 1502, the jet pictured in the second image, is located in the constellation of Vela, approximately 2000 light-years away.

Most stellar jets are straight but some can be wandering or knotted. The shape of the uneven jets is thought to be related to a characteristic of the object or objects that created them. In the case of the two bipolar jets MHO 2147 and MHO 1502, the stars which created them are obscured from view

In the case of MHO 2147, this young central star, which has the catchy identifier IRAS 17527-2439, is embedded in an infrared dark cloud — a cold, dense region of gas that is opaque at the infrared wavelengths represented in this image [1]. The sinuous shape of MHO 2147 is caused because the direction of the jet has changed over time, tracing out a gentle curve on either side of the central star. These almost unbroken curves suggest that MHO 2147 has been sculpted by continuous emission from its central source. Astronomers found that the changing direction (precession) of the jet may be due to the gravitational influence of nearby stars acting on the central star. Their observations suggest that IRAS 17527-2439 could belong to a triple star system separated by more than 300 billion kilometers (almost 200 billion miles).

MHO 1502, on the other hand, is embedded in a totally different environment — an area of star formation known as an HII region. The bipolar jet is composed of a chain of knots, suggesting that its source, thought to be two stars, has been intermittently emitting material.

These detailed images were captured by the Gemini South Adaptive Optics Imager (GSAOI), an instrument on the 8.1-meter-diameter Gemini South telescope. Gemini South is perched on the summit of Cerro Pachón, where dry air and negligible cloud cover provide one of the best observing sites on the planet. Even atop Cerro Pachón, however, atmospheric turbulence causes the stars to blur and twinkle. 

GSAOI works with GeMs, the Gemini Multi-Conjugate Adaptive Optics System, to cancel out this blurring effect using a technique called adaptive optics. By monitoring the twinkling of natural and artificial guide stars up to 800 times a second, GeMs can determine how atmospheric turbulence is distorting Gemini South’s observations [2]. A computer uses this information to minutely adjust the shape of deformable mirrors, canceling out the distortions caused by turbulence. In this case, the sharp adaptive optics images have made it possible to recognize more details in each knot of the young stellar jets than in previous studies.

Source: Gemini Observatory



Notes

[1] Astronomical objects can appear very different at different wavelengths. For example, the dust surrounding newborn stars blocks visible light but is transparent at infrared wavelengths. Something similar also happens here on Earth — doctors can see right through you with an X-ray machine even though human bodies are not transparent at visible wavelengths. Astronomers therefore study the Universe across the electromagnetic spectrum to learn as much as possible about the Universe.

[2] Adaptive optics systems on telescopes often make use of "natural guide stars" which are bright stars that lie close to the target of an astronomical observation. Their brightness makes it easy to measure how atmospheric turbulence is distorting their appearance. Gemini South also uses artificial guide stars produced by shining powerful lasers into the upper atmosphere. 

Links

Contacts

Leticia Ferrero
Universidad Nacional de Córdoba
Tel: ​+54 9 351 4331063/4/5 int: 105
Email:
lvferrero@unc.edu.ar

Amanda Kocz
NSF’s NOIRLab Communications
Tel: +1 520 318 8591
Email:
amanda.kocz@noirlab.edu


Tuesday, August 24, 2021

Fastest Orbiting Asteroid Discovered at NOIRLab’s CTIO

Illustration showing the asteroid 2021 PH27 inside Mercury’s orbit 
 
Discovery observations of 2021 PH27 from 13 August 2021 (annotated) 
 
Infographic showing the unusually short orbit of 2021 PH27 
 
Discovery image of 2021 PH27 from 13 August 2021 (unannotated) 
 
Infographic showing the unusually short orbit of 2021 PH27 (Spanish) 
 
View of orbits face-on 
 
View of orbits face-on (Spanish)
 
The unusually short orbit of 2021 PH27 (no annotations)
 


 
Víctor M. Blanco 4-meter Telescope under the stars 
 
Víctor M. Blanco 4-meter Telescope 
 
Dark Energy Cam under construction
 
 


About a kilometer across, space rock 2021 PH27 is the Sun’s nearest neighbor

Using the powerful 570-megapixel Dark Energy Camera (DECam) in Chile, astronomers just ten days ago discovered an asteroid with the shortest orbital period of any known asteroid in the Solar System. The orbit of the approximately 1-kilometer-diameter asteroid takes it as close as 20 million kilometers (12 million miles or 0.13 au), from the Sun every 113 days. Asteroid 2021 PH27, revealed in images acquired during twilight, also has the smallest mean distance (semi-major axis) of any known asteroid in our Solar System — only Mercury has a shorter period and smaller semi-major axis. The asteroid is so close to the Sun’s massive gravitational field, it experiences the largest general relativistic effects of any known Solar System object.

The asteroid designated 2021 PH27 was discovered by Scott S. Sheppard of the Carnegie Institution of Science in data collected by the Dark Energy Camera (DECam) mounted on the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory (CTIO) in Chile. The discovery images of the asteroid were taken by Ian Dell’antonio and Shenming Fu of Brown University in the twilight skies on the evening of 13 August 2021. Sheppard had teamed up with Dell’antonio and Fu while conducting observations with DECam for the Local Volume Complete Cluster Survey, which is studying most of the massive galaxy clusters in the local Universe [1]. They took time out from observing some of the largest objects millions of light-years away to search for far smaller objects — asteroids — closer to home.

One of the highest-performance, wide-field CCD imagers in the world, DECam was designed for the Dark Energy Survey (DES) funded by the DOE, was built and tested at DOE’s Fermilab, and was operated by the DOE and NSF between 2013 and 2019. At present DECam is used for programs covering a huge range of science. The DECam science archive is curated by the Community Science and Data Center (CSDC). CTIO and CSDC are programs of NSF’s NOIRLab

Twilight, just after sunset or before sunrise, is the best time to hunt for asteroids that are interior to Earth’s orbit, in the direction of the two innermost planets, Mercury and Venus. As any stargazer will tell you, Mercury and Venus never appear to get very far from the Sun in the sky and are always best visible near sunrise or sunset. The same holds for asteroids that also orbit close to the Sun.

Following 2021 PH27’s discovery, David Tholen of the University of Hawai‘i measured the asteroid’s position and predicted where it could be observed the following evening. Subsequently, on 14 August 2021, it was observed once more by DECam, and also by the Magellan Telescopes at the Las Campanas Observatory in Chile. Then, on the evening of the 15th, Marco Micheli of the European Space Agency used the Las Cumbres Observatory network of 1- to 2-meter telescopes to observe it from CTIO in Chile and from South Africa, in addition to further observations from DECam and Magellan, as astronomers postponed their originally scheduled observations to get a sight of the newly found asteroid. 

Though telescope time for astronomers is very precious, the international nature and love of the unknown make astronomers very willing to override their own science and observations to follow up new, interesting discoveries like this,” says Sheppard.

Planets and asteroids orbit the Sun in elliptical (or oval-shaped) orbits, with the widest axis of the ellipse having a radius described as the semi-major axis. 2021 PH27 has a semi-major axis of 70 million kilometers (43 million miles or 0.46 au), giving it a 113-day orbital period on a elongated orbit that crosses the orbits of both Mercury and Venus [2]

It may have begun life in the main Asteroid Belt between Mars and Jupiter and got dislodged by gravitational disturbances from the inner planets that drew it closer to the Sun. Its high orbital inclination of 32 degrees suggests, however, that it might instead be an extinct comet from the outer Solar System that got captured into a closer short-period orbit when passing near one of the terrestrial planets. Future observations of the asteroid will shed more light on its origins.

Its orbit is probably also unstable over long periods of time, and it will likely eventually either collide with Mercury, Venus or the Sun in a few million years, or be ejected from the inner Solar System by the inner planets’ gravitational influence.

Astronomers have a hard time finding these interior asteroids because they are very often hidden by the glare of the Sun. When asteroids get so close to our nearest star, they experience a variety of stresses, such as thermal stresses from the Sun’s heat, and physical stresses from gravitational tidal forces. These stresses could cause some of the more fragile asteroids to break up.

The fraction of asteroids interior to Earth and Venus compared to exterior will give us insights into the strength and make-up of these objects,” says Sheppard. If the population of asteroids on similar orbits to 2021 PH27 appears depleted, it could tell astronomers what fraction of near-Earth asteroids are piles of rubble that are loosely held together, as opposed to solid chunks of rock, which could have consequences for asteroids that might be on a collision course with Earth and how we might deflect them.

Understanding the population of asteroids interior to Earth’s orbit is important to complete the census of asteroids near Earth, including some of the most likely Earth impactors that may approach Earth during daylight and that cannot easily be discovered in most surveys that are observing at night, away from the Sun,” says Sheppard. He adds that since 2021 PH27 approaches so close to the Sun, “...its surface temperature gets to almost 500 degrees C (around 900 degrees F) at closest approach, hot enough to melt lead”.

Because 2021 PH27 is so close to the Sun’s massive gravitational field, it experiences the largest general relativistic effects of any known Solar System object. This reveals itself as a slight angular deviation in the asteroid’s elliptical orbit over time, a movement called precession, which amounts to about one arcminute per century [3].

The asteroid is now entering solar conjunction when from our point of view it is seen to move behind the Sun. It is expected to return to visibility from Earth early in 2022, when new observations will be able to determine its orbit in more detail, allowing the asteroid to get an official name.




Notes
 
[1] The Local Volume Complete Cluster Survey (LoVoCCS) is an NSF’s NOIRLab survey program that is using DECam to measure the dark matter distribution and the galaxy population in 107 nearby galaxy clusters. These deep exposures will allow a clean comparison of faint variable objects when combined with data from Vera C. Rubin Observatory.

[2] 2021 PH27 is only one of around 20 known Atira asteroids that have their orbits completely interior to the Earth’s orbit.

[3] Observation of Mercury’s precession puzzled scientists until Einstein’s general theory of relativity explained its orbital adjustments over time. 2021 PH27’s precession is even faster than Mercury’s.




More Information 

This research was reported to the Minor Planet Center.

NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O'odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.




Links



Contacts:

Scott Sheppard
Earth and Planets Laboratory
Carnegie Institution for Science
Email:
ssheppard@carnegiescience.edu

Lars Lindberg Christensen
NSF’s NOIRLab
Head of Communications, Education & Engagement
Cell: +1 520 461 0433
Email:
lars.christensen@noirlab.edu

 

 Source:  NSF’s NOIRLab/News