Showing posts with label NGC 1512. Show all posts
Showing posts with label NGC 1512. Show all posts

Tuesday, May 10, 2022

Galactic Ballet Captured from NSF’s NOIRLab in Chile

PR Image noirlab2210a
The interacting galaxy pair NGC 1512 and NGC 1510

PR Image noirlab2210b
Wider crop of the NGC 1512 image

Wider crop of the NGC 1512 image


Videos

Cosmoview Episode 44: Galactic Ballet Captured from NSF’s NOIRLab in Chile
Cosmoview Episode 44: Galactic Ballet Captured from NSF’s NOIRLab in Chile 
 
Zooming into NGC 1512
Zooming into NGC 1512 
 
CosmoView Episodio 44: Tololo captura un ballet galáctico a 60 millones de años luz de la Tierra
CosmoView Episodio 44: Tololo captura un ballet galáctico a 60 millones de años luz de la Tierra




DOE-funded Dark Energy Camera captures a pair of galaxies performing a gravitational duet


The interacting galaxy pair NGC 1512 and NGC 1510 take center stage in this image from the US Department of Energy-fabricated Dark Energy Camera, a state-of-the-art wide-field imager on the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory, a Program of NSF’s NOIRLab. NGC 1512 has been in the process of merging with its smaller galactic neighbor for 400 million years, and this drawn-out interaction has ignited waves of star formation.

The barred spiral galaxy NGC 1512 (left) and its diminutive neighbor NGC 1510 were captured in this observation from the Víctor M. Blanco 4-meter Telescope. As well as revealing the intricate internal structure of NGC 1512, this image shows the wispy outer tendrils of the galaxy stretching out and appearing to envelop its tiny companion. The starry stream of light that connects the two galaxies is evidence of the gravitational interaction between them — a stately and graceful liaison that has been going on for 400 million years. NGC 1512 and NGC 1510’s gravitational interaction has affected the rate of star formation in both galaxies as well as distorting their shapes. Eventually, NGC 1512 and NGC 1510 will merge into one larger galaxy — a drawn-out example of galactic evolution.

These interacting galaxies lie in the direction of the constellation of Horologium in the southern celestial hemisphere and are around 60 million light-years from Earth. The wide field of view of this observation shows not only the intertwined galaxies, but also their star-studded surroundings. The frame is populated with bright foreground stars within the Milky Way and is set against a backdrop of even more distant galaxies.

The image was taken with one of the highest-performance wide-field imaging instruments in the world, the Dark Energy Camera (DECam). This instrument is perched atop the Víctor M. Blanco 4-meter Telescope and its vantage point allows it to collect starlight reflected by the telescope’s 4-meter-wide (13-foot-wide) mirror, a massive, aluminum-coated and precisely shaped piece of glass roughly the weight of a semi truck. After passing through the optical innards of DECam — including a corrective lens nearly a meter (3.3 feet) across — starlight is captured by a grid of 62 charge-coupled devices (CCDs). These CCDs are similar to the sensors found in ordinary digital cameras but are far more sensitive, and allow the instrument to create detailed images of faint astronomical objects such as NGC 1512 and NGC 1510.

Large astronomical instruments such as DECam are custom-built masterpieces of optical engineering, requiring enormous effort from astronomers, engineers, and technicians before the first images can be captured. Funded by the US Department of Energy (DOE) with contributions from international partners, DECam was built and tested at DOE’s Fermilab, where scientists and engineers built a “telescope simulator” — a replica of the upper segments of the Víctor M. Blanco 4-meter Telescope — that allowed them to thoroughly test DECam before shipping it to Cerro Tololo in Chile.

DECam was created to conduct the Dark Energy Survey (DES), a six-year observing campaign (from 2013 to 2019) involving over 400 scientists from 25 institutions in seven countries. This international collaborative effort set out to map hundreds of millions of galaxies, detect thousands of supernovae, and discover delicate patterns of cosmic structure — all to provide much-needed details of the mysterious dark energy that is accelerating the expansion of the Universe. Today DECam is still used for programs by scientists from around the world continuing its legacy of cutting-edge science.




More Information

NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O'odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.




Links


Contact:

Amanda Kocz
Communications Manager
NSF’s NOIRLab
Tel: +1 520 318 8591
Email:
amanda.kocz@noirlab.edu

Source: NoirLab/News



Saturday, May 23, 2015

Galaxy’s snacking habits revealed

A composite image of the galaxy NGC 1512, located 38 million light years away in the direction of the constellation of Horologium, in the southern hemisphere of the sky. The image shows the regions of unusual chemical enrichment that demonstrate that NGC 1512 has absorbed other galaxies earlier in its history. Credit: Angel R. Lopez-Sanchez (AAO / MQU), & Baerbel Koribalski (CSIRO / CASS). Click  here for a full size image 


A team of Australian and Spanish astronomers have caught a greedy galaxy gobbling on its neighbours and leaving crumbs of evidence about its dietary past.

Galaxies grow by churning loose gas from their surroundings into new stars, or by swallowing neighbouring galaxies whole. However, they normally leave very few traces of their cannibalistic habits.

A study published today in Monthly Notices of the Royal Astronomical Society not only reveals a spiral galaxy devouring a nearby compact dwarf galaxy, but shows evidence of its past galactic snacks in unprecedented detail.

Australian Astronomical Observatory (AAO) and Macquarie University astrophysicist, Ángel R. López-Sánchez, and his collaborators have been studying the galaxy NGC 1512 to see if its chemical story matches its physical appearance.

The team of researchers used the unique capabilities of the 3.9-metre Anglo-Australian Telescope (AAT), near Coonabarabran, New South Wales, to measure the level of chemical enrichment in the gas across the entire face of NGC 1512.

Chemical enrichment occurs when stars churn the hydrogen and helium from the Big Bang into heavier elements through nuclear reactions at their cores.

These new elements are released back into space when the stars die, enriching the surrounding gas with chemicals like oxygen, which the team measured.

“We were expecting to find fresh gas or gas enriched at the same level as that of the galaxy being consumed, but were surprised to find the gases were actually the remnants of galaxies swallowed earlier,” Dr López-Sánchez said.

“The diffuse gas in the outer regions of NGC 1512 is not the pristine gas created in the Big Bang but is gas that has already been processed by previous generations of stars.”

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australia Telescope Compact Array (ATCA), a powerful 6-km diameter radio interferometer (an array of radio antennas that effectively act as a larger single instrument) located in eastern Australia, was used to detect large amounts of cold hydrogen gas that extends way beyond the stellar disk of the spiral galaxy NGC 1512.

"The dense pockets of hydrogen gas in the outer disk of NGC 1512 accurately pin-point regions of active star formation", said CSIRO's Dr Baerbel Koribalski, a member of the research collaboration.

When this finding was examined in combination with radio and ultraviolet observations the scientists concluded that the rich gas being processed into new stars did not come from the inner regions of the galaxy either. Instead, the gas was likely absorbed by the galaxy over its lifetime as NGC 1512 accreted other, smaller galaxies around it.

Dr Tobias Westmeier, from the International Centre for Radio Astronomy Research in Perth, said that while galaxy cannibalism has been known for many years, this is the first time that it has been observed in such fine detail.

“By using observations from both ground and space based telescopes we were able to piece together a detailed history for this galaxy and better understand how interactions and mergers with other galaxies have affected its evolution and the rate at which it formed stars,” he said.

The team’s successful and novel approach to investigating how galaxies grow is being used in a new program to further refine the best models of galaxy evolution.

For this work the astronomers used spectroscopic data from the AAT at Siding Spring Observatory in Australia to measure the chemical distribution around the galaxies. They identified the diffuse gas around the dual galaxy system using ATCA radio observations.

In addition, they identified regions of new star formation with data from the Galaxy Evolution Explorer (GALEX) orbiting space telescope.

“The unique combination of these data provide a very powerful tool to disentangle the nature and evolution of galaxies,” said Dr López-Sánchez.

“We will observe several more galaxies using the same proven techniques to improve our understanding of the past behaviour of galaxies in the local Universe.”




Media contacts

Dr Amanda Bauer
Australian Astronomical Observatory (AAO)
Tel: +61 2 9372 4852
Mob: +61 447 029 368

amanda.bauer@aao.gov.au

Pete Wheeler
The International Centre for Radio Astronomy Research (ICRAR)
Tel: +61 8 6488 7758
Mob: +61 0423 982 018

pete.wheeler@icrar.org



Science contacts

Dr Ángel R. López-Sánchez
Australian Astronomical Observatory / Macquarie University
Tel: +61 2 9372 4898

angel.lopezsanchez@aao.gov.au

Dr Tobias Westmeier
The International Centre for Radio Astronomy Research / University of
Western Australia
Tel: +61 8 6488 4592

tobias.westmeier@icrar.org

Dr Baerbel Koribalski
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
Tel: +61 293 724 361

baerbel.koribalski@csiro.au



Further information

The new work is published in “Ionized gas in the XUV disc of the NGC1512/1510 system”,
Á. R. López-Sánchez, T. Westmeier, C. Esteban, and B. S. Koribalski, Monthly Notices of the Royal Astronomical Society, Oxford University Press, vol. 450 no. 4, pp. 3381-3409, 2015.





 Notes for editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter.