Showing posts with label `Oumuamua. Show all posts
Showing posts with label `Oumuamua. Show all posts

Wednesday, June 27, 2018

ESO’s VLT Sees `Oumuamua Getting a Boost

Artist’s impression of the interstellar asteroid `Oumuamua

Predicted position of `Oumuamua versus observed position



Videos

ESOcast 167: VLT sees  `Oumuamua getting a boost
ESOcast 167: VLT sees `Oumuamua getting a boost

Animation of `Oumuamua outgassing
Animation of `Oumuamua outgassing

Animation of `Oumuamua outgassing and rotating
Animation of `Oumuamua outgassing and rotating

Animation of `Oumuamua passing through the Solar System
Animation of `Oumuamua passing through the Solar System

Animation of `Oumuamua passing through the Solar System (annotated)
Animation of `Oumuamua passing through the Solar System (annotated)

Animation showing the expected and measured trajectory of `Oumuamua
Animation showing the expected and measured trajectory of `Oumuamua



New results indicate interstellar nomad `Oumuamua is a comet

`Oumuamua, the first interstellar object discovered in the Solar System, is moving away from the Sun faster than expected. This anomalous behaviour was detected by a worldwide astronomical collaboration including ESO’s Very Large Telescope in Chile. The new results suggest that `Oumuamua is most likely an interstellar comet and not an asteroid. The discovery appears in the journal Nature.

`Oumuamua — the first interstellar object discovered within our Solar System — has been the subject of intense scrutiny since its discovery in October 2017 [1]. Now, by combining data from the ESO’s Very Large Telescope and other observatories, an international team of astronomers has found that the object is moving faster than predicted. The measured gain in speed is tiny and `Oumuamua is still slowing down because of the pull of the Sun — just not as fast as predicted by celestial mechanics.

The team, led by Marco Micheli (European Space Agency) explored several scenarios to explain the faster-than-predicted speed of this peculiar interstellar visitor. The most likely explanation is that `Oumuamua is venting material from its surface due to solar heating — a behaviour known as outgassing [2]. The thrust from this ejected material is thought to provide the small but steady push that is sending `Oumuamua hurtling out of the Solar System faster than expected — as of 1 June 2018  it is traveling at roughly 114 000 kilometres per hour.

Such outgassing is a behaviour typical for comets and contradicts the previous classification of `Oumuamua as an interstellar asteroid. “We think this is a tiny, weird comet,” commented Marco Micheli. “We can see in the data that its boost is getting smaller the farther away it travels from the Sun, which is typical for comets.”

Usually, when comets are warmed by the Sun they eject dust and gas, which form a cloud of material — called a coma — around them, as well as the characteristic tail. However, the research team could not detect any visual evidence of outgassing.

We did not see any dust, coma, or tail, which is unusual,” explained co-author Karen Meech of the University of Hawaii, USA. Meech led the discovery team’s characterisation of `Oumuamua in 2017.  “We think that ‘Oumuamua may vent unusually large, coarse dust grains.

The team speculated that perhaps the small dust grains adorning the surface of most comets eroded during `Oumuamua’s journey through interstellar space, with only larger dust grains remaining. Though a cloud of these larger particles would not be bright enough to be detected, it would explain the unexpected change to ‘Oumuamua’s speed.

Not only is `Oumuamua’s hypothesised outgassing an unsolved mystery, but also its interstellar origin. The team originally performed the new observations on `Oumuamua to exactly determine its path which would have probably allowed it to trace the object back to its parent star system. The new results means it will be more challenging to obtain this information.

The true nature of this enigmatic interstellar nomad may remain a mystery,” concluded team member Olivier Hainaut, an astronomer at ESO. “`Oumuamua’s recently-detected gain in speed makes it more difficult to be able to trace the path it took from its extrasolar home star.



Notes

[1]`Oumuamua, pronounced “oh-MOO-ah-MOO-ah”, was first discovered using the Pan-STARRS telescope at the Haleakala Observatory, Hawaii. Its name means “scout” in Hawaiian, and reflects its nature as the first known object of interstellar origin to have entered the Solar System.  The original observations indicated it was an elongated, tiny object whose colour were similar to that of a comet.


[2] The team tested several hypothesis to explain the unexpected change in speed. They analysed if solar radiation pressure, the Yarkovsky effect, or friction-like effects could explain the observations. It was also checked if the gain in speed could have been caused by an impulse event (such as a collision), by `Oumuamua being a binary object or by `Oumuamua being a magnetised object.  The unlikely theory that `Oumuamua is an interstellar spaceship was also rejected: the facts that the smooth and continuous change in speed is not typical for thrusters and that the object is tumbling on all three axis speak against it being an artificial object.



More Information

The research team’s work is presented in the scientific paper “Non-gravitational acceleration in the trajectory of 1I/2017 U1 (`Oumuamua)”, which will be published in the journal Nature on 27 June 2018.

The international team of astronomers in this study consists of Marco Micheli (European Space Agency & INAF, Italy), Davide Farnocchia (NASA Jet Propulsion Laboratory, USA), Karen J. Meech (University of Hawaii Institute for Astronomy, USA), Marc W. Buie (Southwest Research Institute, USA), Olivier R. Hainaut (European Southern Observatory, Germany), Dina Prialnik (Tel Aviv University School of Geosciences, Israel), Harold A. Weaver (Johns Hopkins University Applied Physics Laboratory, USA), Paul W. Chodas (NASA Jet Propulsion Laboratory, USA), Jan T. Kleyna (University of Hawaii Institute for Astronomy, USA), Robert Weryk (University of Hawaii Institute for Astronomy, USA), Richard J. Wainscoat (University of Hawaii Institute for Astronomy, USA), Harald Ebeling (University of Hawaii Institute for Astronomy, USA), Jacqueline V. Keane (University of Hawaii Institute for Astronomy, USA), Kenneth C. Chambers (University of Hawaii Institute for Astronomy, USA), Detlef Koschny (European Space Agency, European Space Research and Technology Centre, & Technical University of Munich, Germany), and Anastassios E. Petropoulos (NASA Jet Propulsion Laboratory, USA).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 15 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a strategic partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Links



Contacts:

Olivier Hainaut
European Southern Observatory
Garching, Germany
Tel: +49 89 3200 6752
Email:
ohainaut@eso.org

Marco Micheli
Space Situational Awareness Near-Earth Object Coordination Centre, European Space Agency
Frascati, Italy
Tel: +39 06 941 80365
Email:
marco.micheli@esa.int

Karen Meech
Institute for Astronomy, University of Hawaii
Honolulu, USA
Cell: +1 720 231 7048
Email:
meech@IfA.Hawaii.Edu

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email:
pio@eso.org


Source: ESO/News


Monday, March 19, 2018

‘Oumuamua likely came from a binary star system

Credit: ESO / M. Kornmesser


New research finds that 'Oumuamua, the rocky object identified as the first confirmed interstellar asteroid, very likely came from a binary star system.

A binary star system, unlike our Sun, is one with two stars orbiting a common centre.

For the new study, published in the journal Monthly Notices of the Royal Astronomical Society, Jackson and his co-authors set about testing how efficient binary star systems are at ejecting objects. They also looked at how common these star systems are in the Galaxy.

They found that rocky objects like 'Oumuamua are far more likely to come from binary than single star systems. They were also able to determine that rocky objects are ejected from binary systems in comparable numbers to icy objects.

"It's really odd that the first object we would see from outside our system would be an asteroid, because a comet would be a lot easier to spot and the Solar System ejects many more comets than asteroids," says Jackson, who specializes in planet and solar system formation.

Once they determined that binary systems are very efficient at ejecting rocky objects, and that a sufficient number of them exist, they were satisfied that 'Oumuamua very likely came from a binary system. They also concluded that it probably came from a system with a relatively hot, high mass star since such a system would have a greater number of rocky objects closer in.

The team suggest that the asteroid was very likely to have been ejected from its binary system sometime during the formation of planets.

'Oumuamua, which is Hawaiian for 'scout', was first spotted by the Haleakala Observatory in Hawaii on 19 October 2017. With a radius of 200 metres and travelling at a blistering speed of 30 kilometres per second, at its closest it was about 33,000,000 km from Earth.

When it was first discovered researchers initially assumed the object was a comet, one of countless icy objects that release gas when they warm up on approaching the Sun. But it didn't show any comet-like activity as it neared the Sun, and was quickly reclassified as an asteroid, meaning it was rocky.

Researchers were also fairly sure it was from outside our Solar System, based on its trajectory and speed. An eccentricity of 1.2 – which classifies its path as an open-ended hyperbolic orbit – and such a high speed meant it was not bound by the gravity of the Sun.

In fact, as Jackson points out, 'Oumuamua's orbit has the highest eccentricity ever observed in an object passing through our Solar System.

Major questions about ‘Oumuamua remain. For planetary scientists like Jackson, being able to observe objects like these may yield important clues about how planet formation works in other star systems.

“The same way we use comets to better understand planet formation in our own Solar System, maybe this curious object can tell us more about how planets form in other systems.”




Media Contact

Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7292 3979
Mob: +44 (0)7802 877 699
press@ras.ac.uk

Dr Morgan Hollis
Royal Astronomical Society
Tel: +44 (0)20 7292 3977
Mob: +44 (0)7802 877 700
press@ras.ac.uk



Science Contact

Dr Alan Jackson
CPS Postdoctoral Fellow
Centre for Planetary Sciences
University of Toronto
Tel: +1 416 208 5099 (4 hours behind GMT)
ajackson@cita.utoronto.ca
http://www.alanjacksonastronomy.com/



Further Information


The new work appears in: “Ejection of rocky and icy material from binary star systems: Implications for the origin and composition of 1I/`Oumuamua", A. Jackson, D. Tamayo, N. Hammond, M. Ali-Dib, H. Rein, Monthly Notices of the Royal Astronomical Society (2018), in press (DOI: 10.1093/mnras/sly033).

A copy of the paper is available here.




Notes for Editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Follow the RAS on Twitter, Facebook and Instagram

Monday, November 20, 2017

ESO Observations Show First Interstellar Asteroid is Like Nothing Seen Before

Artist’s impression of the interstellar asteroid `Oumuamua

Combined deep image of `Oumuamua from the VLT and other telescopes (annotated)

 
The Orbit of ‘Oumuamua

Combined deep image of ‘Oumuamua from the VLT and other telescopes (unannotated)

Artist’s impression of the interstellar asteroid `Oumuamua 

Light curve of interstellar asteroid `Oumuamua



Videos

ESOcast 138 Light: VLT Discovers First Interstellar Asteroid is like Nothing Seen Before (4K UHD)
ESOcast 138 Light: VLT Discovers First Interstellar Asteroid is like Nothing Seen Before (4K UHD)

Animation of `Oumuamua passing through the Solar System
Animation of `Oumuamua passing through the Solar System

Animation of `Oumuamua passing through the Solar System (annotated)
Animation of `Oumuamua passing through the Solar System (annotated)


Animation of artist's concept of `Oumuamua
Animation of artist's concept of `Oumuamua



VLT reveals dark, reddish and highly-elongated object

For the first time ever astronomers have studied an asteroid that has entered the Solar System from interstellar space. Observations from ESO’s Very Large Telescope in Chile and other observatories around the world show that this unique object was traveling through space for millions of years before its chance encounter with our star system. It appears to be a dark, reddish, highly-elongated rocky or high-metal-content object. The new results appear in the journal Nature on 20 November 2017.

On 19 October 2017, the Pan-STARRS 1 telescope in Hawai`i picked up a faint point of light moving across the sky. It initially looked like a typical fast-moving small asteroid, but additional observations over the next couple of days allowed its orbit to be computed fairly accurately. The orbit calculations revealed beyond any doubt that this body did not originate from inside the Solar System, like all other asteroids or comets ever observed, but instead had come from interstellar space. Although originally classified as a comet, observations from ESO and elsewhere revealed no signs of cometary activity after it passed closest to the Sun in September 2017. The object was reclassified as an interstellar asteroid and named 1I/2017 U1 (`Oumuamua) [1].

We had to act quickly,” explains team member Olivier Hainaut from ESO in Garching, Germany. “`Oumuamua had already passed its closest point to the Sun and was heading back into interstellar space.

ESO’s Very Large Telescope was immediately called into action to measure the object’s orbit, brightness and colour more accurately than smaller telescopes could achieve. Speed was vital as `Oumuamua was rapidly fading as it headed away from the Sun and past the Earth’s orbit, on its way out of the Solar System. There were more surprises to come.

Combining the images from the FORS instrument on the VLT using four different filters with those of other large telescopes, the team of astronomers led by Karen Meech (Institute for Astronomy, Hawai`i, USA) found that `Oumuamua varies dramatically in brightness by a factor of ten as it spins on its axis every 7.3 hours.

Karen Meech explains the significance: “This unusually large variation in brightness means that the object is highly elongated: about ten times as long as it is wide, with a complex, convoluted shape. We also found that it has a dark red colour, similar to objects in the outer Solar System, and confirmed that it is completely inert, without the faintest hint of it.

These properties suggest that `Oumuamua is dense, possibly rocky or with high metal content, lacks significant amounts of water or ice, and that its surface is now dark and reddened due to the effects of irradiation from cosmic rays over millions of years. It is estimated to be at least 400 metres long.

Preliminary orbital calculations suggested that the object had come from the approximate direction of the bright star Vega, in the northern constellation of Lyra. However, even travelling at a breakneck speed of about 95 000 kilometres/hour, it took so long for the interstellar object to make the journey to our Solar System that Vega was not near that position when the asteroid was there about 300 000 years ago. `Oumuamua may well have been wandering through the Milky Way, unattached to any star system, for hundreds of millions of years before its chance encounter with the Solar System.

Astronomers estimate that an interstellar asteroid similar to `Oumuamua passes through the inner Solar System about once per year, but they are faint and hard to spot so have been missed until now. It is only recently that survey telescopes, such as Pan-STARRS, are powerful enough to have a chance to discover them.

We are continuing to observe this unique object,” concludes Olivier Hainaut, “and we hope to more accurately pin down where it came from and where it is going next on its tour of the galaxy. And now that we have found the first interstellar rock, we are getting ready for the next ones!



Notes

[1] The Pan-STARRS team’s proposal to name the interstellar objet was accepted by the International Astronomical Union, which is responsible for granting official names to bodies in the Solar System and beyond. The name is Hawaiian and more details are given here. The IAU also created a new class of objects for interstellar asteroids, with this object being the first to receive this designation. The correct forms for referring to this object are now: 1I, 1I/2017 U1, 1I/`Oumuamua and 1I/2017 U1 (`Oumuamua). Note that the character before the O is an okina. So, the name should sound like H O u  mu a mu a. Before the introduction of the new scheme, the object was referred to as A/2017 U1.




More Information

This research was presented in a paper entitled “A brief visit from a red and extremely elongated interstellar asteroid”, by K. Meech et al., to appear in the journal Nature on 20 November 2017.

The team is composed of these J. Meech (Institute for Astronomy, Honolulu, Hawai`i, USA [IfA]) Robert Weryk (IfA), Marco Micheli (ESA SSA-NEO Coordination Centre, Frascati, Italy; INAF–Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy), Jan T. Kleyna (IfA) Olivier Hainaut (ESO, Garching, Germany), Robert Jedicke (IfA) Richard J. Wainscoat (IfA) Kenneth C. Chambers (IfA) Jacqueline V. Keane (IfA), Andreea Petric (IfA), Larry Denneau (IfA), Eugene Magnier (IfA), Mark E. Huber (IfA), Heather Flewelling (IfA), Chris Waters (IfA), Eva Schunova-Lilly (IfA) and Serge Chastel (IfA).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and by Australia as a strategic partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.




Links




Contacts

Olivier Hainaut
ESO
Garching, Germany
Tel: +49 89 3200 6752

Karen Meech
Institute for Astronomy
Honolulu, Hawai`i, USA
Cell: +1-720-231-7048

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591


Source: ESO