In commemoration of the 15th anniversary of NASA's Chandra X-ray Observatory, four newly processed images of supernova remnants dramatically illustrate Chandra's unique ability to explore high-energy processes in the cosmos (see the accompanying
press release).
The images of the Tycho and G292.0+1.8 supernova remnants show how
Chandra can trace the expanding debris of an exploded star and the
associated shock waves that rumble through interstellar space at speeds
of millions of miles per hour. The images of the Crab Nebula and 3C58
show how extremely dense, rapidly rotating neutron stars produced when a massive star explodes can create clouds of high-energy particles light years across that glow brightly in X-rays.
Tycho:
More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic
expansion of the exploded star produced a shock wave moving outward
into the surrounding interstellar gas, and another, reverse shock wave
moving back into the expanding stellar debris. This Chandra image of
Tycho reveals the dynamics of the explosion in exquisite detail. The
outer shock has produced a rapidly moving shell of extremely
high-energy electrons (blue), and the reverse shock has heated the
expanding debris to millions of degrees (red and green). There is
evidence from the Chandra data that these shock waves may be responsible
for some of the cosmic rays - ultra-energetic particles - that pervade
the Galaxy and constantly bombard the Earth.
G292.0+1.8:
At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way
known to contain large amounts of oxygen. These oxygen-rich supernovas
are of great interest to astronomers because they are one of the
primary sources of the heavy elements (that is, everything other than
hydrogen and helium) necessary to form planets and people. The X-ray
image from Chandra shows a rapidly expanding, intricately structured,
debris field that contains, along with oxygen (yellow and orange),
other elements such as magnesium (green) and silicon and sulfur (blue) that were forged in the star before it exploded.
The Crab Nebula:
In 1054 AD,
Chinese astronomers and others around the world noticed a new bright
object in the sky. This “new star” was, in fact, the supernova
explosion that created what is now called the Crab Nebula. At the
center of the Crab Nebula is an extremely dense, rapidly rotating
neutron star left behind by the explosion. The neutron star, also known
as a pulsar, is spewing out a blizzard of high-energy particles,
producing the expanding X-ray nebula seen by Chandra. In this new image,
lower-energy X-rays from Chandra are red, medium energy X-rays are
green, and the highest-energy X-rays are blue.
3C58:
3C58 is the remnant of a supernova observed in the year 1181 AD by
Chinese and Japanese astronomers. This new Chandra image shows the
center of 3C58, which contains a rapidly spinning neutron star
surrounded by a thick ring, or torus, of X-ray emission. The pulsar
also has produced jets of X-rays blasting away from it to both the left
and right, and extending trillions of miles. These jets are responsible
for creating the elaborate web of loops and swirls revealed in the
X-ray data. These features, similar to those found in the Crab, are
evidence that 3C58 and others like it are capable of generating both
swarms of high-energy particles and powerful magnetic fields. In this
image, low, medium, and high-energy X-rays detected by Chandra are red,
green, and blue respectively.
****************
Fast Facts for 3C58:
Scale: Image is 12 arcmin across (35 light years) across.
Coordinates (J2000): RA 02h 05m 37.00s | Dec +64 49 48.00
Constellation: Cassiopeia
Observation Dates: 4 pointings between Sep 2000 and Apr 2003
Observation Time: 108 hours 52 min (4 days 12 hours 52 min
Obs. IDs: 728, 3832, 4382, 4383
Instrument: ACIS
Color Code: X-ray (Red, Green, Blue)
Distance Estimate: About 10,000 light years
****************
Fast Facts for Crab Nebula:
Scale: Image is 4.6 arcmin across (8.7 light years) across.
Coordinates (J2000): RA 05h 34m 32s | Dec +22 0.0 52.00
Constellation: Taurus
Observation Dates: 48 pointings between March 2000 and Nov 2013
Observation Time: 25 hours 28 min (1 day 1 hour 28 min)
Obs. IDs: 769-773,1994-2001,4607,13139,13146,13147,13150-13154,13204-132
Instrument: ACIS
Color Code: X-ray (Red, Green, Blue)
Distance Estimate: About 6,500 light years light years
****************
Fast Facts for Tycho's Supernova Remnant:
Scale: Image is 9.5 arcmin across (36 light years) across.
Coordinates (J2000): RA 00h 25m 17s | Dec +64 08 37
Constellation: Cassiopeia
Observation Dates: 13 pointings between Sep 2000 and May 2009
Observation Time: 297 hours 26 min (12 days 9 hours 26 min)
Obs. IDs: 115, 3837, 7639, 8551, 10093-10097, 10902-10906
Instrument: ACIS
Also Knows As: G120.1+01.4, SN 1572
Color Code: X-ray (Red, Green, Blue)
Distance Estimate: About 6,500 light years light years
****************
Fast Facts for G292.0+1.8:
Scale: Image is 11.4 arcmin across (about 66 light years) across.
Coordinates (J2000): RA 11h 24m 36.00s | Dec -59 16 00.00
Constellation: Centaurus
Observation Dates: 6 pointings between 13 Sep and 16 Oct 2006
Observation Time: 141 hours 30 min (5 days 21 hours 30 min)
Obs. IDs: 6677-6680, 8221, 8447
Instrument: ACIS
Color Code: X-ray X-ray (Red, Orange, Green, Blue)
Distance Estimate: About 20,000 light years light years
Source: NASA’s Chandra X-ray Observatory