Showing posts with label anomalous microwave emission (AME). Show all posts
Showing posts with label anomalous microwave emission (AME). Show all posts

Thursday, January 26, 2023

Astronomers create new microwave map of the Milky Way and beyond


Colour shows the polarized microwave emission measured by QUIJOTE. The pattern of lines superposed shows the direction of the magnetic field lines. Credit: The QUIJOTE Collaboration


An international team of scientists have successfully mapped the magnetic field of our galaxy, the Milky Way, using telescopes that observe the sky in the microwave range. The new research is published in Monthly Notices of the Royal Astronomical Society.

The team used the QUIJOTE (Q-U-I JOint TEnerife) Collaboration, sited at the Teide Observatory on Tenerife in the Canary Islands. This comprises two 2.5 m diameter telescopes, which observe the sky in the microwave part of the electromagnetic spectrum.

Led by the Instituto de Astrofísica de Canarias (IAC), the mapping began in 2012. Almost a decade later, the Collaboration has presented a series of 6 scientific articles, giving the most accurate description to date of the polarization of the emission of the Milky Way at microwave wavelengths. Polarization is a property of transverse waves such as light waves that specifies the direction of the oscillations of the waves and signifies the presence of a magnetic field.

The studies complement earlier space missions dedicated to the study of the cosmic microwave background radiation (CMB), the fossil radiation left behind by the Big Bang, which gave a detailed insight into the early history of the cosmos.

As well as mapping the magnetic structure of the Milky Way, the QUIJOTE data has also proved useful in other scenarios. The new data are also a unique tool for studying the anomalous microwave emission (AME), a type of emission first detected 25 years ago. AME is thought to be produced by the rotation of very small particles of dust in the interstellar medium, which tend to be oriented by the presence of the galactic magnetic field.

The new results allowed the team to obtain information about the structure of the magnetic field of the Milky Way, as well as helping to understand the energetic processes which took place close to the birth of the Universe. To measure signals from that time, scientists need to first eliminate the veil of emission associated with our own Galaxy. The new maps provided by QUIJOTE do just that, allowing us to better understand these elusive signals from the wider Universe.

The maps from QUIJOTE have also permitted the study of a recently detected excess of microwave emission from the centre of our Galaxy. The origin of this emission is currently unknown, but it could be connected to the decay processes of dark matter particles. With QUIJOTE, the team have confirmed the existence of this excess of radiation, and have found some evidence that it could be polarized.

Finally, the new maps from QUIJOTE have permitted the systematic study of over 700 sources of emission in radio and microwaves, of both Galactic and extragalactic origin, meaning that the data is helping scientists to decipher signals coming from beyond our galaxy, including the cosmic microwave background radiation.

“These new maps give a detailed description in a new frequency range, from 10 to 40 GHz, complementing those from space missions such as Planck and WMAP”, comments José Alberto Rubiño, lead scientist of the QUIJOTE Collaboration. “We have characterized the synchrotron emission from our Galaxy with unprecedented accuracy. This radiation is the result of the emission by charged particles moving at velocities close to that of light within the Galactic magnetic field. These maps, the result of almost 9,000 hours of observation, are a unique tool for studying magnetism in the universe” he adds.

“One of the most interesting results we have found is that the polarized synchrotron emission from our Galaxy is much more variable than had been thought” comments Elena de la Hoz, a researcher at the Instituto de Física de Cantabria (IFCA). “The results we have obtained are a reference to help future experiments make reliable detections of the CMB signal” she adds.

“Scientific evidence suggests that the Universe went through a phase of rapid expansion, called inflation, a fraction of a second after the Big Bang. If this is correct, we would expect to find some observable consequences when we study the polarization of the cosmic microwave background. Measuring those expected features is difficult, because they are small in amplitude, but also because they are less bright than the polarized emission from our own galaxy.” notes Rubiño, “However, if we finally measure them, we will have indirect information of the physical conditions in the very early stages of our Universe, when the energy scales were much higher than those that we can access or study from the ground. This has enormous implications for our understanding of fundamental physics.”

“The maps from QUIJOTE have also permitted the study of the microwave emission from the centre of our Galaxy. Recently an excess of microwave emission has been detected from this region, whose origin is unknown, but whose origin could be connected to the decay processes of dark matter particles. With QUIJOTE we have confirmed the existence of this excess of radiation, and have found some evidence that it could be polarized” comments Federica Guidi, a researcher at the Institut d'Astrophysique de Paris (IAP, Francia).




Media contacts:

Gurjeet Kahlon
Royal Astronomical Society
Mob: +44 (0)7802 877700

press@ras.ac.uk

Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)7802 877699

press@ras.ac.uk

Science Contacts:

Professor Jose Alberto Rubino-Martin
Institute of Astrophysics of the Canary Islands

jalberto@iac.es

Dr Denis Tramonte
Purple Mountain Observatory

tramonte@pmo.ac.cn

Dr Federica Guidi
Paris Institute of Astrophysics

federica.guidi@iap.fr

Dr Frederick Poidevin
Institute of Astrophysics of the Canary Islands

fpoidevin@iac.es

Elena de la Hoz
The Institute of Physics of Cantabria/Unican

delahoz@ifca.unican.es

Dr Diego Herranz
The Institute of Physics of Cantabria

herranz@ifca.unican.es



Further information

The QUIJOTE (Q-U-I JOint TEnerife) CMB Experiment is a scientific collaboration between the Instituto de Astrofísica de Canarias (Tenerife, Spain), the Instituto de Física de Cantabria (Santander, Spain), the Departamento de Ingenieria de COMunicaciones (Santander, Spain), the Jodrell Bank Observatory (Manchester, UK), the Cavendish Laboratory (Cambridge, UK), and the IDOM company (Spain). It started operations in November 2012, and it consists in two telescopes and three instruments dedicated to measure the polarization of the microwave sky in the frequency range between 10 GHz and 40GHz, and at angular scales of one degree.

The work appears in ‘
QUIJOTE scientific results – IV. A northern sky survey in intensity and polarization at 10–20 GHz with the Multi-Frequency Instrument’, Rubiño-Martin et al., published in Monthly Notices of the Royal Astronomical Society, in press.

The press release includes information obtained from 5 other papers:
Notes for editors

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognises outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.


Tuesday, July 07, 2015

Rings and Loops in the stars: Planck’s stunning new images

An image of the ring around the star Lambda Orionis, made with the ESA Planck satellite. The ring, here seen in pink, is around 200 light years across. In the image red represents the anomalous microwave emission (AME), green represents the emission from interstellar plasma and the blue is emission arising from electrons moving in magnetic fields. Credit: M. Peel / JCBA / Planck / ESA. Click here for a full size image


A ring of dust 200 light years across and a loop covering a third of the sky: two of the results in a new map from the Planck satellite. Dr Mike Peel and Dr Paddy Leahy of the Jodrell Bank Centre for Astrophysics (JCBA) presented the images today at the National Astronomy Meeting (NAM 2015) at Venue Cymru, Llandudno, Wales.

The European Space Agency (ESA) Planck satellite, launched in 2009 to study the ancient light of the Big Bang, has also given us maps of our own Galaxy, the Milky Way, in microwaves (radiation at cm- to mm-wavelengths). Microwaves are generated by electrons spiralling in the Galaxy's magnetic field at nearly the speed of light (the synchrotron process); by collisions in interstellar plasma, by thermal vibration of interstellar dust grains, and by "anomalous" microwave emission (AME), which may be from spinning dust grains.

The relative strength of these processes changes with wavelength, and are separated using multi-wavelength measurements from Planck, from NASA's WMAP satellite, and from ground-based radio telescopes, giving maps of each component.

The new maps show regions covering huge areas of our sky that produce AME; this process, only discovered in 1997,  could account for a large amount of galactic microwave emission with a wavelength near 1 cm. One example where it is exceptionally bright is the 200 light year-wide dust ring around the Lambda Orionis nebula (the 'head' of the familiar Orion constellation). This is the first time the ring has been seen in this way.

A full sky map made using the ESA Planck satellite. Loop 1, marked by the dashed ellipse, is the yellow feature above centre, shading to purple, and the purple arc below centre. The colours represent the angle of the magnetic field and the brightness represents the signal strength. Credit: M. Peel / JCBA / Planck / ESA. Click here for a full size image


A wide field map also shows synchrotron loops and spurs (where charged particles spiral around magnetic fields), including the huge Loop 1, discovered more than 50 years ago. Remarkably, astronomers are still very uncertain about its distance – it could be anywhere between 400 and 25,000 light years away – and though it covers around a third of the sky it is impossible to say exactly how big it is.



Media contacts

Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
rm@ras.org.uk

Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
anitaheward@btinternet.com

Dr Sam Lindsay
Royal Astronomical Society
Mob: +44 (0) 7957 566 861
sl@ras.org.uk



Science contacts

Dr Mike Peel
Jodrell Bank Centre for Astrophysics
michael.peel@manchester.ac.uk

Dr Paddy Leahy
Jodrell Bank Centre for Astrophysics
j.p.leahy@manchester.ac.uk

Prof Clive Dickinson
Jodrell Bank Centre for Astrophysics
clive.dickinson@manchester.ac.uk




Further information

The new work has been submitted to “Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds”, the Planck Collaboration, Astronomy and Astrophysics. See the preprint of this paper


This research was supported by an ERC Starting (Consolidator) Grant (no. 307209) and STFC Consolidated Grant (no. ST/L000768/1).




Notes for editors


The Royal Astronomical Society  National Astronomy Meeting (NAM 2015) will take place in Llandudno, Wales, from 5-9 July. NAM 2015 will be held in conjunction with the annual meetings of the UK Solar Physics (UKSP) and Magnetosphere Ionosphere Solar-Terrestrial physics (MIST) groups. The conference is principally sponsored by the Royal Astronomical Society (RAS) and the Science and Technology Facilities Council (STFC). Follow the conference on Twitter.

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter

The Science and Technology Facilities Council (STFC) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory. Follow STFC on Twitter

Jodrell Bank Centre for Astrophysics (JBCA) is directly involved with the two lowest frequencies of the Low Frequency Instrument, the 30 and 44 GHz radiometers. These have 4 and 6 detectors respectively, operating at 20K (-253.15°C or -423.67°F). The resolution on the sky is 33 and 27 arc minutes, and the sensitivity 1.6 and 2.4 micro K (over 12 months). The cryogenic low noise amplifiers which are the heart of the radiometers were developed at Jodrell Bank, with help from the National Radio Astronomy Observatory in Virginia, USA.

The work to understand the Galactic emission seen by Planck is being co-led from Jodrell Bank by Emeritus Profs Rod Davies and Clive Dickinson. A number of projects are led by Jodrell Bank scientists, including Profs Richard Davis and Clive Dickinson. Each of the 14 projects focusses on one aspect of the Galaxy as seen by Planck, including the electrons that gyrate in the Galactic magnetic field, the ionized gas that pervades the interstellar medium and the dust grains that emit across the entire frequency range that Planck is sensitive to. Jodrell Bank is also leading the calibration and identifying systematics in the LFI data.