Showing posts with label Voyager. Show all posts
Showing posts with label Voyager. Show all posts

Saturday, November 10, 2012

Interstellar Dust and the Sun


An artist’s concept of the heliosphere (seen in blue, including a shocked region). The Earth is at 1 AU, and the two Voyager spacecraft are seen beyond 100 AU (the Cassini spacecraft at Saturn is also shown). A new study investigates what happens to interstellar dust that encounters the solar system and the Sun's heliosphere.  Credit: NASA and JHU/APL.  Low Resolution Image (jpg)


The space between stars is not empty. It contains copious but diffuse amounts of gas and dust; in fact about 5-10% of the total mass of our Milky Way galaxy is in interstellar gas. About 1% of the mass of this interstellar material, quite a lot in astronomical terms, is in the form of tiny dust grains made predominantly of silicates (sand too is made of silicates), though some grains are also composed of carbon and other elements. Dust grains are important. They block visible light while emitting infrared light, and thus help determine what astronomers can see while controlling much of the energy balance in the interstellar medium (ISM) by virtue of the absorption and subsequent re-emission at longer wavelengths of light from stars. Dust is also essential to the chemistry that takes place in the ISM because it provides gas molecules with a surface on which to react with other molecules. Not least, dust contains a large fraction of many important elements in the universe like silicon, carbon, and iron. Moreover, astronomers think that at some stage in the evolution of new stars the dust around them will coagulate into large clumps -- the first step towards forming planets. 

CfA astronomer Jonathan Slavin and a team of six other astronomers wondered what happens to interstellar dust when it wanders into the solar system and gets close enough to the Sun to fall under the influence of its radiation, winds, and gravity. They note that the Sun (and its planets) is moving through a low density cloud of partially ionized gas. This motion, together with the wind of particles that the Sun emits, produces a bow-shaped region called the heliosphere, the bow-shaped end of which is about 100 AU from the Sun (one AU is the average distance of the Earth from the Sun). 

Writing in the latest issues of the Astrophysical Journal, the scientists report on the results of their theoretical models of the behavior of interstellar dust grains as the Sun moves through space. They build on in-situ observations of the heliosphere taken when the Voyager 1 and Voyager 2 spacecraft on their outward journey encountered the edges of the heliosphere, results that constrain its size and shape. Assuming typical grains made of olivine silicates, the team finds that the small grains (less than the wavelength of ultraviolet light) stay far away from the Sun, that gravity helps the large grains collect near the Sun, but that intermediate-sized grains - about the size of the wavelength of optical light - can actually pile up in diffuse structures at the edges of the heliosphere. The new results, besides providing important new information on dust grains in the solar system, suggest that radiation from these intermediate-sized grain structures could contaminate the images of the sky used to measure the cosmic backgrounds.



Wednesday, June 15, 2011

Recalculating the Distance to Interstellar Space

This artist's concept shows NASA's two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. Image credit: NASA/JPL-Caltech . Full image and caption

Scientists analyzing recent data from NASA's Voyager and Cassini spacecraft have calculated that Voyager 1 could cross over into the frontier of interstellar space at any time and much earlier than previously thought. The findings are detailed in this week's issue of the journal Nature.

Data from Voyager's low-energy charged particle instrument, first reported in December 2010, have indicated that the outward speed of the charged particles streaming from the sun has slowed to zero. The stagnation of this solar wind has continued through at least February 2011, marking a thick, previously unpredicted "transition zone" at the edge of our solar system.

"There is one time we are going to cross that frontier, and this is the first sign it is upon us," said Tom Krimigis, prinicipal investigator for Voyager's low-energy charged particle instrument and Cassini's magnetospheric imaging instrument, based at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

Krimigis and colleagues combined the new Voyager data with previously unpublished measurements from the ion and neutral camera on Cassini's magnetospheric imaging instrument. The Cassini instrument collects data on neutral atoms streaming into our solar system from the outside.

The analysis indicates that the boundary between interstellar space and the bubble of charged particles the sun blows around itself is likely between 10 and 14 billion miles (16 to 23 kilometers) from the sun, with a best estimate of approximately 11 billion miles (18 billion kilometers). Since Voyager 1 is already nearly 11 billion miles (18 billion kilometers) out, it could cross into interstellar space at any time.

"These calculations show we're getting close, but how close? That's what we don't know, but Voyager 1 speeds outward a billion miles every three years, so we may not have long to wait," said Ed Stone, Voyager project scientist, based at the California Institute of Technology in Pasadena.

Scientists intend to keep analyzing the Voyager 1 data, looking for confirmation. They will also be studying the Voyager 2 data, but Voyager 2 is not as close to the edge of the solar system as Voyager 1. Voyager 2 is about 9 billion miles (14 billion kilometers) away from the sun.

Launched in 1977, the Voyager twin spacecraft have been on a 33-year journey. They are humanity's farthest working deep space sentinels enroute to reach the edge of interstellar space. The Voyagers were built by NASA's Jet Propulsion Laboratory in Pasadena, Calif., which continues to operate both spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA's Science Mission Directorate in Washington. JPL is managed for NASA by Caltech.

More information about Voyager is available at:
http://www.nasa.gov/voyager and http://voyager.jpl.nasa.gov

Jia-Rui Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
jccook@jpl.nasa.gov

Tuesday, March 08, 2011

Voyager Seeks the Answer Blowin' in the Wind

This artist's concept shows NASA's two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. Image credit: NASA/JPL-Caltech. Full image and caption

PASADENA, Calif. -- In which direction is the sun's stream of charged particles banking when it nears the edge of the solar system? The answer, scientists know, is blowing in the wind. It's just a matter of getting NASA's Voyager 1 spacecraft in the right orientation to detect it.

To enable Voyager 1's Low Energy Charged Particle instrument to gather these data, the spacecraft performed a maneuver on March 7 that it hadn't done for 21 years, except in a preparatory test last month.

At 9:10 a.m. PST (12:10 p.m. EST), humanity's most distant spacecraft rolled 70 degrees counterclockwise as seen from Earth from its normal orientation and held the position by spinning gyroscopes for two hours, 33 minutes. The last time either of the two Voyager spacecraft rolled and stopped in a gyro-controlled orientation was Feb. 14, 1990, when Voyager 1 snapped a family portrait of the planets strewn like tiny gems around our sun (http://photojournal.jpl.nasa.gov/catalog/PIA00451).

"Even though Voyager 1 has been traveling through the solar system for 33 years, it is still a limber enough gymnast to do acrobatics we haven't asked it to do in 21 years," said Suzanne Dodd, Voyager project manager, based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It executed the maneuver without a hitch, and we look forward to doing it a few more times to allow the scientists to gather the data they need."

The two Voyager spacecraft are traveling through a turbulent area known as the heliosheath. The heliosheath is the outer shell of a bubble around our solar system created by the solar wind, a stream of ions blowing radially outward from the sun at a million miles per hour. The wind must turn as it approaches the outer edge of the bubble where it makes contact with the interstellar wind, which originates in the region between stars and blows by our solar bubble.

In June 2010, when Voyager 1 was about 17 billion kilometers (about 11 billion miles) away from the sun, data from the Low Energy Charged Particle instrument began to show that the net outward flow of the solar wind was zero. That zero reading has continued since. The Voyager science team doesn't think the wind has disappeared in that area. It has likely just turned a corner. But does it go up, down or to the side?

"Because the direction of the solar wind has changed and its radial speed has dropped to zero, we have to change the orientation of Voyager 1 so the Low Energy Charged Particle instrument can act like a kind of weather vane to see which way the wind is now blowing," said Edward Stone, Voyager project manager, based at the California Institute of Technology, Pasadena. "Knowing the strength and direction of the wind is critical to understanding the shape of our solar bubble and estimating how much farther it is to the edge of interstellar space."
Voyager engineers performed a test roll and hold on Feb. 2 for two hours, 15 minutes. When data from Voyager 1 were received on Earth some 16 hours later, the mission team verified the test was successful and the spacecraft had no problem in reorienting itself and locking back onto its guide star, Alpha Centauri.

The Low Energy Charged Particle instrument science team confirmed that the spacecraft had acquired the kind of information it needed, and mission planners gave Voyager 1 the green light to do more rolls and longer holds. There will be five more of these maneuvers over the next seven days, with the longest hold lasting three hours 50 minutes. The Voyager team plans to execute a series of weekly rolls for this purpose every three months.

The success of the March 7 roll and hold was received at JPL at 1:21 a.m. PST (4:21 a.m. EST) on March 8. But it will take a few months longer for scientists to analyze the data.
"We do whatever we can to make sure the scientists get exactly the kinds of data they need, because only the Voyager spacecraft are still active in this exotic region of space," said Jefferson Hall, Voyager mission operations manager at JPL. "We were delighted to see Voyager still has the capability to acquire unique science data in an area that won't likely be traveled by other spacecraft for decades to come."

Voyager 2 was launched on Aug. 20, 1977. Voyager 1 was launched on Sept. 5, 1977. On March 7, Voyager 1 was 17.4 billion kilometers (10.8 billion miles) away from the sun. Voyager 2 was 14.2 billion kilometers (8.8 billion miles) away from the sun, on a different trajectory.

The solar wind's outward flow has not yet diminished to zero where Voyager 2 is exploring, but that may happen as the spacecraft approaches the edge of the bubble in the years ahead.

The Voyagers were built by NASA's Jet Propulsion Laboratory in Pasadena, Calif., which continues to operate both spacecraft. JPL is a division of the California Institute of Technology in Pasadena. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate. For more information about the Voyager spacecraft, visit: http://www.nasa.gov/voyager.

Jia-Rui C. Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.