Showing posts with label Ultra Diffuse Galaxies (UDGs). Show all posts
Showing posts with label Ultra Diffuse Galaxies (UDGs). Show all posts

Friday, September 11, 2020

Galactic Census Reveals Origin of Most "Extreme" Galaxies

A wide field view of the central region of the Virgo Cluster, measuring 4.4 million light years on each side, from the Sloan Digital Sky Survey. Some of Virgo's brightest member galaxies are labeled, including Messier 87, or M87, which is located close to the cluster center. Insets show deep images of two structurally extreme galaxies, taken with the MegaCam instrument on CFHT as part of the Next Generation Virgo Cluster Survey. An ultra-compact dwarf is within the crosshairs in the lower inset, while an ultra-diffuse galaxy is featured in the upper inset. These galaxies are nearly a thousand times fainter than the bright galaxies visible on this image. Although the compact and diffuse galaxies contain roughly the same number of stars, and their total brightness is similar, they differ in area by a factor of more than 20,000. The scale bars in each inset represent a distance of 10,000 light years. Image credits: Sloan Digital Sky Survey, Canada-France-Hawaii Telescope and the NGVS team.

Astronomers have found that the key to understanding galaxies with "extreme" sizes, either small or large, may lie in their surroundings. In two related studies, an international team found that galaxies that are either "ultra-compact" or "ultra-diffuse" relative to normal galaxies of comparable brightness appear to reside in dense environments, i.e., regions that contain large numbers of galaxies. This has led the team to speculate that these "extreme" objects could have started out resembling normal galaxies, but then evolved to have unusual sizes through interactions with other galaxies.

The team identified both ultra-compact and ultra-diffuse galaxies as part of an unprecedented census of galaxies residing in the nearby Virgo cluster. The investigation used data from the Next Generation Virgo Cluster Survey (NGVS) obtained at the Canada-France-Hawaii Telescope (CFHT) using MegaCam, a wide-field, optical camera. At a distance of 50 million light years, Virgo is the galaxy cluster nearest to the Milky Way, and contains several thousand member galaxies, the majority of which are revealed, for the first time, in the NGVS data.

Astronomers discovered ultra-compact dwarf galaxies (UCDs) a quarter century ago, and they are the densest known galaxies in the Universe. Competing theories describe UCDs as either large star clusters, or as the remnants of larger galaxies that have been stripped of their stellar envelopes.

"We found hundreds of UCDs in the nearby Virgo galaxy cluster, and at least some of them appear to have started their lives as larger galaxies," said Dr. Chengze Liu of Shanghai Jiao Tong University, lead author of the first study.

While UCDs are similar in appearance to a large star cluster, a number of UCDs in this study were found with faint stellar envelopes surrounding the central, compact core. These envelopes could be the last remnants of a galaxy that has gradually been stripped away by gravitational tidal forces from neighboring galaxies. Additionally, UCDs were found to inhabit preferentially the regions of the Virgo cluster with the highest galaxy densities. Together, these pieces of evidence point to an environmentally-induced transformation as being responsible for producing some UCDs.

Ultra-diffuse galaxies (UDGs) are a mystery at the other end of the size spectrum. They are much larger, and more diffuse, than typical galaxies with similar brightness. Some theories suggest that UDGs are massive galaxies whose gas --- the fuel for their star formation --- was removed before many stars could form. Others suggest that they were once normal galaxies that have been made more diffuse through mergers and interactions.

"We found that the ultra-diffuse galaxies in the Virgo cluster are more concentrated toward the dense cluster core, indicating that a dense environment may be important for their formation," said Dr. Sungsoon Lim of the University of Tampa, and the lead author of the second study. "The diversity in their properties indicate that while no single process has given rise to all objects within the UDG class, at least some UDGs have appearances suggesting their diffuse nature is due to tidal interactions or to the merger of low-mass galaxies."

Another mystery is that some ultra-diffuse galaxies were found to contain significant populations of globular star clusters. "The intense star-forming events needed to make globular clusters generally make a galaxy less, rather than more diffuse, so understanding how we get globular clusters in ultra-diffuse galaxies is an interesting challenge," said Prof. Eric Peng of Peking University's Kavli Institute for Astronomy and Astrophysics, and co-author on both studies.

"To find galaxies that are truly unusual, you first need to understand the properties of so-called normal galaxies," said Dr. Patrick Côté of the National Research Council of Canada’s Herzberg Astronomy and Astrophysics Research Center, and an author on both studies. "NGVS provides the deepest, most complete look at the entirety of the Virgo cluster galaxy population, allowing us to find the most compact and most diffuse galaxies, advancing our understanding of how they fit into the general picture of galaxy formation."

These research results have been presented in two papers that were published recently in the Astrophysical Journal ( Lim et al. 2020; Liu et al. 2020).

NGVS is based on observations obtained with MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope and CEA/DAPNIA, and on data produced and hosted at the Canadian Astronomy Data Centre. CFHT is operated by the National Research Council of Canada, the Institute National des Sciences de l'Universe of the Centre National de la Recherche Scientifique of France, and the University of Hawai’i.laychak@cfht.hawaii.edu



Contacts

Dr. Eric Peng
Department of Astronomy
Kavli Institute for Astronomy and Astrophysics
Peking University, Beijing, China
peng@pku.edu.cn

Dr. Patrick Côté
Herzberg Astronomy and Astrophysics Research Center
National Research Council of Canada
Victoria, BC, Canada
patrick.cote@nrc-cnrc.gc.ca

Dr. Chengze Liu
Department of Astronomy
School of Physics and Astronomy
Shanghai Jiao Tong University
Shanghai, China
czliu@sjtu.edu.cn

Dr. Sungsoon Lim
University of Tampa
Tampa, FL, USA
slim@ut.edu

Media Contact

Mary Beth Laychak
Canada-France-Hawaii Telescope
laychak@cfht.hawaii.edu




Saturday, May 16, 2015

Scientists at Keck Discover the Fluffiest Galaxies

A collection of unidentified blobs was discovered toward the Coma cluster of galaxies, using the Dragonfly Telephoto Array. One of these puzzling objects, Dragonfly 44, was studied in detail using the Keck Observatory and confirmed as an ultra-diffuse galaxy. Even though it is 60,000 light years across, It is so far away that it appears as only a faint smudge.  Credit: P. van Dokkum, R. Abraham, J. Brodie. Hi-res image 

Reconstructed spectrum of light spread out from the ultra-diffuse galaxy, DragonFly44, as seen by the Keck/LRIS instrument. Dark bands occur where atoms and molecules absorb the galaxy’s starlight. These bands reveal the compositions and ages of the stars, and also the distance of the galaxy.  Credit: P. van Dokkum, A. Romanowsky, J. Brodie. Hi-res image

An ultra-diffuse galaxy, Dragonfly 17, is shown next to other types of galaxies, to scale. The Andromeda galaxy is a giant spiral like our own Milky Way, and a dwarf elliptical galaxy, NGC 205, is also shown. Ultra-diffuse galaxies have the same number of stars as dwarf ellipticals, but spread out over a much larger region.  Credit: B. Schoening, V. Harvey/REU program/NOAO/AURA/NSF, P. van Dokkum/Hubble Space Telescope. Hi-res image


Maunakea, Hawaii – An international team of researchers led by Pieter van Dokkum at Yale University have used the W. M. Keck Observatory to confirm the existence of the most diffuse class of galaxies known in the universe. These "fluffiest galaxies" are nearly as wide as our own Milky Way galaxy – about 60,000 light years – yet harbor only one percent as many stars. The findings were recently published in the Astrophysical Journal Letters.

“If the Milky Way is a sea of stars, then these newly discovered galaxies are like wisps of clouds”, said van Dokkum. “We are beginning to form some ideas about how they were born and it’s remarkable they have survived at all. They are found in a dense, violent region of space filled with dark matter and galaxies whizzing around, so we think they must be cloaked in their own invisible dark matter ‘shields’ that are protecting them from this intergalactic assault.”

The team made the latest discovery by combining results from one of the world's smallest telescopes as well as the largest telescope on Earth. The Dragonfly Telephoto Array used 14-centimeter state of the art telephoto lens cameras to produce digital images of the very faint, diffuse objects. Keck Observatory’s 10-meter Keck I telescope, with its Low Resolution Imaging Spectrograph, then separated the light of one of the objects into colors that diagnose its composition and distance.

Finding the distance was the clinching evidence. The data from Keck Observatory showed the diffuse "blobs" are very large and very far away, about 300 million light years, rather than small and close by. The blobs can now safely be called Ultra Diffuse Galaxies (UDGs).

“If there are any aliens living on a planet in an ultra-diffuse galaxy, they would have no band of light across the sky, like our own Milky Way, to tell them they were living in a galaxy. The night sky would be much emptier of stars,” said team member Aaron Romanowsky, of San Jose State University.

The UDGs were found in an area of the sky called the Coma cluster, where thousands of galaxies have been drawn together in a mutual gravitational dance. “Our fluffy objects add to the great diversity of galaxies that were previously known, from giant ellipticals that outshine the Milky Way, to ultra compact dwarfs,” said University of California, Santa Cruz Professor Jean Brodie.

“The big challenge now is to figure out where these mysterious objects came from,” said Roberto Abraham, of the University of Toronto. “Are they ‘failed galaxies’ that started off well and then ran out of gas? Were they once normal galaxies that got knocked around so much inside the Coma cluster that they puffed up? Or are they bits of galaxies that were pulled off and then got lost in space?”  The key next step in understanding UDGs is to to pin down exactly how much dark matter they have. Making this measurement will be even more challenging than the latest work.

The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes near the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems. 

The Low Resolution Imaging Spectrometer (LRIS) is a very versatile visible-wavelength imaging and spectroscopy instrument commissioned in 1993 and operating at the Cassegrain focus of Keck I. Since it has been commissioned it has seen two major upgrades to further enhance its capabilities: addition of a second, blue arm optimized for shorter wavelengths of light; and the installation of detectors that are much more sensitive at the longest (red) wavelengths. Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument's high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe.

Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.